Articles | Volume 13, issue 8
https://doi.org/10.5194/essd-13-4121-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-4121-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Minute Sea-Level Analysis (MISELA): a high-frequency sea-level analysis global dataset
Petra Zemunik
CORRESPONDING AUTHOR
Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Jadranka Šepić
Faculty of Science, University of Split, R. Boškovića 33,
21000 Split, Croatia
Havu Pellikka
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki,
Finland
Leon Ćatipović
Faculty of Science, University of Split, R. Boškovića 33,
21000 Split, Croatia
Ivica Vilibić
Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Ruđer Bošković Institute, Division for Marine and
Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
Related authors
No articles found.
Žarko Kovač, Marija Bačeković Koloper, Shubha Sathyendranath, Gemma Kulk, Heather Bouman, and Leon Ćatipović
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-820, https://doi.org/10.5194/essd-2025-820, 2026
Preprint under review for ESSD
Short summary
Short summary
We provide a new global dataset of photosynthesis parameters estimated from more than 6000 in situ primary production profiles. Using an inverse modelling approach, we recover 4160 parameter pairs that expand global coverage and support improved marine primary production modelling. The dataset is publicly available through Zenodo repository.
Elena Terzić, Clara Gardiol, and Ivica Vilibić
Ocean Sci., 21, 1441–1459, https://doi.org/10.5194/os-21-1441-2025, https://doi.org/10.5194/os-21-1441-2025, 2025
Short summary
Short summary
Vertical salinity profiles with their highest values at the surface layers – surface saline lakes – have been known to occur in the eastern Mediterranean, where strong evaporation, warm summers, and low winds all contribute to an increase in surface salinity. Our analysis of Argo data from the past 2 decades showed that saline lakes also occur in other regions across the Mediterranean Sea. This poses the question of whether such changes indicate a salinification of the entire basin due to climate change.
Krešimir Ruić, Jadranka Šepić, and Marin Vojković
Ocean Sci., 21, 1183–1203, https://doi.org/10.5194/os-21-1183-2025, https://doi.org/10.5194/os-21-1183-2025, 2025
Short summary
Short summary
This study investigates the synoptic weather patterns that cause extreme high-frequency sea level oscillations in the Adriatic Sea. Using synoptic data, 17 years of tide gauge data, and advanced clustering techniques, we identify distinct weather patterns linked to these events, some of which were previously unknown. These insights improve the understanding of sea level variability and have potential applications in forecasting coastal hazards.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranić, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibić, and Maria Letizia Vitelletti
Ocean Sci., 21, 1003–1031, https://doi.org/10.5194/os-21-1003-2025, https://doi.org/10.5194/os-21-1003-2025, 2025
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (i.e. use of multiple simulations) allowing us to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a basis for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Krešimir Ruić, Jadranka Šepić, and Marin Vojković
EGUsphere, https://doi.org/10.5194/egusphere-2024-1601, https://doi.org/10.5194/egusphere-2024-1601, 2024
Preprint withdrawn
Short summary
Short summary
Identifying the driving processes of intense sea-level (SL) oscillations has been the goal of many scientific endeavors. Our study focuses on intense SL oscillations in the Adriatic Sea resulting from atmospheric processes. Using machine learning methods, we identified several synoptic situations during which these oscillations occur. This can aid future predictions of extreme SL events, potentially reducing infrastructure damage and protecting lives.
Petra Pranić, Cléa Denamiel, Ivica Janeković, and Ivica Vilibić
Ocean Sci., 19, 649–670, https://doi.org/10.5194/os-19-649-2023, https://doi.org/10.5194/os-19-649-2023, 2023
Short summary
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Cited articles
Aarup, T., Wöppelmann, G., Woodworth, P. L., Hernandez, F., Vanhoorne,
B., Schöne, T., and Thompson, P. R.: Comments on the article
“Uncertainty and bias in electronic tide-gauge records: evidence from
collocated sensors” by Stella Pytharouli, Spyros Chaikalis, Stathis C.
Stiros in Measurement (Volume 125, September 2018), Measurement, 135,
613–616, https://doi.org/10.1016/j.measurement.2018.12.007, 2019.
Amato, A.: Some reflections on tsunami Early Warning Systems and their
impact, with a look at the NEAMTWS, Boll. Geof. Teor. Appl., 61, 403–420,
https://doi.org/10.4430/bgta0329, 2020.
Bechle, A. J., Wu, C. H., Kristovich, D. A. R., Anderson, E. J., Schwab, D. J.,
and Rabinovich, A. B.: Meteotsunamis in the Laurentian Great Lakes, Sci.
Rep.-UK, 6, 37832, https://doi.org/10.1038/srep37832, 2016.
Caldwell, P. C., Merrifield, M. A., and Thompson, P. R.: Sea level measured by
tide gauges from global oceans – the Joint Archive for Sea Level holdings
(NCEI Accession 0019568), Version 5.5, NOAA National Centers for
Environmental Information [data set], https://doi.org/10.7289/V5V40S7W, 2015.
Carvajal, M., Contreras-Lopez, M., Winckler, P., and Sepulveda, I.:
Meteotsunamis occurring along the southwest coast of South America during an
intense storm, Pure Appl. Geophys., 174, 3313–3323, https://doi.org/10.1007/s00024-017-1584-0, 2017.
Chlieh, M., Avouac, J. P., Hjorleifsdottir, V., Song, T. R. A., Ji, C., Sieh,
K., Sladen, A., Hebert, H., Prawirodirdjo, L., Bock, Y., and Galetzka, J.:
Coseismic slip and afterslip of the great M-w 9.15 Sumatra-Andaman
earthquake of 2004, B. Seismol. Soc. Am., 97, S152–S173, https://doi.org/10.1785/0120050631, 2007.
Dodet, G., Melet, A., Ardhuin, F., Bertin, X., Idier, D., and Almar, R.: The
contribution of wind-generated waves to coastal sea-level changes, Survey
Geophys., 40, 1563–1601, https://doi.org/10.1007/s10712-019-09557-5, 2019.
EuroGOOS DATA-MEQ working group: Recommendations for in-situ data Near Real
Time Quality Control, Coriolis Data Centre, 23 pp., https://doi.org/10.13155/36230, 2010.
Flanders Marine Institute (VLIZ) and Intergovernmental Oceanographic
Commission (IOC): Sea level station monitoring facility, VLIZ, https://doi.org/10.14284/482, 2021.
García-Valdecasas, J., Pérez Gómez, B., Molina,
R., Rodríguez, A., Rodríguez, D., Pérez, S., Campos, A.,
Rodríguez Rubio, P., Gracia, S., Ripollés, L., Terrés Nicoli,
J. M., Javier de los Santos, F., and Álvarez Fanjul, E.: Operational
tool for characterizing high-frequency sea level oscillations, Nat. Hazards,
106, 1149–1167, https://doi.org/10.1007/s11069-020-04316-x,
2021.
Heidarzadeh, M. and Rabinovich, A. B.: Combined hazard of typhoon-generated
meteorological tsunamis and storm surges along the coast of Japan, Nat.
Hazards, 106, 1639–1672, https://doi.org/10.1007/s11069-020-04448-0, 2021.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea,
M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh,
J.: New Data Systems and Products at the Permanent Service for Mean Sea
Level. J. Coastal. Res., 288, 493–504, https://doi.org/10.2112/jcoastres-d-12-00175.1, 2013.
Hunter, J. R., Woodworth, P. L., Wahl, T., and Nicholls, R. J.: Using global
tide gauge data to validate and improve the representation of extreme sea
levels in flood impact studies, Global. Planet. Change, 156, 34–45,
https://doi.org/10.1016/j.gloplacha.2017.06.007, 2017.
IOC: Global Sea Level Observing System (GLOSS) implementation plan – 1997,
UNESCO/Intergovernmental Oceanographic Commission, Technical Series, No. 50,
91 pp. & Annexes, UNESCO, Paris, 1997.
IOC: Global Sea Level Observing System (GLOSS) Implementation Plan – 2012,
UNESCO/Intergovernmental Oceanographic Commission, 41 pp., 2012, IOC
Technical Series No. 100, GOOS Report No. 194, JCOMM Technical Report No. 66, UNESCO, Paris, 2012.
Jevrejeva, S., Grinsted, A., Moore, J. C., and Holgate, S.: Nonlinear trends
and multiyear cycles in sea level records, J. Geophys. Res.-Oceans, 111,
C09012, https://doi.org/10.1029/2005JC003229, 2006.
Jylhä, K., Kämäräinen, M., Fortelius, C., Gregow, H.,
Helander, J., Hyvärinen, O., Johansson, M., Karppinen, A., Korpinen, A.,
Kouznetsov, R., Kurzeneva, E., Leijala, U., Mäkelä, A., Pellikka,
H., Saku, S., Sandberg, J., Sofiev, M., Vajda, A., Venäläinen, A.,
and Vira, J.: Recent meteorological and marine studies to support nuclear
power plant safety in Finland, Energy, 165, 1102–1118, https://doi.org/10.1016/j.energy.2018.09.033, 2018.
Marcos, M., Monserrat, S., Medina, R., Orfila, A., and Olabarrieta, M.:
External forcing of meteorological tsunamis at the coast of the Balearic
Islands, Phys. Chem. Earth, 34, 938–947, https://doi.org/10.1016/j.pce.2009.10.001, 2009.
Menéndez, M. and Woodworth, P. L.: Changes in extreme high water levels
based on a quasi-global tide-gauge data set, J. Geophys. Res.-Oceans, 115,
C10011, https://doi.org/10.1029/2009JC005997, 2010.
Monserrat, S., Vilibić, I., and Rabinovich, A. B.: Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band, Nat. Hazards Earth Syst. Sci., 6, 1035–1051, https://doi.org/10.5194/nhess-6-1035-2006, 2006.
Pasquet, S., Vilibić, I., and Šepić, J.: A survey of strong high-frequency sea level oscillations along the US East Coast between 2006 and 2011, Nat. Hazards Earth Syst. Sci., 13, 473–482, https://doi.org/10.5194/nhess-13-473-2013, 2013.
Pattiaratchi, C. and Wijeratne, E. M. S.: Observations of meteorological
tsunamis along the south-west Australian coast, Nat. Hazards, 74,
281–303, https://doi.org/10.1007/s11069-014-1263-8, 2014.
Pattiaratchi, C. B. and Wijeratne, E. M. S.: Are meteotsunamis an underrated
hazard?, Philos. T. R. Soc. A, 373, 20140377, https://doi.org/10.1098/rsta.2014.0377, 2015.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic
analysis including error estimates in MATLAB using T_TIDE,
Comput. Geosci., 28, 929–937, https://doi.org/10.1016/s0098-3004(02)00013-4, 2002.
Pellikka, H., Rauhala, J., Kahma, K. K., Stipa, T., Boman, H., and Kangas,
A.: Recent observations of meteotsunamis on the Finnish coast, Nat. Hazards,
74, 197–215, https://doi.org/10.1007/s11069-014-1150-3,
2014.
Pérez, B., Álvarez Fanjul, E., Pérez, S., de Alfonso, M., and
Vela, J.: Use of tide gauge data in operational oceanography and sea level
hazard warning systems, J. Oper. Oceanogr., 6, 1–18, https://doi.org/10.1080/1755876x.2013.11020147, 2013.
Šepić, J. and Rabinovich, A. B.: Meteotsunami in the Great Lakes
and on the Atlantic coast of the United States generated by the “derecho”
of June 29–30, 2012, Nat. Hazards, 74, 75–107, https://doi.org/10.1007/s11069-014-1310-5, 2014.
Šepić, J., Vilibić, I., Lafon, A., Macheboeuf, L., and
Ivanović, Z.: High-frequency sea level oscillations in the Mediterranean
and their connection to synoptic patterns, Prog. Oceanogr., 137, 284–298,
https://doi.org/10.1016/j.pocean.2015.07.005, 2015.
Šepić, J., Međugorac, I., Janeković, I., Dunić, N., and
Vilibić, I.: Multi-meteotsunami event in the Adriatic Sea generated by
atmospheric disturbances of 25–26 June 2014, Pure Appl. Geophys., 173,
4117–4138, https://doi.org/10.1007/s00024-016-1249-4, 2016.
Šepić, J., Vilibić, I., Rabinovich, A. B., and Tinti, S.:
Meteotsunami (“Marrobbio”) of 25–26 June 2014 on the Southwestern Coast
of Sicily, Italy, Pure Appl. Geophys., 175, 1573–1593, https://doi.org/10.1007/s00024-018-1827-8, 2018.
Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J. L., Owen, S. E.,
Meng, L. S., Ampuero, J. P., Wei, S. J., and Chu, R. S.: The 2011 magnitude 9.0
Tohoku-Oki Earthquake: mosaicking the megathrust from seconds to centuries,
Science, 332, 1421–1425, https://doi.org/10.1126/science.1206731, 2011.
Thomson, R. R. and Emery, W. J.: Data analysis methods in physical
oceanography, 3rd Edn., Elsevier, Oxford, United Kingdom, https://doi.org/10.1016/C2010-0-66362-0, 2014.
Tsimplis, M. N., Marcos, M., Pérez, B., Challenor, P., Garcia-Fernandez,
M. J., and Raicich, F.: On the effect of the sampling frequency of sea level
measurements on return period estimate of extremes – Southern European
examples, Cont. Shelf Res., 29, 2214–2221, https://doi.org/10.1016/j.csr.2009.08.015, 2009.
UNESCO/IOC: Quality Control of in situ Sea Level Observations: A Review and
Progress towards Automated Quality Control, Vol. 1. Paris, France, UNESCO,
70 pp., https://doi.org/10.25607/OBP-854, 2020.
Vafeidis, A. T., Nicholls, R. J., Mcfadden, L., Tol, R. S. J., Hinkel, J.,
Spencer, T., Grashoff, P. S., Boot, G., and Klein, R. J. T.: A new global
coastal database for impact and vulnerability analysis to sea-level rise, J.
Coastal. Res., 24, 917–924, https://doi.org/10.2112/06-0725.1, 2008.
Vilibić, I. and Šepić, J.: Global mapping of nonseismic sea
level oscillations at tsunami timescales, Sci. Rep.-UK, 7, 40818, https://doi.org/10.1038/srep40818, 2017.
Vilibić, I., Šepić, J., Dunić, N., Sevault, F., Monserrat,
S., and Jordà, G.: Proxy-based assessment of strength and frequency of
meteotsunamis in future climate, Geophys. Res. Lett., 45, 10501–10508,
https://doi.org/10.1029/2018GL079566, 2018.
Vilibić, I., Rabinovich, A. B., and Anderson, E. J.: The global
perspective on meteotsunami science: Editorial, Nat. Hazards, 106,
1087–1104, https://doi.org/10.1007/s11069-021-04679-9, 2021.
Yankovsky, A. E.: Large-scale edge waves generated by hurricane landfall, J.
Geophys. Res.-Oceans, 114, C04014, https://doi.org/10.1029/2008JC005113,
2009.
Wilkinson, M. D., Dumontier, M., Jan Aalbersberg, I., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C. , Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S. A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding
Principles for scientific data management and stewardship, Sci. Data,
3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Williams, J., Matthews, A., and Jevrejeva, S.: Development of an automatic
tide gauge processing system, National Oceanography Centre Research and
Consultancy Report, 64, Southampton, National Oceanography Centre, 26 pp.,
2019.
Woodworth, P. L.: Seiches in the eastern Caribbean, Pure Appl. Geophys., 174,
4283–4312, https://doi.org/10.1007/s00024-017-1715-7, 2017.
Woodworth, P. L., Aman, A., and Aarup, T.: Sea level monitoring in Africa,
African J. Mar. Sci., 29, 321–330, https://doi.org/10.2989/AJMS.2007.29.3.2.332, 2007.
Woodworth, P. L., Hunter, J. R., Marcos Moreno, M., Caldwell, P. C., Menendez,
M., and Haigh, I. D.: GESLA (Global Extreme Sea Level Analysis) high
frequency sea level dataset – Version 2, British Oceanographic Data Centre –
Natural Environment Research Council, UK, https://doi.org/10.5285/3b602f74-8374-1e90-e053-6c86abc08d39, 2016.
Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menéndez, M.,
and Haigh, I.: Towards a global higher-frequency sea level dataset, Geosci.
Data J., 3, 50–59, https://doi.org/10.1002/gdj3.42, 2017.
Zemunik, P., Bonanno, A., Mazzola, S., Giacalone, G., Fontana, I., Genovese,
S., Basilone, G., Candela, J., Šepić, J., Vilibić, I., and
Aronica, S.: Observing meteotsunamis (“Marrobbio”) on the southwestern
coast of Sicily, Nat. Hazards, 196, 1337–1363, https://doi.org/10.1007/s11069-020-04303-2, 2021a.
Zemunik, P., Vilibić, I., Šepić, J., Pellikka, H., and
Ćatipović, L.: MISELA: Minute Sea-Level Analysis, Marine Data Archive [data set], https://doi.org/10.14284/456, 2021b.
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains...
Altmetrics
Final-revised paper
Preprint