Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-713-2026
https://doi.org/10.5194/essd-18-713-2026
Data description paper
 | 
30 Jan 2026
Data description paper |  | 30 Jan 2026

SEEPS4ALL: an open dataset for the verification of daily precipitation forecasts using station climate statistics

Zied Ben-Bouallègue, Ana Prieto-Nemesio, Angela Iza Wong, Florian Pinault, Marlies van der Schee, and Umberto Modigliani

Related authors

AIFS 1.1.0: An update to ECMWF's machine-learned weather forecast model AIFS
Gabriel Moldovan, Ewan Pinnington, Ana Prieto Nemesio, Simon Lang, Zied Ben Bouallègue, Jesper Dramsch, Mihai Alexe, Mario Santa Cruz, Sara Hahner, Harrison Cook, Helen Theissen, Mariana Clare, Cathal O'Brien, Jan Polster, Linus Magnusson, Gert Mertes, Florian Pinault, Baudouin Raoult, Patricia de Rosnay, Richard Forbes, and Matthew Chantry
EGUsphere, https://doi.org/10.5194/egusphere-2025-4716,https://doi.org/10.5194/egusphere-2025-4716, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
The EUPPBench postprocessing benchmark dataset v1.0
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023,https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary

Cited articles

Aguilar, E., Auer, I., Brunet, M., Peterson, T., and Wieringa, J.: Guidelines on Climate Metadata and Homogenization, WMO-TD No. 1186, 2003. a
Alexe, M., Boucher, E., Lean, P., Pinnington, E., Laloyaux, P., McNally, A., Lang, S., Chantry, M., Burrows, C., Chrust, M., Pinault, F., Villeneuve, E., Bormann, N., and Healy, S.: GraphDOP: Towards skilful data-driven medium-range weather forecasts learnt and initialised directly from observations, arXiv [preprint], https://doi.org/10.48550/arXiv.2412.15687, 2024. a
Ben Bouallègue, Z.: SEEPS4ALL version 1.1, Zenodo [data set], https://doi.org/10.5281/zenodo.18197534, 2026. a, b, c
Ben Bouallegue, Z. and Prieto Nemesio, A.: ecmwf/rodeo-ai-static-datasets: v1.0.0 (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.18392043, 2026. a, b
Ben Bouallègue, Z., Haiden, T., and Richardson, D. S.: The diagonal score: Definition, properties, and interpretations, Quarterly Journal of the Royal Meteorological Society, 144, 1463–1473, https://doi.org/10.1002/qj.3293, 2018. a, b
Download
Short summary
SEEPS4ALL (Stable and Equitable Error in Probability Space) is a precipitation dataset consisting of observations at meteorological stations over 3 years (2022–2024 for now), and a set of corresponding climate statistics estimated over 30 years (1991–2020). A climatology is derived separately for each station and each month of the year. Along with the dataset, SEEPS4ALL also resembles a set of verification tools. In a nutshell, SEEPS4ALL helps promote the benchmark of daily precipitation forecasts against in-situ observations over Europe.
Share
Altmetrics
Final-revised paper
Preprint