Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-713-2026
© Author(s) 2026. This work is distributed under the Creative Commons Attribution 4.0 License.
SEEPS4ALL: an open dataset for the verification of daily precipitation forecasts using station climate statistics
Download
- Final revised paper (published on 30 Jan 2026)
- Preprint (discussion started on 25 Nov 2025)
Interactive discussion
Status: closed
Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor
| : Report abuse
-
RC1: 'Comment on essd-2025-553', Jonas Bhend, 16 Dec 2025
- AC1: 'Reply on RC1', Zied Ben Bouallegue, 16 Jan 2026
-
RC2: 'Comment on essd-2025-553', Anonymous Referee #2, 23 Dec 2025
- AC2: 'Reply on RC2', Zied Ben Bouallegue, 16 Jan 2026
Peer review completion
AR – Author's response | RR – Referee report | ED – Editor decision | EF – Editorial file upload
AR by Zied Ben Bouallegue on behalf of the Authors (16 Jan 2026)
Author's response
Author's tracked changes
Manuscript
ED: Publish subject to technical corrections (16 Jan 2026) by Tobias Gerken
AR by Zied Ben Bouallegue on behalf of the Authors (19 Jan 2026)
Manuscript
SEEPS4All review
The authors present a new station-based dataset to support evaluation of precipitation forecasts with the SEEPS score and other verification metrics. This dataset and the corresponding software for verification are useful contributions and the paper is well written and concise. The datasets are well described and accessible, but I suggest to reorganize the data as detailed below.
The suggested changes to the datasets can be summarized as:
To facilitate working with the new data layout, the scripts should be adjusted to take into account the difference in time representation.
So instead of the representation as below:
```
>>> xr.open_zarr("obs_clim_tp24_2022_2024_ecad.zarr")
<xarray.Dataset> Size: 9GB
Dimensions: (stnid: 10562, time: 1097)
Coordinates:
elevation (stnid) int64 84kB dask.array<chunksize=(10562,), meta=np.ndarray>
lat (stnid) float64 84kB dask.array<chunksize=(10562,), meta=np.ndarray>
lon (stnid) float64 84kB dask.array<chunksize=(10562,), meta=np.ndarray>
* stnid (stnid) int64 84kB 13 14 15 16 21 ... 27706 27707 27708 27710
* time (time) datetime64[ns] 9kB 2022-01-01 2022-01-02 ... 2025-01-01
Data variables: (12/100)
observation (time, stnid) float64 93MB dask.array<chunksize=(138, 1321), meta=np.ndarray>
perc1 (time, stnid) float64 93MB dask.array<chunksize=(138, 1321), meta=np.ndarray>
perc10 (time, stnid) float64 93MB dask.array<chunksize=(138, 1321), meta=np.ndarray>
perc11 (time, stnid) float64 93MB dask.array<chunksize=(138, 1321), meta=np.ndarray>
perc12 (time, stnid) float64 93MB dask.array<chunksize=(138, 1321), meta=np.ndarray>
perc13 (time, stnid) float64 93MB dask.array<chunksize=(138, 1321), meta=np.ndarray>
... ...
perc98 (time, stnid) float64 93MB dask.array<chunksize=(138, 1321), meta=np.ndarray>
perc99 (time, stnid) float64 93MB dask.array<chunksize=(138, 1321), meta=np.ndarray>
Attributes:
description: observations with climate percentiles from 1 to 99
licence: CC-BY-NC. See also https://knmi-ecad-assets-prd.s3.amazonaw...
version: 1.0.0
```
I suggest the following:
```
>>> xr.open_zarr("obs_clim_tp24_2022_2024_ecad.zarr")
<xarray.Dataset> Size: 9GB
Dimensions: (stnid: 10562, time: 1097, doy: 365)
Coordinates:
elevation (stnid) int64 84kB dask.array<chunksize=(10562,), meta=np.ndarray>
lat (stnid) float64 84kB dask.array<chunksize=(10562,), meta=np.ndarray>
lon (stnid) float64 84kB dask.array<chunksize=(10562,), meta=np.ndarray>
* stnid (stnid) int64 84kB 13 14 15 16 21 ... 27706 27707 27708 27710
* time (time) datetime64[ns] 9kB 2022-01-01 2022-01-02 ... 2025-01-01
* month (month) in64 1 2 3 ... 12
* perc (perc) int64 1 2 3 ... 100
Data variables:
observation (time, stnid) float64 93MB
percentile (month, stnid, perc) float64 …
Attributes:
description: observations with climate percentiles from 1 to 99
licence: CC-BY-NC. See also https://knmi-ecad-assets-prd.s3.amazonaw...
version: 1.0.0
```
Similarly, the `obs_seeps_tp24_2022_2024_ecad.zarr` dataset could be reorganized in corresponding fashion.
## Minor Editorial Comments:
L13: recognizes meteorological data as high value data, …
L143: PSS