Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2725-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2725-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017
Yi Zheng
School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
Ruoque Shen
School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
Yawen Wang
Key Laboratory of Physical Oceanography, College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China
Xiangqian Li
School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
Shuguang Liu
College of Life Science and Technology, Central South University of
Forestry and Technology (CSUFT), Changsha 410004, Hunan, China
Shunlin Liang
Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
Jing M. Chen
Department of Geography, University of Toronto, Toronto, M5G 3G3 Canada
College of Geographical Science, Fujian Normal University, Fuzhou 3500007, Fujian, China
Weimin Ju
International Institute for Earth System Sciences, Nanjing University,
Nanjing, China
Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing, China
Li Zhang
Key Laboratory of Digital Earth Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing 100094, China
Wenping Yuan
CORRESPONDING AUTHOR
School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, Guangdong, China
Related authors
Yi Zheng, Ana Cláudia dos Santos Luciano, Jie Dong, and Wenping Yuan
Earth Syst. Sci. Data, 14, 2065–2080, https://doi.org/10.5194/essd-14-2065-2022, https://doi.org/10.5194/essd-14-2065-2022, 2022
Short summary
Short summary
Brazil is the largest sugarcane producer. Sugarcane in Brazil can be harvested all year round. The flexible phenology makes it difficult to identify sugarcane in Brazil at a country scale. We developed a phenology-based method which can identify sugarcane with limited training data. The sugarcane maps for Brazil obtain high accuracy through comparison against field samples and statistical data. The maps can be used to monitor growing conditions and evaluate the feedback to climate of sugarcane.
Jie Dong, Yangyang Fu, Jingjing Wang, Haifeng Tian, Shan Fu, Zheng Niu, Wei Han, Yi Zheng, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 3081–3095, https://doi.org/10.5194/essd-12-3081-2020, https://doi.org/10.5194/essd-12-3081-2020, 2020
Short summary
Short summary
For the first time, we produced a 30 m winter wheat distribution map in China for 3 years during 2016–2018. Validated with 33 776 survey samples, the map had perfect performance with an overall accuracy of 89.88 %. Moreover, the method can identify planting areas of winter wheat 3 months prior to harvest; that is valuable information for production predictions and is urgently necessary for policymakers to reduce economic loss and assess food security.
Shuzhuang Feng, Fei Jiang, Yongguang Zhang, Huilin Chen, Honglin Zhuang, Shumin Wang, Shengxi Bai, Hengmao Wang, and Weimin Ju
EGUsphere, https://doi.org/10.5194/egusphere-2025-2669, https://doi.org/10.5194/egusphere-2025-2669, 2025
Short summary
Short summary
Using satellite data and advanced modeling, this study inverted daily high-resolution anthropogenic CH4 emissions across China and Shanxi Province. We found that China's 2022 CH4 emissions were 45.1 TgCH4·yr⁻¹, significantly lower than previous estimates, especially in coal mining and waste sectors. The inversion substantially reduced emission uncertainties and improved CH4 concentration simulations. These results suggest China’s climate mitigation burden may have been overestimated.
Rong Shang, Xudong Lin, Jing M. Chen, Yunjian Liang, Keyan Fang, Mingzhu Xu, Yulin Yan, Weimin Ju, Guirui Yu, Nianpeng He, Li Xu, Liangyun Liu, Jing Li, Wang Li, Jun Zhai, and Zhongmin Hu
Earth Syst. Sci. Data, 17, 3219–3241, https://doi.org/10.5194/essd-17-3219-2025, https://doi.org/10.5194/essd-17-3219-2025, 2025
Short summary
Short summary
Forest age is critical for carbon cycle modeling and effective forest management. Existing datasets, however, have low spatial resolutions or limited temporal coverage. This study introduces China's annual forest age dataset (CAFA), spanning 1986–2022 at a 30 m resolution. By tracking forest disturbances, we annually update ages. Validation shows small errors for disturbed forests and larger errors for undisturbed forests. CAFA can enhance carbon cycle modeling and forest management in China.
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 17, 2193–2216, https://doi.org/10.5194/essd-17-2193-2025, https://doi.org/10.5194/essd-17-2193-2025, 2025
Short summary
Short summary
Rice is a vital staple crop that plays a crucial role in food security in China. However, long-term high-resolution rice distribution maps in China are lacking. This study developed a new rice-mapping method, mitigating the impact of cloud contamination and missing data in optical remote sensing observations on rice mapping. The resulting dataset, CCD-Rice (China Crop Dataset-Rice), achieved high accuracy and showed a strong correlation with statistical data.
Peng Li, Rong Shang, Jing M. Chen, Huiguang Zhang, Xiaoping Zhang, Guoshuai Zhao, Hong Yan, Jun Xiao, Xudong Lin, Lingyun Fan, Rong Wang, Jianjie Cao, and Hongda Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2025-1062, https://doi.org/10.5194/egusphere-2025-1062, 2025
Short summary
Short summary
This study explored species-specific relationships between net primary productivity and forest age for seven forest species in subtropical China based on field data using the Semi-Empirical Model. Compared to nationwide relationships, these species-specific relationships improved simulations of aboveground biomass when using the process-based model. Our findings suggest that these species-specific relationships are crucial for accurate forest carbon modeling and management in subtropical China.
Hui Liang, Shunlin Liang, Bo Jiang, Tao He, Feng Tian, Jianglei Xu, Wenyuan Li, Fengjiao Zhang, and Husheng Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-136, https://doi.org/10.5194/essd-2025-136, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
This paper describes 1 km daily mean land surface sensible heat flux (H) and land surface – air temperature difference (Tsa) datasets on the global scale during 2000–2020. The datasets were developed using a data-driven approach and rigorously validated against in situ observations and existing H and Tsa datasets, demonstrating both high accuracy and exceptional spatial resolution.
Yu Mao, Weimin Ju, Hengmao Wang, Liangyun Liu, Haikun Wang, Shuzhuang Feng, Mengwei Jia, and Fei Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3672, https://doi.org/10.5194/egusphere-2024-3672, 2025
Short summary
Short summary
The Russia-Ukraine war in 2022 severely disrupted Ukraine’s economy, with significant reductions in industrial, transportation, and residential activities. Our research used satellite data to track changes in nitrogen oxide emissions, a key indicator of human activity, during the war. We found a 28 % decline in emissions, which was twice of the decrease caused by the COVID-19 pandemic. This study highlights how modern warfare can deeply impact both the environment and economic stability.
Xingyu Wang, Fei Jiang, Hengmao Wang, Zhengqi Zhang, Mousong Wu, Jun Wang, Wei He, Weimin Ju, and Jing M. Chen
Atmos. Chem. Phys., 25, 867–880, https://doi.org/10.5194/acp-25-867-2025, https://doi.org/10.5194/acp-25-867-2025, 2025
Short summary
Short summary
The role of OCO-3 XCO2 retrievals in estimating global terrestrial carbon fluxes is unclear. We investigate this by assimilating OCO-3 XCO2 retrievals alone and in combination with OCO-2 XCO2. The assimilation of OCO-3 XCO2 alone underestimates global land sinks, mainly at high latitudes, due to the lack of observations beyond 52° S and 52° N, large variations in the number of data, and varying observation times, while the joint assimilation of OCO-2 and OCO-3 XCO2 has the best performance.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553, https://doi.org/10.5194/essd-2024-553, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Soil moisture (SM) plays a vital role in climate, agriculture, and hydrology, yet reliable long-term seamless global datasets remain scarce. To fill this gap, we developed a four-decade seamless global daily 5 km SM product using multi-source datasets and deep learning techniques. This product has long-term coverage, spatial and temporal integrity, and high accuracy, making it a valuable tool for applications like SM trend analysis, drought monitoring, and assessing vegetation responses.
Ran Yan, Jun Wang, Weimin Ju, Xiuli Xing, Miao Yu, Meirong Wang, Jingye Tan, Xunmei Wang, Hengmao Wang, and Fei Jiang
Biogeosciences, 21, 5027–5043, https://doi.org/10.5194/bg-21-5027-2024, https://doi.org/10.5194/bg-21-5027-2024, 2024
Short summary
Short summary
Our study reveals that the effects of the El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on China's gross primary production (GPP) are basically opposite, with obvious seasonal changes. Soil moisture primarily influences GPP during ENSO events (except spring) and temperature during IOD events (except fall). Quantitatively, China's annual GPP displays modest positive anomalies during La Niña and negative anomalies in El Niño years, driven by significant seasonal variations.
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024, https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Short summary
In this work, we developed the Nanjing University Carbon Assimilation System (NUCAS v1.0). Data assimilation experiments were conducted to demonstrate the robustness and investigate the feasibility and applicability of NUCAS. The assimilation of ecosystem carbonyl sulfide (COS) fluxes improved the model performance in gross primary productivity, evapotranspiration, and sensible heat, showing that COS provides constraints on parameters relevant to carbon-, water-, and energy-related processes.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Huajie Zhu, Xiuli Xing, Mousong Wu, Weimin Ju, and Fei Jiang
Biogeosciences, 21, 3735–3760, https://doi.org/10.5194/bg-21-3735-2024, https://doi.org/10.5194/bg-21-3735-2024, 2024
Short summary
Short summary
Ecosystem carbonyl sulfide (COS) fluxes were employed to optimize GPP estimation across ecosystems with the Biosphere-atmosphere Exchange Process Simulator (BEPS), which was developed for simulating the canopy COS uptake under its state-of-the-art two-leaf modeling framework. Our results showcased the efficacy of COS in improving model prediction and reducing prediction uncertainty of GPP and enhanced insights into the sensitivity, identifiability, and interactions of parameters related to COS.
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-147, https://doi.org/10.5194/essd-2024-147, 2024
Manuscript not accepted for further review
Short summary
Short summary
Rice is a vital staple crop that plays a crucial role in food security in China. However, long-term high-resolution rice distribution maps in China are lacking. This study developed a new rice mapping method using to address the challenges of cloud contamination and missing data in optical remote sensing observations. The resulting dataset, CCD-Rice (China Crop Dataset-Rice), achieved high accuracy and showed strong correlation with statistical data.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024, https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
Short summary
We produced a long-term global two-leaf gross primary productivity (GPP) and evapotranspiration (ET) dataset at the hourly time step by integrating a diagnostic process-based model with dynamic parameterizations. The new dataset provides us with a unique opportunity to study carbon and water fluxes at sub-daily time scales and advance our understanding of ecosystem functions in response to transient environmental changes.
Peng Li, Rong Shang, Jing M. Chen, Mingzhu Xu, Xudong Lin, Guirui Yu, Nianpeng He, and Li Xu
Biogeosciences, 21, 625–639, https://doi.org/10.5194/bg-21-625-2024, https://doi.org/10.5194/bg-21-625-2024, 2024
Short summary
Short summary
The amount of carbon that forests gain from the atmosphere, called net primary productivity (NPP), changes a lot with age. These forest NPP–age relationships could be modeled from field survey data, but we are not sure which model works best. Here we tested five different models using 3121 field survey samples in China, and the semi-empirical mathematical (SEM) function was determined as the optimal. The relationships built by SEM can improve China's forest carbon modeling and prediction.
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023, https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Short summary
Based on various existing datasets, we comprehensively considered spatiotemporal differences in land surfaces and CO2 effects on plant stomatal resistance to parameterize the Shuttleworth–Wallace model, and we generated a global 5 km ensemble mean monthly potential evapotranspiration (PET) dataset (including potential transpiration PT and soil evaporation PE) during 1982–2015. The new dataset may be used by academic communities and various agencies to conduct various studies.
Shuzhuang Feng, Fei Jiang, Zheng Wu, Hengmao Wang, Wei He, Yang Shen, Lingyu Zhang, Yanhua Zheng, Chenxi Lou, Ziqiang Jiang, and Weimin Ju
Geosci. Model Dev., 16, 5949–5977, https://doi.org/10.5194/gmd-16-5949-2023, https://doi.org/10.5194/gmd-16-5949-2023, 2023
Short summary
Short summary
We document the system development and application of a Regional multi-Air Pollutant Assimilation System (RAPAS v1.0). This system is developed to optimize gridded source emissions of CO, SO2, NOx, primary PM2.5, and coarse PM10 on a regional scale via simultaneously assimilating surface measurements of CO, SO2, NO2, PM2.5, and PM10. A series of sensitivity experiments demonstrates the advantage of the “two-step” inversion strategy and the robustness of the system in estimating the emissions.
Xinyan Liu, Tao He, Shunlin Liang, Ruibo Li, Xiongxin Xiao, Rui Ma, and Yichuan Ma
Earth Syst. Sci. Data, 15, 3641–3671, https://doi.org/10.5194/essd-15-3641-2023, https://doi.org/10.5194/essd-15-3641-2023, 2023
Short summary
Short summary
We proposed a data fusion strategy that combines the complementary features of multiple-satellite cloud fraction (CF) datasets and generated a continuous monthly 1° daytime cloud fraction product covering the entire Arctic during the sunlit months in 2000–2020. This study has positive significance for reducing the uncertainties for the assessment of surface radiation fluxes and improving the accuracy of research related to climate change and energy budgets, both regionally and globally.
Ruoque Shen, Baihong Pan, Qiongyan Peng, Jie Dong, Xuebing Chen, Xi Zhang, Tao Ye, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, https://doi.org/10.5194/essd-15-3203-2023, 2023
Short summary
Short summary
Paddy rice is the second-largest grain crop in China and plays an important role in ensuring global food security. This study developed a new rice-mapping method and produced distribution maps of single-season rice in 21 provincial administrative regions of China from 2017 to 2022 at a 10 or 20 m resolution. The accuracy was examined using 108 195 survey samples and county-level statistical data, and we found that the distribution maps have good accuracy.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023, https://doi.org/10.5194/essd-15-869-2023, 2023
Short summary
Short summary
Satellites are now producing multiple global land surface temperature (LST) products; however, they suffer from data gaps caused by cloud cover, seriously restricting the applications, and few products provide gap-free global hourly LST. We produced global hourly, 5 km, all-sky LST data from 2011 to 2021 using geostationary and polar-orbiting satellite data. Based on the assessment, it has high accuracy and can be used to estimate evapotranspiration, drought, etc.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Fei Jiang, Weimin Ju, Wei He, Mousong Wu, Hengmao Wang, Jun Wang, Mengwei Jia, Shuzhuang Feng, Lingyu Zhang, and Jing M. Chen
Earth Syst. Sci. Data, 14, 3013–3037, https://doi.org/10.5194/essd-14-3013-2022, https://doi.org/10.5194/essd-14-3013-2022, 2022
Short summary
Short summary
A 10-year (2010–2019) global monthly terrestrial NEE dataset (GCAS2021) was inferred from the GOSAT ACOS v9 XCO2 product. It shows strong carbon sinks over eastern N. America, the Amazon, the Congo Basin, Europe, boreal forests, southern China, and Southeast Asia. It has good quality and can reflect the impacts of extreme climates and large-scale climate anomalies on carbon fluxes well. We believe that this dataset can contribute to regional carbon budget assessment and carbon dynamics research.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Yi Zheng, Ana Cláudia dos Santos Luciano, Jie Dong, and Wenping Yuan
Earth Syst. Sci. Data, 14, 2065–2080, https://doi.org/10.5194/essd-14-2065-2022, https://doi.org/10.5194/essd-14-2065-2022, 2022
Short summary
Short summary
Brazil is the largest sugarcane producer. Sugarcane in Brazil can be harvested all year round. The flexible phenology makes it difficult to identify sugarcane in Brazil at a country scale. We developed a phenology-based method which can identify sugarcane with limited training data. The sugarcane maps for Brazil obtain high accuracy through comparison against field samples and statistical data. The maps can be used to monitor growing conditions and evaluate the feedback to climate of sugarcane.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Xiaona Chen, Shunlin Liang, Lian He, Yaping Yang, and Cong Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-279, https://doi.org/10.5194/essd-2021-279, 2021
Preprint withdrawn
Short summary
Short summary
The present study developed a 39 year consistent 8-day 0.05 degree gap-free SCE dataset over the NH for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite based on the NOAA AVHRR-SR CDR and several contributory datasets. Compared with published SCE datasets, GLASS SCE has several advantages in snow cover studies, including long time series, finer spatial resolution (especially for years before 2000), and complete spatial coverage.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-53, https://doi.org/10.5194/essd-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
The Köppen-Geiger climate classification has been widely applied in climate change and ecology studies to characterize climatic conditions. We present a new 1-km global dataset of Köppen-Geiger climate classification and bioclimatic variables for historical and future climates. The new climate maps offer higher classification accuracy, correspond well with distributions of vegetation and topographic features, and demonstrate the ability to identify recent and future changes in climate zones.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Fei Jiang, Hengmao Wang, Jing M. Chen, Weimin Ju, Xiangjun Tian, Shuzhuang Feng, Guicai Li, Zhuoqi Chen, Shupeng Zhang, Xuehe Lu, Jane Liu, Haikun Wang, Jun Wang, Wei He, and Mousong Wu
Atmos. Chem. Phys., 21, 1963–1985, https://doi.org/10.5194/acp-21-1963-2021, https://doi.org/10.5194/acp-21-1963-2021, 2021
Short summary
Short summary
We present a 6-year inversion from 2010 to 2015 for the global and regional carbon fluxes using only the GOSAT XCO2 retrievals. We find that the XCO2 retrievals could significantly improve the modeling of atmospheric CO2 concentrations and that the inferred interannual variations in the terrestrial carbon fluxes in most land regions have a better relationship with the changes in severe drought area or leaf area index, or are more consistent with the previous estimates about drought impact.
Liangjun Zhu, Shuguang Liu, Haifeng Zhu, David J. Cooper, Danyang Yuan, Yu Zhu, Zongshan Li, Yuandong Zhang, Hanxue Liang, Xu Zhang, Wenqi Song, and Xiaochun Wang
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-2, https://doi.org/10.5194/cp-2021-2, 2021
Manuscript not accepted for further review
Short summary
Short summary
In this study, we take the temperature reconstruction for Changbai Mountains in northeast China as an example to illustrate a novel tree-species mixing reconstruction method, which clearly improve the accuracy of tree-ring-based reconstructions in areas with unstable growth-climate relationships. Our reconstruction is more accurate than previous temperature reconstructions developed from a single species. The AMO plays a key role in modulating temperature in the northern Changbai Mountains.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Jie Dong, Yangyang Fu, Jingjing Wang, Haifeng Tian, Shan Fu, Zheng Niu, Wei Han, Yi Zheng, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 3081–3095, https://doi.org/10.5194/essd-12-3081-2020, https://doi.org/10.5194/essd-12-3081-2020, 2020
Short summary
Short summary
For the first time, we produced a 30 m winter wheat distribution map in China for 3 years during 2016–2018. Validated with 33 776 survey samples, the map had perfect performance with an overall accuracy of 89.88 %. Moreover, the method can identify planting areas of winter wheat 3 months prior to harvest; that is valuable information for production predictions and is urgently necessary for policymakers to reduce economic loss and assess food security.
Cited articles
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air
CO2 enrichment (FACE)? A meta-analytic review of the responses of
photosynthesis, canopy, New Phytol., 165, 351–371,
https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005.
Alton, P. B., North, P. R., and Los, S. O.: The impact of diffuse sunlight on
canopy light-use efficiency, gross photosynthetic product and net ecosystem
exchange in three forest biomes, Global Change Biol., 13, 776–787,
https://doi.org/10.1111/j.1365-2486.2007.01316.x, 2007.
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C.,
Murray-Tortarolo, G., Papale, D., Parazoo, N.C., Peylin, P., Piao, S.,
Sitch, S., Viovy, N., Wiltshire, A., and Zhao, M.: Spatiotemporal patterns of
terrestrial gross primary production: A review, Rev. Geophys., 53, 785–818,
https://doi.org/10.1002/2015rg000483, 2015.
Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C.,
Carranza, L., Martinez, P., Houcheime, M., Sinca, F., and Weiss, P.:
Spectroscopy of canopy chemicals in humid tropical forests, Remote Sens.
Environ., 115, 3587–3598, https://doi.org/10.1016/j.rse.2011.08.020, 2011.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood,
E. F.: Present and future Koppen-Geiger climate classification maps at 1-km
resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Cai, W., Yuan, W., Liang, S., Zhang, X., Dong, W., Xia, J., Fu, Y., Chen,
Y., Liu, D., and Zhang, Q.: Improved estimations of gross primary production
using satellite-derived photosynthetically active radiation, J. Geophys.
Res.-Biogeo., 119, 110–123, https://doi.org/10.1002/2013jg002456, 2014.
Cai, W., Yuan, W., Liang, S., Liu, S., Dong, W., Chen, Y., Liu, D., and Zhang,
H.: Large Differences in Terrestrial Vegetation Production Derived from
Satellite-Based Light Use Efficiency Models, Remote Sens., 6, 8945–8965,
https://doi.org/10.3390/rs6098945, 2014.
Canadell, J. G., Le Quere, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T.,
Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., and Marland, G.:
Contributions to accelerating atmospheric CO2 growth from economic
activity, carbon intensity, and efficiency of natural sinks, P. Natl.
Acad. Sci. USA, 104, 18866–18870, https://doi.org/10.1073/pnas.0702737104, 2007.
Chen, J. M., Liu, J., Cihlar, J., and Goulden, M. L.: Daily canopy photosynthesis
model through temporal and spatial scaling for remote sensing applications,
Ecol. Model., 124, 99–119, https://doi.org/10.1016/s0304-3800(99)00156-8, 1999.
Cho, M. A., Skidmore, A., Corsi, F., van Wieren, S. E., and Sobhan, I.: Estimation
of green grass/herb biomass from airborne hyperspectral imagery using
spectral indices and partial least squares regression, Int. J. Appl. Earth Observ. Geoinfo., 9, 414–424,
https://doi.org/10.1016/j.jag.2007.02.001, 2007.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer, Agr. Forest.
Meteorol., 54, 107–136, 1991.
de Almeida, C. T., Delgado, R. C., Galvao, L. S., de Oliveira Cruz e Aragao,
L. E., and Concepcion Ramos, M.: Improvements of the MODIS Gross Primary
Productivity model based on a comprehensive uncertainty assessment over the
Brazilian Amazonia, ISPRS J. Photogramm. Remote Sens., 145, 268–283,
https://doi.org/10.1016/j.isprsjprs.2018.07.016, 2018.
de Cárcer, P. S., Vitasse, Y., Peñuelas, J., Jassey, V. E. J., Buttler,
A., and Signarbieux, C.: Vapor-pressure deficit and extreme climatic variables
limit tree growth, Global Change Biol., 24, 1108–1122,
https://doi.org/10.1111/gcb.13973, 2018.
Dechant, B., Cuntz, M., Vohland, M., Schulz, E., and Doktor, D.: Estimation of
photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen
content as the dominant mechanism, Remote Sens. Environ., 196, 279–292,
https://doi.org/10.1016/j.rse.2017.05.019, 2017.
Ding, J., Yang, T., Zhao, Y., Liu, D., Wang, X., Yao, Y., Peng, S., Wang,
T., and Piao, S.: Increasingly Important Role of Atmospheric Aridity on Tibetan
Alpine Grasslands, Geophys. Res. Lett., 45, 2852–2859,
https://doi.org/10.1002/2017gl076803, 2018.
Fan, L., Wigneron, J.-P., Ciais, P., Chave, J., Brandt, M., Fensholt, R.,
Saatchi, S. S., Bastos, A., Al-Yaari, A., Hufkens, K., Qin, Y., Xiao, X.,
Chen, C., Myneni, R. B., Fernandez-Moran, R., Mialon, A.,
Rodriguez-Fernandez, N. J., Kerr, Y., Tian, F., and Penuelas, J.:
Satellite-observed pantropical carbon dynamics, Nat. Plants, 5, 944–951,
2019.
Farquhar, G.D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C 3 species, Planta, 149,
78–90, https://doi.org/10.1007/bf00386231, 1980.
Fletcher, A. L., Sinclair, T. R., and Allen, L. H.: Transpiration responses to
vapor pressure deficit in well watered “slow-wilting” and commercial
soybean, Environ. Exp. Bot., 61, 145–151,
https://doi.org/10.1016/j.envexpbot.2007.05.004, 2007.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,
Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A.,
Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vorosmarty, C. J.:
Nitrogen cycles: past, present, and future, Biogeochemistry, 70, 153–226,
https://doi.org/10.1007/s10533-004-0370-0, 2004.
Gilgen, H., Wild, M., and Ohmura, A.: Means and trends of shortwave irradiance
at the surface estimated from Global Energy Balance Archive data, J. Clim.,
11, 2042–2061, https://doi.org/10.1175/1520-0442-11.8.2042, 1998.
Gu, L. H., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M., and
Dowty, P. R.: Advantages of diffuse radiation for terrestrial ecosystem
productivity, J. Geophys. Res.-Atmos., 107, ACL 2-1–ACL 2-23, https://doi.org/10.1029/2001jd001242, 2002.
Gu, L. H., Baldocchi, D. D., Wofsy, S. C., Munger, J. W., Michalsky, J. J., Urbanski, S. P., and Boden, T. A.: Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis, Science, 299, 2035–2038, https://doi.org/10.1126/science.1078366, 2003.
Jiang, C. and Ryu, Y.: Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS), Remote Sens. Environ., 186, 528–547, 2016.
Ju, W., Chen, J. M., Black, T. A., Barr, A. G., Liu, J., and Chen, B.: Modelling
multi-year coupled carbon and water fluxes in a boreal aspen forest, Agr.
Forest Meteorol., 140, 136–151, https://doi.org/10.1016/j.agrformet.2006.08.008, 2006.
Jain, A. K., Meiyappan, P., Song, Y., and House, J. I.: CO2 Emissions from
Land-Use Change Affected More by Nitrogen Cycle, than by the Choice of Land
Cover Data, Glob. Change Biol., 9, 2893–2906, 2013.
Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S.,
Ahlstrom, A., Arneth, A., Camps-Valls, G., Ciais, P., Friedlingstein, P.,
Gans, F., Ichii, K., Ain, A. K. J., Kato, E., Papale, D., Poulter, B., Raduly,
B., Rodenbeck, C., Tramontana, G., Viovy, N., Wang, Y.-P., Weber, U.,
Zaehle, S., and Zeng, N.: Compensatory water effects link yearly global land CO2
sink changes to temperature, Nature, 541, 516–520, https://doi.org/10.1038/nature20780,
2017.
Kanji, G. K.: 100 Statistical Tests, SAGE Publications, London, 1999.
Kanniah, K. D., Beringer, J., North, P., and Hutley, L.: Control of atmospheric
particles on diffuse radiation and terrestrial plant productivity: A review,
Progr. Phys. Geogr., 36, 209–237,
https://doi.org/10.1177/0309133311434244, 2012.
Kato, E., Kinoshita, T., Ito, A., Kawamiya, M., and Yamagata, Y.: Evaluation
of spatially explicit emission scenario of land-use change and biomass
burning using a process-based biogeochemical model, J. Land Use
Sci., 8, 104–122, 2013.
Keenan, T. F., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., Dragon,
D., Gough, C. M., Grant, R., Hollinger, D., Hufkens, K., Poulter, B.,
McCaughey, H., Raczka, B., Ryu, Y., Schaefer, K., Tian, H., Verbeeck, H.,
Zhao, M., and Richardson, A. D.: Terrestrial biosphere model performance for
inter-annual variability of land-atmosphere CO2 exchange, Global Change
Biol., 18, 1971–1987, https://doi.org/10.1111/j.1365-2486.2012.02678.x, 2012.
Keenan, T. F., Prentice, I. C., Canadell, J. G., Williams, C. A., Wang, H.,
Raupach, M., and Collatz, G. J.: Recent pause in the growth rate of atmospheric
CO2 due to enhanced terrestrial carbon uptake, Nat. Commun., 7, 13428,
https://doi.org/10.1038/ncomms13428, 2016.
Khair, U., Fahmi, H., Al Hakim, S., and Rahim, R.: Forecasting Error Calculation
with Mean Absolute Deviation and Mean Absolute Percentage Error, J. Phys. Conf. Ser., 930, 012002, https://doi.org/10.1088/1742-6596/930/1/012002,
2017.
King, D. A., Turner, D. P., and Ritts, W. D.: Parameterization of a diagnostic
carbon cycle model for continental scale application, Remote Sens. Environ.,
1157, 1653–1664, 2011.
Knyazikhin, Y., Schull, M. A., Stenberg, P., Mottus, M., Rautiainen, M.,
Yang, Y., Marshak, A., Latorre Carmona, P., Kaufmann, R. K., Lewis, P.,
Disney, M. I., Vanderbilt, V., Davis, A. B., Baret, F., Jacquemoud, S.,
Lyapustin, A., and Myneni, R. B.: Hyperspectral remote sensing of foliar nitrogen
content, Proc. Natl. Acad. Sci. USA, 110, E185–E192,
https://doi.org/10.1073/pnas.1210196109, 2013.
Kokaly, R. F. and Clark, R. N.: Spectroscopic determination of leaf biochemistry
using band-depth analysis of absorption features and stepwise multiple
linear regression, Remote Sens. Environ., 67, 267–287,
https://doi.org/10.1016/s0034-4257(98)00084-4, 1999.
Kondo, M., Ichii, K., Takagi, H., and Sasakawa, M.: Comparison of the data-driven top-down and bottom-up global terrestrial CO2 exchanges: GOSAT CO2 inversion and empirical eddy flux upscaling, J. Geophys. Res.-Biogeo., 120, 1226–1245, 2015.
Konings, A. G., Williams, A. P., and Gentine, P.: Sensitivity of grassland
productivity to aridity controlled by stomatal and xylem regulation, Nat.
Geosci., 10, 284–288, https://doi.org/10.1038/ngeo2903, 2017.
Korson, L., Drost-Hansen, W., and Millero, F. J.: Viscosity of water at various
temperatures, J. Phys. Chem., 73, 34–39, https://doi.org/10.1021/j100721a006, 1969.
Krinner, G., Viovy, N., de Noblet, N., Ogée, J., Friedlingstein, P.,
Ciais, P., Sitch, S., Polcher, J., and Prentice, I. C.: A dynamic global
vegetation model for studies of the coupled atmospherebiosphere system,
Global Biogeochem. Cy., 19, 1–33, 2005.
Krupkova, L., Markova, I., Havrankova, K., Pokorny, R., Urban, O., Sigut,
L., Pavelka, M., Cienciala, E., and Marek, M. V.: Comparison of different
approaches of radiation use efficiency of biomass formation estimation in
Mountain Norway spruce, Trees-Struct. Funct., 31, 325–337,
https://doi.org/10.1007/s00468-016-1486-2, 2017.
Lamarque, J. F., Kiehl, J. T., Brasseur, G. P., Butler, T., Cameron-Smith, P.,
Collins, W. D., Collins, W. J., Granier, C., Hauglustaine, D., Hess, P. G.,
Holland, E. A., Horowitz, L., Lawrence, M. G., McKenna, D., Merilees, P.,
Prather, M. J., Rasch, P. J., Rotman, D., Shindell, D., and Thornton, P.:
Assessing future nitrogen deposition and carbon cycle feedback using a
multimodel approach: Analysis of nitrogen deposition, J. Geophys. Res.-Atmos., 11, D19303, https://doi.org/10.1029/2005jd005825, 2005.
Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, 2016.
Li, X. L., Liang, S. L., Yu, G. R., Yuan, W. P., Cheng, X., Xia, J. Z., Zhao,
T. B., Feng, J. M., Ma, Z. G., Ma, M. G., Liu, S. M., Chen, J. Q., Shao, C. L., Li,
S. G., Zhang, X. D., Zhang, Z. Q., Chen, S. P., Ohta, T., Varlagin, A., Miyata,
A., Takagi, K., Saiqusa, N., and Kato, T.: Estimation of gross primary
production over the terrestrial ecosystems in China, Ecol. Model., 261,
80–92, https://doi.org/10.1016/j.ecolmodel.2013.03.024, 2013.
Liu, L. and Greaver, T. L.: A review of nitrogen enrichment effects on three
biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and
CH4 emission, Ecol. Lett., 12, 1103–1117,
https://doi.org/10.1111/j.1461-0248.2009.01351.x, 2009.
Liu, S., Bond-Lamberty, B., Boysen, L. R., Ford, J. D., Fox, A., Gallo, K.,
Hatfield, J., Henebry, G. M., Huntington, T. G., Liu, Z., Loveland, T. R.,
Norby, R. J., Sohl, T., Steiner, A. L., Yuan, W., Zhang, Z., and Zhao, S.: Grand
Challenges in Understanding the Interplay of Climate and Land Changes, Earth
Interactions, 21, 1–43, https://doi.org/10.1175/ei-d-16-0012.1, 2017.
Liu, Y., Xiao, J., Ju, W., Zhu, G., Wu, X., Fan, W., Li, D., and Zhou, Y.:
Satellite-derived LAI products exhibit large discrepancies and can lead to
substantial uncertainty in simulated carbon and water fluxes, Remote Sens.
Environ., 206, 174–188, https://doi.org/10.1016/j.rse.2017.12.024, 2018.
Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., Canadell, J. G.,
McCabe, M. F., Evans, J. P., and Wang, G.: Recent reversal in loss of global
terrestrial biomass, Nat. Clim. Change, 5, 470–474, 2015.
Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., Little, B. B.,
Rejesus, R. M., and Hammer, G. L.: Greater Sensitivity to Drought Accompanies
Maize Yield Increase in the US Midwest, Science, 344, 516–519,
https://doi.org/10.1126/science.1251423, 2014.
Monteith, J.: Solar radiation and productivity in tropical ecosystems, J.
Appl. Ecol., 9, 747–766, 1972.
Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X. M., Dunn, A. L., Lin,
J. C., Gerbig, C., Munger, J. W., Chow, V. Y., and Gottlieb, E. W.: A
satellite-based biosphere parameterization for net ecosystem CO2 exchange:
Vegetation Photosynthesis and Respiration Model VPRM, Global Biogeochem.
Cy., 222, 1–17, 2008.
Melton, J. R. and Arora, V. K.: Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0, Geosci. Model Dev., 9, 323–361, https://doi.org/10.5194/gmd-9-323-2016, 2016.
Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P.,
King, J. S., Ledford, J., McCarthy, H. R., Moore, D. J. P., Ceulemans, R., De
Angelis, P., Finzi, A. C., Karnosky, D. F., Kubiske, M. E., Lukac, M.,
Pregitzer, K. S., Scarascia-Mugnozza, G. E., Schlesinger, W. H., and Oren, R.:
Forest response to elevated CO2 is conserved across a broad range of
productivity, P. Natl. Acad. Sci. USA, 102, 18052–18056,
https://doi.org/10.1073/pnas.0509478102, 2005.
Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., and Ceulemans,
R.: Tree responses to rising CO2 in field experiments: implications for
the future forest, Plant Cell Environ., 22, 683–714,
https://doi.org/10.1046/j.1365-3040.1999.00391.x, 1999.
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi,
A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L.,
Wang, L., and Phillips, R. P.: The increasing importance of atmospheric demand
for ecosystem water and carbon fluxes, Nat. Clim. Change, 6, 1023–1027,
https://doi.org/10.1038/nclimate3114, 2016.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M.,
Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E.,
Lamarque, J., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S.,
Ricciuto, D. M., Sacks, W., Tang, J., and Yang, Z.: Technical description of version 4.5 of the community land model (CLM), NCAR Tech. Note, NCAR/TN-503+ STR, 420, https://doi.org/0.5065/D6RR1W7M, 2013.
Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X.,
Ahlstrom, A., Anav, A., Canadell, J. G., Cong, N., Huntingford, C., Jung, M.,
Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M.R., Lu, M., Luo, Y., Ma,
Y., Myneni, R. B., Poulter, B., Sun, Z., Wang, T., Viovy, N., Zaehle, S., and
Zeng, N.: Evaluation of terrestrial carbon cycle models for their response
to climate variability and to CO2 trends, Global Change Biol., 19,
2117–2132, https://doi.org/10.1111/gcb.12187, 2013.
Pierce, D. W., Westerling, A. L., and Oyler, J.: Future humidity trends over the western United States in the CMIP5 global climate models and variable infiltration capacity hydrological modeling system, Hydrol. Earth Syst. Sci., 17, 1833–1850, https://doi.org/10.5194/hess-17-1833-2013, 2013.
Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M.,
Mooney, H. A., and Klooster, S. A.: Terrestrial ecosystem production: A process
model-based on global satellite and surface data, Global Biogeochem. Cy.,
7, 811–841, https://doi.org/10.1029/93gb02725, 1993.
Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., and Wright, I. J.: Balancing
the costs of carbon gain and water transport: testing a new theoretical
framework for plant functional ecology, Ecol. Lett., 17, 82–91,
https://doi.org/10.1111/ele.12211, 2014.
Rawson, H. M., Begg, J. E., and Woodward, R. G.: The effect of atmospheric humidity
on photosynthesis, transpiration and water use efficiency of leaves of
several plant species, Planta, 134, 5–10, https://doi.org/10.1007/bf00390086, 1977.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A.,
Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A.,
Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta,
F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M.,
Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini,
R.: On the separation of net ecosystem exchange into assimilation and
ecosystem respiration: review and improved algorithm, Glob. Change Biol.,
11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005.
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: The representation of
natural and anthropogenic land cover change in MPIESM, J. Adv. Model. Earth
Syst., 5, 459–482, 2013.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu,
E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S.,
Chen, J., Collins, D., Conaty, A., Da Silva, A., Gu, W., Joiner, J., Koster,
R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder,
C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen,
J.: MERRA: NASA's modern-era retrospective analysis for research and
applications, J. Clim., 24, 3624–3648, https://doi.org/10.1175/jcli-d-11-00015.1, 2011.
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M. S., Reeves, M., and
Hashimoto, H.: A continuous satellite-derived measure of global terrestrial
primary production, Bioscience, 54, 547–560,
https://doi.org/10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2, 2004.
Ryu, Y., Baldocchi, D. D., Kobayashi, H., van Ingen, C., Li, J., Black, T. A.,
Beringer, J., van Gorsel, E., Knohl, A., Law, B. E., and Roupsard, O.:
Integration of MODIS land and atmosphere products with a coupled-process
model to estimate gross primary productivity and evapotranspiration from 1 km to global scales, Global Biogeochem. Cy., 25, GB4017, https://doi.org/10.1029/2011gb004053,
2011.
Ryu, Y., Berry, J. A., and Baldocchi, D. D.: What is global photosynthesis?
History, uncertainties and opportunities, Remote Sens. Environ., 223,
95–114, https://doi.org/10.1016/j.rse.2019.01.016, 2019.
Saleska, S. R., Didan, K., Huete, A. R., and da Rocha, H. R.: Amazon forests
green-up during 2005 drought, Science, 318, 612–612,
https://doi.org/10.1126/science.1146663, 2007.
Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E.,
Knyazikhin, Y., Nemani, R. R., and Myneni, R. B.: Amazon forests did not green-up
during the 2005 drought, Geophys. Res. Lett., 37, L05401, https://doi.org/10.1029/2009gl042154, 2010.
Serbin, S. P., Dillaway, D. N., Kruger, E. L., and Townsend, P. A.: Leaf optical
properties reflect variation in photosynthetic metabolism and its
sensitivity to temperature, J. Exp. Bot., 63, 489–502,
https://doi.org/10.1093/jxb/err294, 2012.
Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W., and Dee, D. P.:
Low-frequency variations in surface atmospheric humidity, temperature, and
precipitation: Inferences from reanalyses and monthly gridded observational
data sets, J. Geophys. Res.-Atmos., 115, D01110, https://doi.org/10.1029/2009jd012442, 2010.
Sjostrom, M., Zhao, M., Archibald, S., Arneth, A., Cappelaere, B., Falk, U.,
de Grandcourt, A., Hanan, N., Kergoat, L., Kutsch, W., Merbold, L., Mougin,
E., Nickless, A., Nouvellon, Y., Scholes, R. J., Veenendaal, E. M., and Ardo, J.:
Evaluation of MODIS gross primary productivity for Africa using eddy
covariance data, Remote Sens. Environ., 131, 275–286,
https://doi.org/10.1016/j.rse.2012.12.023, 2013.
Smith, B., Wårlind, D., Arneth, A., Hickler, T., Leadley, P., Siltberg, J., and Zaehle, S.: Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, 2014.
Smith, W. K., Reed, S. C., Cleveland, C. C., Ballantyne, A. P., Anderegg,
W. R. L., Wieder, W. R., Liu, Y. Y., and Running, S. W.: Large divergence of
satellite and Earth system model estimates of global terrestrial CO2
fertilization, Nat. Clim. Change, 6, 306–310, https://doi.org/10.1038/nclimate2879,
2016.
Stocker, B. D., Feissli, F., Strassmann, K. M., Spahni, R., and Joos, F.:
Past and future carbon fluxes from land use change, shifting cultivation and
wood harvest, Tellus B, 66, 23188, https://doi.org/10.3402/tellusb.v66.23188, 2014.
Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Seneviratne,
S. I., and Peñuelas, J.: Drought impacts on terrestrial primary production
underestimated by satellite monitoring, Nat. Geosci., 12, 264–270,
https://doi.org/10.1038/s41561-019-0318-6, 2019.
Sulman, B. N., Roman, D. T., Yi, K., Wang, L., Phillips, R. P., and Novick, K. A.:
High atmospheric demand for water can limit forest carbon uptake and
transpiration as severely as dry soil, Geophys. Res. Lett., 43, 9686–9695,
https://doi.org/10.1002/2016gl069416, 2016.
Tan, B., Woodcock, C. E., Hu, J., Zhang, P., Ozdogan, M., Huang, D., Yang,
W., Knyazikhin, Y., and Myneni, R. B.: The impact of gridding artifacts on the
local spatial properties of MODIS data: Implications for validation,
compositing, and band-to-band registration across resolutions, Remote Sens.
Environ., 105, 98–114, https://doi.org/10.1016/j.rse.2006.06.008, 2006.
Tang, S., Chen, J. M., Zhu, Q., Li, X., Chen, M., Sun, R., Zhou, Y., Deng,
F., and Xie, D.: LAI inversion algorithm based on directional reflectance
kernels, J. Environ. Manage., 85, 638–648,
https://doi.org/10.1016/j.jenvman.2006.08.018, 2007.
Turner, D. P., Ritts, W. D., Styles, J. M., Yang, Z., Cohen, W. B., Law, B. E., and
Thornton, P. E.: A diagnostic carbon flux model to monitor the effects of
disturbance and interannual variation in climate on regional NEP, Tellus B,
585, 476–490, 2006.
Urban, O., Janous, D., Acosta, M., Czerny, R., Markova, I., Navratil, M.,
Pavelka, M., Pokorny, R., Sprtova, M., Zhang, R., Spunda, V., Grace, J., and
Marek, M. V.: Ecophysiological controls over the net ecosystem exchange of
mountain spruce stand. Comparison of the response in direct vs. diffuse
solar radiation, Global Change Biol., 13, 157–168,
https://doi.org/10.1111/j.1365-2486.2006.01265.x, 2007.
Van Wijngaarden, W. A. and Vincent, L. A.: Trends in relative humidity in Canada from 1953–2003, B. Am. Meteorol. Soc., 4633–4636, 2004.
Veroustraete, F., Sabbe, H., and Eerens, H.: Estimation of carbon mass fluxes
over Europe using the C-Fix model and Euroflux data, Remote Sens. Environ.,
833, 376–399, 2002.
Vuichard, N. and Papale, D.: Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis, Earth Syst. Sci. Data, 7, 157–171, https://doi.org/10.5194/essd-7-157-2015, 2015.
Wang, Z., Skidmore, A. K., Darvishzadeh, R., and Wang, T.: Mapping forest canopy
nitrogen content by inversion of coupled leaf-canopy radiative transfer
models from airborne hyperspectral imagery, Agr. Forest. Meteorol., 253,
247–260, https://doi.org/10.1016/j.agrformet.2018.02.010, 2018.
Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C.N., Dutton, E.G.,
Forgan, B., Kallis, A., Russak, V., and Tsvetkov, A.: From dimming to
brightening: Decadal changes in solar radiation at Earth's surface, Science,
308, 847–850, https://doi.org/10.1126/science.1103215, 2005.
Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Parker, D. E., Jones, P. D., and Williams Jr., C. N.: HadISDH land surface multi-variable humidity and temperature record for climate monitoring, Clim. Past, 10, 1983–2006, https://doi.org/10.5194/cp-10-1983-2014, 2014.
Williams, A. P., Allen, C. D., Macalady, A. K., Griffin, D., Woodhouse, C. A.,
Meko, D. M., Swetnam, T. W., Rauscher, S. A., Seager, R., Grissino-Mayer, H. D.,
Dean, J. S., Cook, E. R., Gangodagamage, C., Cai, M., and McDowell, N. G.:
Temperature as a potent driver of regional forest drought stress and tree
mortality, Nat. Clim. Change, 3, 292–297, https://doi.org/10.1038/nclimate1693, 2013.
Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann,
K. T., Guan, K., Stark, S. C., Christoffersen, B., Prohaska, N., Tavares,
J. V., Marostica, S., Kobayashi, H., Ferreira, M. L., Campos, K. S., da Silva,
R., Brando, P. M., Dye, D. G., Huxman, T. E., Huete, A. R., Nelson, B. W.,
and Saleska, S. R.: Leaf development and demography explain photosynthetic
seasonality in Amazon evergreen forests, Science, 351, 972–976,
https://doi.org/10.1126/science.aad5068, 2016.
Wu, J., Guan, K., Hayek, M., Restrepo-Coupe, N., Wiedemann, K. T., Xu, X.,
Wehr, R., Christoffersen, B. O., Miao, G., da Silva, R., de Araujo, A. C.,
Oliviera, R. C., Camargo, P. B., Monson, R. K., Huete, A. R., and Saleska, S. R.:
Partitioning controls on Amazon forest photosynthesis between environmental
and biotic factors at hourly to interannual timescales, Global Change Biol.,
23, 1240–1257, https://doi.org/10.1111/gcb.13509, 2017.
Xiao, X. M., Zhang, Q. Y., Hollinger, D., Aber, J., and Moore, B.: Modeling gross
primary production of an evergreen needleleaf forest using MODIS and climate
data, Ecol. Appl., 15, 954–969, https://doi.org/10.1890/04-0470, 2005.
Xiao, Z., Liang, S., Wang, J., Xiang, Y., Zhao, X., and Song, J.:
Long-Time-Series Global Land Surface Satellite Leaf Area Index Product
Derived From MODIS and AVHRR Surface Reflectance, IEEE Trans. Geosci. Remote, 54, 5301–5318, https://doi.org/10.1109/tgrs.2016.2560522, 2016.
Xu, B., Li, J., Park, T., Liu, Q., Zeng, Y., Yin, G., Zhao, J., Fan, W.,
Yang, L., Knyazikhin, Y., Myneni, R. B.: An integrated method for validating
long-term leaf area index products using global networks of site-based
measurements, Remote Sens. Environ., 209, 134–151,
https://doi.org/10.1016/j.rse.2018.02.049, 2018.
Yoder, B. J. and Pettigrew-Crosby, R. E.: Predicting nitrogen and chlorophyll
content and concentrations from reflectance spectra (400–2500 nm) at leaf
and canopy scales, Remote Sens. Environ., 53, 199–211,
https://doi.org/10.1016/0034-4257(95)00135-n, 1995.
Yuan, W., Cai, W., Xia, J., Chen, J., Liu, S., Dong, W., Merbold, L., Law,
B., Arain, A., Beringer, J., Bernhofer, C., Black, A., Blanken, P. D.,
Cescatti, A., Chen, Y., Francois, L., Gianelle, D., Janssens, I. A., Jung,
M., Kato, T., Kiely, G., Liu, D., Marcolla, B., Montagnani, L., Raschi, A.,
Roupsard, O., Varlagin, A., and Wohlfahrt, G.: Global comparison of light use
efficiency models for simulating terrestrial vegetation gross primary
production based on the La Thuile database, Agr. Forest. Meteorol., 192,
108–120, https://doi.org/10.1016/j.agrformet.2014.03.007, 2014.
Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D.,
Bernhofer, C., Gholz, H., Goldstein, A. H., Goulden, M. L., Hollinger, D. Y.,
Hu, Y., Law, B. E., Stoy, P. C., Vesala, T., Wofsy, S. C., and other AmeriFlux collaborators:
Deriving a light use efficiency model from eddy covariance flux data for
predicting daily gross primary production across biomes, Agr. Forest.
Meteorol., 143, 189–207, https://doi.org/10.1016/j.agrformet.2006.12.001, 2007.
Yuan, W., Luo, Y., Li, X., Liu, S., Yu, G., Zhou, T., Bahn, M., Black, A.,
Desai, A. R., Cescatti, A., Marcolla, B., Jacobs, C., Chen, J., Aurela, M.,
Bernhofer, C., Gielen, B., Bohrer, G., Cook, D. R., Dragoni, D., Dunn, A. L.,
Gianelle, D., Gruenwald, T., Ibrom, A., Leclerc, M. Y., Lindroth, A., Liu,
H., Marchesini, L. B., Montagnani, L., Pita, G., Rodeghiero, M., Rodrigues,
A., Starr, G., and Stoy, P. C.: Redefinition and global estimation of basal
ecosystem respiration rate, Global Biogeochem. Cy.,
25, GB4002, https://doi.org/10.1029/2011gb004150, 2011.
Yuan, W., Liu, S., Yu, G., Bonnefond, J.-M., Chen, J., Davis, K., Desai,
A. R., Goldstein, A. H., Gianelle, D., Rossi, F., Suyker, A. E., and Verma, S. B.:
Global estimates of evapotranspiration and gross primary production based on
MODIS and global meteorology data, Remote Sens. Environ., 114, 1416–1431,
https://doi.org/10.1016/j.rse.2010.01.022, 2010.
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu,
Y., Chen, G., Dong, W., Hu, Z., Jain, A.K., Jiang, C., Kato, E., Li, S.,
Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., Sitch, S., Smith,
W. K., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased atmospheric vapor
pressure deficit reduces global vegetation growth, Sci. Adv., 5,
eaax1396, https://doi.org/10.1126/sciadv.aax1396, 2019.
Zhang, H. Q., Pak, B., Wang, Y. P., Zhou, X. Y., Zhang, Y. Q., and Zhang,
L.: Evaluating Surface Water Cycle Simulated by the Australian Community
Land Surface Model (CABLE) across Different Spatial and Temporal Domains, J.
Hydrometeorol., 14, 1119–1138, 2013.
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., and Dong, J.: Data
Descriptor: A global moderate resolution dataset of gross primary production
of vegetation for 2000–2016, Sci. Data, 4, 170165, https://doi.org/10.1038/sdata.2017.165, 2017.
Zhao, M. and Running, S. W.: Drought-Induced Reduction in Global Terrestrial Net
Primary Production from 2000 Through 2009, Science, 329, 940–943,
https://doi.org/10.1126/science.1192666, 2010.
Zheng, Y., Shen, R., Wang, Y., Li, X., Liu, S., Liang, S., Chen, J. M.,
Ju, W., Zhang, L., and Yuan, W.: Improved estimate of global gross primary
production for reproducing its long-term variation, 1982–2017, figshare,
Dataset, https://doi.org/10.6084/m9.figshare.8942336.v3, 2019.
Zheng, Y., Zhang, L., Xiao, J., Yuan, W., Yan, M., Li, T., and Zhang, Z.:
Sources of uncertainty in gross primary productivity simulated by light use
efficiency models: Model structure, parameters, input data, and spatial
resolution, Agr. Forest. Meteorol., 263, 242–257,
https://doi.org/10.1016/j.agrformet.2018.08.003, 2018.
Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann,
S., Lorenz, R., Seneviratne, S. I., and Gentine, P.: Land-atmosphere
feedbacks exacerbate concurrent soil drought and atmospheric aridity, P.
Natl. Acad. Sci. USA., 116, 18848–18853, 2019a.
Zhou, S., Zhang, Y., Williams, A. P., and Gentine, P.: Projected increases
in intensity, frequency, and terrestrial carbon costs of compound drought
and aridity events, Sci. Adv., 5, eaau5740, https://doi.org/10.1126/sciadv.aau5740, 2019b.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais,
P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E.,
Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S.,
Penuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X.,
Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of the Earth
and its drivers, Nat. Clim. Change, 6, 791–796, https://doi.org/10.1038/nclimate3004,
2016.
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Accurately reproducing the interannual variations in vegetation gross primary production (GPP)...
Altmetrics
Final-revised paper
Preprint