Articles | Volume 12, issue 2
https://doi.org/10.5194/essd-12-887-2020
https://doi.org/10.5194/essd-12-887-2020
Data description paper
 | 
20 Apr 2020
Data description paper |  | 20 Apr 2020

An updated seabed bathymetry beneath Larsen C Ice Shelf, Antarctic Peninsula

Alex Brisbourne, Bernd Kulessa, Thomas Hudson, Lianne Harrison, Paul Holland, Adrian Luckman, Suzanne Bevan, David Ashmore, Bryn Hubbard, Emma Pearce, James White, Adam Booth, Keith Nicholls, and Andrew Smith

Related authors

Brief communication: Reduced bandwidth improves the depth limit of the radar coherence method for detecting ice crystal fabric asymmetry
Ole Zeising, Álvaro Arenas-Pingarrón, Alex M. Brisbourne, and Carlos Martín
EGUsphere, https://doi.org/10.5194/egusphere-2024-2519,https://doi.org/10.5194/egusphere-2024-2519, 2024
Short summary
Array processing in cryoseismology: a comparison to network-based approaches at an Antarctic ice stream
Thomas Samuel Hudson, Alex M. Brisbourne, Sofia-Katerina Kufner, J.-Michael Kendall, and Andy M. Smith
The Cryosphere, 17, 4979–4993, https://doi.org/10.5194/tc-17-4979-2023,https://doi.org/10.5194/tc-17-4979-2023, 2023
Short summary
Downhole distributed acoustic seismic profiling at Skytrain Ice Rise, West Antarctica
Alex M. Brisbourne, Michael Kendall, Sofia-Katerina Kufner, Thomas S. Hudson, and Andrew M. Smith
The Cryosphere, 15, 3443–3458, https://doi.org/10.5194/tc-15-3443-2021,https://doi.org/10.5194/tc-15-3443-2021, 2021
Short summary
Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica
Felipe Napoleoni, Stewart S. R. Jamieson, Neil Ross, Michael J. Bentley, Andrés Rivera, Andrew M. Smith, Martin J. Siegert, Guy J. G. Paxman, Guisella Gacitúa, José A. Uribe, Rodrigo Zamora, Alex M. Brisbourne, and David G. Vaughan
The Cryosphere, 14, 4507–4524, https://doi.org/10.5194/tc-14-4507-2020,https://doi.org/10.5194/tc-14-4507-2020, 2020
Short summary
How dynamic are ice-stream beds?
Damon Davies, Robert G. Bingham, Edward C. King, Andrew M. Smith, Alex M. Brisbourne, Matteo Spagnolo, Alastair G. C. Graham, Anna E. Hogg, and David G. Vaughan
The Cryosphere, 12, 1615–1628, https://doi.org/10.5194/tc-12-1615-2018,https://doi.org/10.5194/tc-12-1615-2018, 2018
Short summary

Related subject area

Physical oceanography
High-resolution observations of the ocean upper layer south of Cape St. Vincent, the western northern margin of the Gulf of Cádiz
Sarah A. Rautenbach, Carlos Mendes de Sousa, Mafalda Carapuço, and Paulo Relvas
Earth Syst. Sci. Data, 16, 4641–4654, https://doi.org/10.5194/essd-16-4641-2024,https://doi.org/10.5194/essd-16-4641-2024, 2024
Short summary
Catalogue of coastal-based instances with bathymetric and topographic data
Owein Thuillier, Nicolas Le Josse, Alexandru-Liviu Olteanu, Marc Sevaux, and Hervé Tanguy
Earth Syst. Sci. Data, 16, 4529–4556, https://doi.org/10.5194/essd-16-4529-2024,https://doi.org/10.5194/essd-16-4529-2024, 2024
Short summary
Oceanographic monitoring in Hornsund fjord, Svalbard
Meri Korhonen, Mateusz Moskalik, Oskar Głowacki, and Vineet Jain
Earth Syst. Sci. Data, 16, 4511–4527, https://doi.org/10.5194/essd-16-4511-2024,https://doi.org/10.5194/essd-16-4511-2024, 2024
Short summary
Salinity and Stratification at the Sea Ice Edge (SASSIE): an oceanographic field campaign in the Beaufort Sea
Kyla Drushka, Elizabeth Westbrook, Frederick M. Bingham, Peter Gaube, Suzanne Dickinson, Severine Fournier, Viviane Menezes, Sidharth Misra, Jaynice Pérez Valentín, Edwin J. Rainville, Julian J. Schanze, Carlyn Schmidgall, Andrey Shcherbina, Michael Steele, Jim Thomson, and Seth Zippel
Earth Syst. Sci. Data, 16, 4209–4242, https://doi.org/10.5194/essd-16-4209-2024,https://doi.org/10.5194/essd-16-4209-2024, 2024
Short summary
Weekly green tide mapping in the Yellow Sea with deep learning: integrating optical and synthetic aperture radar ocean imagery
Le Gao, Yuan Guo, and Xiaofeng Li
Earth Syst. Sci. Data, 16, 4189–4207, https://doi.org/10.5194/essd-16-4189-2024,https://doi.org/10.5194/essd-16-4189-2024, 2024
Short summary

Cited articles

Ashmore, D. W., Hubbard, B., Luckman, A., Kulessa, B., Bevan, S., Booth, A., Munneke, P. K., O'Leary, M., Sevestre, H., and Holland, P. R.: Ice and firn heterogeneity within Larsen C Ice Shelf from borehole optical televiewing, J. Geophys. Res.-Earth, 122, 1139–1153, https://doi.org/10.1002/2016jf004047, 2017. 
Booth, A.: Seismic refraction data, Antarctic Peninsula, Larsen C Ice Shelf, Whirlwind Inlet, November-December 2015 [Data set], UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation, https://doi.org/10.5285/5D63777D-B375-4791-918F-9A5527093298, 2019. 
Booth, A., White, J., Pearce, E., Cornford, S., Brisbourne, A., Luckman, A., and Kulessa, B.: Seismic refraction data from two sites on Antarctica's Larsen C Ice Shelf, Nov 2017, following the calving of Iceberg A68 [Data set], UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation, https://doi.org/10.5285/147BAF64-B9AF-4A97-8091-26AEC0D3C0BB, 2019. 
Brisbourne, A., Hudson, T., and Holland, P.: Seismic bathymetry data, Antarctic Peninsula, Larsen C Ice Shelf, 2016 [Data set], UK Polar Data Centre, Natural Environment Research Council, UK Research & Innovation, https://doi.org/10.5285/315740B1-A7B9-4CF0-9521-86F046E33E9A, 2019. 
Brisbourne, A. M., Smith, A. M., King, E. C., Nicholls, K. W., Holland, P. R., and Makinson, K.: Seabed topography beneath Larsen C Ice Shelf from seismic soundings, The Cryosphere, 8, 1–13, https://doi.org/10.5194/tc-8-1-2014, 2014. 
Download
Short summary
Melting of the Larsen C Ice Shelf in Antarctica may lead to its collapse. To help estimate its lifespan we need to understand how the ocean can circulate beneath. This requires knowledge of the geometry of the sub-shelf cavity. New and existing measurements of seabed depth are integrated to produce a map of the ocean cavity beneath the ice shelf. The observed deep seabed may provide a pathway for circulation of warm ocean water but at the same time reduce rapid tidal melt at a critical location.
Altmetrics
Final-revised paper
Preprint