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Abstract. Forecast verification is an essential task when developing a forecasting model. How well does a
model perform? How does the forecast performance compare with previous versions or other models? Which
aspects of the forecast could be improved? In weather forecasting, these questions apply in particular to pre-
cipitation, a key weather parameter with vital societal applications. Scores specifically designed to assess the
performance of precipitation forecasts have been developed over the years. One example is the Stable and Eq-
uitable Error in Probability Space (SEEPS, Rodwell et al., 2010). The computation of this score is however not
straightforward because it requires information about the precipitation climatology at the verification locations.
More generally, climate statistics are key to assessing forecasts for extreme precipitation and high-impact events.
Here, we introduce SEEPS4ALL, a set of data and tools that democratize the use of climate statistics for verifica-
tion purposes. In particular, verification results for daily precipitation are showcased with both deterministic and
probabilistic forecasts. The data is available through Zenodo at https://doi.org/10.5281/zenodo.18197534 (Ben
Bouallegue, 2026) and the verification scripts at https://doi.org/10.5281/zenodo.18392042 (Ben Bouallegue and

Prieto Nemesio, 2026).

1 Introduction

In weather forecasting, the rise of machine learning (ML)
opens new horizons where meteorological observations serve
not only for training ML models but also for validating their
output (Ben Bouallegue et al., 2024; McNally et al., 2024;
Alexe et al., 2024). As the European Union recognizes mete-
orological data as high-value data, new rules facilitate their
use to fuel artificial intelligence and data-driven innovation
(see  https://digital-strategy.ec.europa.eu/en/news/new-eu-
rules-make-high-value-datasets-available-fuel-artificial-
intelligence-and-data-driven, last access: 27 January 2026).
Here, we introduce an open dataset based on in-situ meteo-
rological observations for evaluating weather forecasts over
Europe with a focus on precipitation.

Published by Copernicus Publications.

Verification of weather models requires both high-quality
datasets and appropriate verification tools. Ad hoc verifi-
cation methodologies have been developed over the years
for assessing numerical weather predictions (NWPs), that is,
computer simulations based on physical models of the earth
system. Particular attention has been paid to the assessment
of precipitation forecasts, precipitation being one of the most
important weather variables affecting society. While dry days
usually dominate the verification sample, intense precipita-
tion events are generally deemed more important to be fore-
cast accurately. The skewness of the precipitation distribu-
tion often results in difficult and sometimes misleading in-
terpretations of verification results. As a workaround, inno-
vative verification metrics use a climatology to contextualize
a forecast and apply suitable penalties when the forecast is
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not correct (Rodwell et al., 2010). Approaches of the kind
exist for both deterministic and probabilistic forecasts (Ben
Bouallegue et al., 2018).

In forecast verification, climatology can be useful in vari-
ous ways. For example:

— A climatology can serve as a “reference” forecast when
computing a skill score, that is, the climatology distri-
bution is used as a simple benchmark for probabilistic
forecasts (Wilks, 2006).

— A weather event can be defined as a weather parame-
ter exceeding a threshold, for instance, daily precipita-
tion exceeding 10 mm per 24 h. A threshold can be ex-
pressed in absolute terms (as in this example) but also
as a percentile of a climatology, for instance, the 95 %
percentile. This later choice helps better identify skill in
the model (Hamill and Juras, 2006).

— The climatological frequency of events can be used to
design verification metrics. An example of a score based
on the climatology is the Stable and Equitable Error in
Probability Space (SEEPS, Rodwell et al., 2010). In a
nutshell, SEEPS is based on categorical forecasts of rain
where categories are defined based on the station clima-
tology, and penalties associated with misclassifications
depend on the climatological frequency.

SEEPS is one of the supplementary headline scores of the
European Center for Medium-Range Weather Forecasting
(ECMWEF). In this application, SEEPS helps measure the im-
provement in precipitation forecasting over the year for the
operational NWP system. Recent studies also use SEEPS as
a standard verification metric applied to precipitation fore-
casts as output of ML models (see for instance Rasp et al.,
2024; Sha et al., 2025).

The dataset introduced here is called SEEPS4ALL,
SEEPS being considered as the flagship of the scores rely-
ing on climate statistics. The aim is to provide in-situ obser-
vations together with climatological information for verifi-
cation applications. The computation of SEEPS is a starting
point. More scores and skill scores are easy to estimate when
climate statistics are at hand.

The data source for building SEEPS4ALL is the obser-
vational station data of the European Climate Assessment
& Dataset (ECA&D, Klein Tank et al., 2002). Observations
cover not only recent years, which are useful for validation,
but also past decades, which allows us to build a climatology.
This dataset offers a unique focus on Europe.

Other datasets based on station observations of meteoro-
logical quantities and with applications in forecast verifica-
tion exists. Among others, we can mention the following ex-
amples:

— EUPPBench (Demaeyer et al., 2023). A dataset of time-
aligned forecasts and observations, with the aim to facil-
itate and standardize post-processing method and their
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inter-comparison. The dataset only focuses on 2 m tem-
perature so far, with a coverage over Western-Northern
Europe.

— Weather2K (Zhu et al., 2023). A multi-variate bench-
mark dataset based on ground weather stations from the
China Meteorological Administration targeting near-
real-time applications. Precipitation data is available
with accumulation times varying from 1-24h, but the
dataset covers China only.

— WeatherReal (Jin et al., 2024). A benchmark dataset for
weather forecasting, derived from near-surface in-situ
observations available globally. WeatherReal also fea-
tures a publicly accessible quality control and evalua-
tion framework. The dataset includes precipitation with
different accumulation times (from 1-24h), but no cli-
matological information is provided.

These examples of datasets for verification illustrate a vari-
ety of scopes and spatial coverages. They also highlight the
importance of benchmarking in the ML community as it is
considered as a key driver of progress (Dueben et al., 2022).

The innovative contributions of the dataset presented here,
compared with existing ones, are the following:

1. SEEPS4ALL is based on observations that cover mainly
Europe, relying on a high-density network for some
countries or regions, and in a format suitable for bench-
marking;

2. SEEPS4ALL encompasses relevant climatological
statistics to ease the computation of meaningful
verification metrics.

We organised the manuscript as follows: Sect. 2 describes
the raw data and data pre-processing, Sect. 3 discusses veri-
fication applications, and Sect. 5 concludes.

2 Datasets

Starting from the original data in ECA&D, we derive 2 sub-
datasets with climatological information targeting applica-
tions in forecast verification. One sub-dataset resembles the
ingredients to compute a specific score (namely SEEPS)
while the second sub-dataset provides station observations
and local climate percentiles for computing threshold-based
scores and skill scores. Examples of applications follow in
Sect. 3.

2.1 ECA&D

The station data collated by the ECA&D initiative
(Klein Tank et al., 2002) are supplied by many National Me-
teorological Services and other providers across Europe, the
Middle East, and North Africa. Currently, ECA&D receives
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daily data for 13 Essential Climate Variables from 89 par-
ticipants from 65 countries. It contains almost 25 000 mete-
orological stations and serves as the backbone for the Cli-
mate Mode of the World Meteorological Organization Re-
gion VI. Daily data is made available following FAIR princi-
ples through the ECA&D data portal at https://www.ecad.eu
(last access: 27 January 2026) (when permission to do so is
given by the data owner) and provided in a uniform format.
ECA&D is free of charge for research and educational pur-
poses.

Although most station series are quality controlled by the
respective agencies, the series are subjected to a further qual-
ity control procedure following incorporation into ECA&D.
A minimum set of metadata for each timeseries is required to
judge the quality and representativeness of the observations
following the attributes the WMO-TD No. 1186 (Aguilar
et al., 2003). Two datasets are provided; a non-blended and
a blended version in which homogeneity analyses have been
performed on the latter including four homogeneity tests for
each time series (Wijngaard et al., 2003). The blended dataset
is used in this study and the focus is set of daily precipitation
data.

Figure 1 shows the distribution of the station locations
over the Northern Hemisphere (upper panel) and with a focus
on the European domain (lower panel). This latter domain is
used for the examples in Sect. 3. Figure 2 summarises some
characteristics of this dataset. Figure 2a shows the number of
stations within areas of size 1° x 1°. This coarse resolution
grid allows for a better visualization of the station charac-
teristics in the form of area averages. For example, Fig. 2b
shows the averaged station elevation within each pre-defined
grid box.

2.2 SEEPS parameters

The stable and equitable error in probability space (SEEPS)
is introduced and defined in Rodwell et al. (2010). Practi-
cally, to compute the score, observations and forecasts are
binned into one of the 3 following precipitation categories:
dry, light, and heavy. Thresholds denoted #; and #, are used
to define the switch from dry to light, and from light to heavy,
respectively. The climatological probabilities of the observa-
tion exceeding #; and #, are denoted p; and p;, respectively.
A penalty is applied whenever a forecast and the correspond-
ing observation do not fall in the same category. The penalty
applied is a function of the climatology as shown in Table 1.

In Fig. 3, we show SEEPS parameter values after aver-
aging over grid boxes of size 1° x 1° (for visualisation pur-
poses). Figure 3a shows the parameter p; for August, while
Fig. 3b shows the threshold #, for February. These 2 exam-
ples illustrate the geographical variability of the SEEPS co-
efficients. We see the contrast between Northern and South-
ern Europe in terms of the probability of rain in Summer
(Fig. 3a). We can also note more intense precipitation along
the coastline exposed to Westerly winds in Winter (Fig. 3b).
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Table 1. SEEPS scoring matrix: We reproduce the SEEPS scoring
matrix here, which describes the penalty applied when the observa-
tion and forecast categories do not match as in Eq. (15), Rodwell
et al. (2010).

observed
dry light heavy
1 1 1
dry 0 =pi T Top
. 1 1
forecast light i 0 =7
1 1 1
heavy 1 + —p = 0

2.3 Climate percentiles

Climatological frequency can be estimated for more than the
3 categories required for the computation of SEEPS. For ex-
ample, a climate distribution can be described in the form of
percentiles. By definition, observations are expected to ex-
ceed the o %-percentile of the climate distribution 100 — a%
of the time, on average.

Figure 4 show aggregated climatological percentiles over
grid boxes of size 1°x 1°. Figure 4a and b shows the 95 % and
99 % percentiles of the local daily precipitation climatology,
respectively. In other words, there is, on average, a 5 % and
a 1 % chance to exceed the thresholds indicated in Fig. 4a
and b, respectively. We see that the term “rare events” can
refer to very different absolute thresholds (in mm per 24 h)
wether one is focusing on the South-Western coast of Nor-
way or on the Eastern coast of Spain.

2.4 SEEPS4ALL

With this preamble in mind, we introduce here SEEPS4ALL,
a dataset which consists of station measurements of daily
precipitation over Europe and the corresponding climate
statistics (Ben Bouallegue, 2026). We distinguish 2 sub-
datasets. The first one consists of the SEEPS coefficients, that
is, the 2 probabilities of exceedance p; and p; as well as the
2 corresponding thresholds 71 and #,. The second sub-dataset
consists of estimates of local climatology distributions in the
form of percentiles at levels 1 %, 2 %, ..., 98 %, 99 %. Based
on this later, a variety of scores and skill scores can be com-
puted as discussed and illustrated in the next section.
Climate statistics are aligned with the observations and
vary for each station and each month of the year. More
specifically, SEEPS coefficients and climatological per-
centiles are estimated over a time window of 30 years (1 Jan-
uary 1991 to 31 December 2020). The maximum sample size
at each station and month is 30 times the number of days in
the month (so between 840 and 930). SEEPS4ALL observa-
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Figure 1. ECA&D station distribution over the Northern Hemisphere (upper panel) and with a focus over Europe (lower panel). The stations
used to build SEEPS4ALL are shown in blue while the stations disregarded because of a lack of data over the period used to compute the
climate statistics (1991-2020) are indicated in orange. Overall, SEEPS4ALL comprises data from 10705 stations from which 10396 are

located within the European domain.
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Figure 2. Aggregated station statistics over a 1° grid covering the European domain: (a) number of stations per grid box and (b) mean station
elevation per grid box.
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a) SEEPS probability p1, Aug.

b) SEEPS threshold t2, Feb.

[mm/24h]

Figure 3. Examples of statistics used for the computation of SEEPS: (a) probability of exceeding the first threshold #; for the month of

August and (b) threshold #, for the month of February.

a) Climate 95%-percentile, Apr.

[mmy24h]
5

b) Climate 99%-percentile, Apr.
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Figure 4. Examples of climate statistics used for the computation of threshold-based error metrics: (a) 95 %-percentile and (b) 99 %-

percentile for the month of April.

tions used for verification cover so far the years 2022, 2023,
and 2024.

3 Examples of application

Verification of daily precipitation forecasts using in-situ ob-
servations is the target application. For illustration purposes,
we compare here ML-based and NWP forecasts.

ECMWF run an ML-based forecasting system opera-
tionally since February 2025. The so-called Artificial Intel-
ligence Forecast System (AIFS, the Al models developed at
ECMWEF Lang et al., 2024) is complementary to the NWP
system based on the Integrated Forecasting System (IFS). We
showcase how SEEPS4ALL helps assessing and comparing
the forecast performance of AIFS and IFS.

For each new verification exercise, a first necessary step
consists in collocating forecasts and observations. We apply
the nearest-neighbor approach for this purpose. This colloca-
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tion step would need to be repeated each time a new forecast
is ready to be verified.

For score averaging and plotting, we focus here on a sin-
gle season (Summer 2024) and assess forecasts initialized
at 00:00 UTC with forecast lead times up to 10d. We dis-
tinguish 2 types of forecasts, deterministic and probabilistic
ones, and show different scores accordingly. The scripts used
to compute the scores and generate the plots presented below
are provided along the SEEPS4ALL dataset.

3.1 Deterministic forecasts

Figure 5a shows SEEPS as a function of the forecast lead
time. In this instance, we see that AIFS is outperforming IFS
for all lead times. For further investigations, a decomposi-
tion of SEEPS is possible as described in North et al. (2013)
and implemented in the SEEPS4ALL verification scripts, but
not shown here. Note that a station weighting algorithm (fol-

Earth Syst. Sci. Data, 18, 713-720, 2026
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Figure 5. Example of verification results for a deterministic and a probabilistic forecast: (a) SEEPS (shown as 1-SEEPS, the higher the
better) as a function of the forecast lead time, (b) a contingency table based score (here PSS, the higher the better) as a function of the local
climate percentile, (c¢) the Brier skill score as a function of the forecast lead time using IFS as reference for a rare event defined as daily
precipitation exceeding the 95th percentile of the local climatology. The shading indicates the 5 %—95 % confidence interval as estimated

with block-bootstrapping.

lowing Rodwell et al., 2010) is used to account for the het-
erogeneous distribution of the stations over the domain as
illustrated in Fig. 1.

Another way to better understand the overall forecast per-
formance consists in computing scores for a series of binary
events with increasing intensity. For example, Fig. 5b shows
the Pierce skill score (PSS Peirce, 1884) as a function of cli-
mate percentiles. For each threshold, forecasts and observa-
tions are converted into binary variables (yes or no exceed-
ing the threshold), and a contingency table is populated. In
addition to PSS, several other scores can be computed based
on the 4 elements of the contingency table to assess differ-
ent aspect of the forecast performance. For example, one can
compute the frequency bias index (FBI) to assess the forecast
bias (not shown).

3.2 Probabilistic forecasts

Probabilistic forecasts are commonly derived from ensem-
ble forecasts. Alternatively, one can also dress a determin-
istic forecast: statistical dressing is a simple method to de-
rive a probability distribution from a single-value forecast.
For illustration purposes, we dress the forecast with the un-
certainty that emerges from the comparison of quantities at
different scales: AIFS and IFS are grid-box average fore-
casts (at 25 and 9 km, respectively), while in-situ observa-
tions are point measurements. Here, we use the representa-
tiveness model developed in Ben Bouallegue et al. (2020).
So, for a given event, a forecast is now expressed in the
form of a probability of occurrence. For instance, one can
forecast the probability of daily precipitation exceeding the
95th percentile of the climatology. The Brier score (Brier,
1950) is a standard score for assessing such a probability
forecast of a binary event. Skill scores are computed to as-
sess the improvement with respect to a reference forecast.
The climatological distribution can serve as a reference. In
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our example, it would be a constant probability forecast of
5 %. Figure 5c shows the Brier skill score of AIFS forecast
using IFS forecast as a reference for this illustration.

The integral of the Brier score over all possible thresh-
olds (in the verification sample) corresponds to the con-
tinuous ranked probability score (CRPS), an ubiquitous
score in verification exercises of probabilistic forecasts. A
threshold/quantile-weighted version of the CRPS has been
suggested to emphasize the importance of extreme events in
verification. The so-called diagonal score is also the equiv-
alent of SEEPS but for probabilistic forecasts. Both scores
are indeed based on the same penalty matrix resulting into
equitable scores (Ben Bouallegue et al., 2018).

3.3 Verification scripts

The python code for computing the scores mentioned in this
section are made available together with the data. We also
share the code for the other necessary (e.g. collocation) or op-
tional (e.g. forecast statistical dressing) elements of the veri-
fication process through a GitHub repository (see Sect. 4).

4 Code and data availability

The dataset SEEPS4ALL, the code to generate it, as well as
the verification scripts are available through a GitHub repos-
itory  (https://github.com/ecmwf/rodeo-ai-static-datasets/
tree/main/seeps4all, last access: 27 January 2026) and
Zenodo  (https://doi.org/10.5281/zenodo.18392042, Ben
Bouallegue and Prieto Nemesio, 2026). The data is
also available through Zenodo with the following DOI:
https://doi.org/10.5281/zenodo.18197534 (Ben Bouallegue,
2026). Note that SEEPS4ALL dataset is made available
under a Creative Commons Attribution-Non-Commercial
License.
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5 Conclusions

SEEPS4ALL is a precipitation dataset consisting of obser-
vations at meteorological stations over 3 years (2022-2024
for now), and a set of corresponding climate statistics esti-
mated over 30 years (1991-2020). A climatology is derived
separately for each station and each month of the year. The
dataset is ready to be used for the verification of daily pre-
cipitation forecasts over Europe.

Along with the dataset, SEEPS4ALL also resembles a set
of verification tools aiming for:

— transparency: the verification code is open to all;

— reproducibility: re-computation of verification metrics
is straightforward;

— benchmarking: a fair comparison of competing fore-
casts is enabled.

In a nutshell, SEEPS4ALL helps promote the benchmark of
daily precipitation forecasts against in-situ observations over
Europe.

Beyond SEEPS, the computation of other verification met-
rics is encouraged. In particular, metrics based on the contin-
gency table are supported. Contingency tables are populated
using percentiles of the climatology as thresholds to define
weather events. This approach relies on a clear definition of
rare events at each station location, separately. Assessment
of forecast performance based on cases studies could also be
envisaged but not explored in this study.

‘While SEEPS is an error metric for deterministic forecasts,
the diagonal score is the equivalent score for probabilistic
forecasts. The design of SEEPS and the diagonal score relies
on the same concept of equitability and therefor the same
core penalty matrix. The performance of probabilistic can
also be scrutinized for a range of precipitation events using,
for example, the Brier score.

SEEPS4ALL can be updated with more recent dates as
the data source, the ECA&D dataset, is updated regularly. In
addition, with the new EU regulation on high value datasets
in place, ongoing efforts at meteorological services should
lead to a better coverage over Europe in a near future.

Finally, ECA&D offers access to measurements of a vari-
ety of weather variables over long periods. While the focus is
on daily precipitation for SEEPS4ALL, the same effort could
be pursued for the verification of other variables such as 10 m
wind speed or 2 m maximum temperature. Verification prac-
titioners would benefit from computing scores using climate
statistics also for these applications.
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