Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-5885-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5885-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Near-real-time vegetation monitoring and historical database (1981–present) for the Iberian Peninsula and the Balearic Islands
Magí Franquesa
CORRESPONDING AUTHOR
Instituto Pirenaico de Ecología (IPE-CSIC), Consejo Superior de Investigaciones Científicas, Campus de Aula Dei, Zaragoza, 50059, Spain
Fergus Reig
Instituto Pirenaico de Ecología (IPE-CSIC), Consejo Superior de Investigaciones Científicas, Campus de Aula Dei, Zaragoza, 50059, Spain
Manuel Arretxea
Instituto de Geociencias (IGEO), Consejo Superior de Investigaciones Científicas–Universidad Complutense de Madrid (CSIC–UCM), Madrid, 28040, Spain
Maria Adell-Michavila
Instituto Pirenaico de Ecología (IPE-CSIC), Consejo Superior de Investigaciones Científicas, Campus de Aula Dei, Zaragoza, 50059, Spain
Amar Halifa-Marín
Instituto Pirenaico de Ecología (IPE-CSIC), Consejo Superior de Investigaciones Científicas, Campus de Aula Dei, Zaragoza, 50059, Spain
Daniel Vilas
Estación Experimental de Aula Dei (EEAD-CSIC), Consejo Superior de Investigaciones Científicas, Campus de Aula Dei, Zaragoza, 50059, Spain
Santiago Beguería
Estación Experimental de Aula Dei (EEAD-CSIC), Consejo Superior de Investigaciones Científicas, Campus de Aula Dei, Zaragoza, 50059, Spain
Sergio M. Vicente-Serrano
Instituto Pirenaico de Ecología (IPE-CSIC), Consejo Superior de Investigaciones Científicas, Campus de Aula Dei, Zaragoza, 50059, Spain
Related authors
Joshua Lizundia-Loiola, Magí Franquesa, Martin Boettcher, Grit Kirches, M. Lucrecia Pettinari, and Emilio Chuvieco
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-399, https://doi.org/10.5194/essd-2020-399, 2021
Preprint withdrawn
Short summary
Short summary
The article presents the burned area product of the Copernicus Climate Change Service, called C3SBA10. It is the adaptation to Sentinel-3 OLCI data of the FireCCI51 global BA product. The paper shows how C3SBA10 is fully consistent with its predecessor, ensuring an uninterrupted provision of global burned area data from 2001 to present. The product is freely available in two monthly formats: in continental tiles at 300m spatial resolution, and globally at 0.25 degrees.
Magí Franquesa, Melanie K. Vanderhoof, Dimitris Stavrakoudis, Ioannis Z. Gitas, Ekhi Roteta, Marc Padilla, and Emilio Chuvieco
Earth Syst. Sci. Data, 12, 3229–3246, https://doi.org/10.5194/essd-12-3229-2020, https://doi.org/10.5194/essd-12-3229-2020, 2020
Short summary
Short summary
The article presents a database of reference sites for the validation of burned area products. We have compiled 2661 reference files from different international projects. The paper describes the methods used to generate and standardize the data. The Burned Area Reference Data (BARD) is publicly available and will facilitate the arduous task of validating burned area algorithms.
Soledad Collazo, David Barriopedro, Ricardo García-Herrera, and Santiago Beguería
Nat. Hazards Earth Syst. Sci., 25, 3221–3238, https://doi.org/10.5194/nhess-25-3221-2025, https://doi.org/10.5194/nhess-25-3221-2025, 2025
Short summary
Short summary
In 2023, Rio de Janeiro experienced record-breaking heat waves linked to climate change and El Niño. Our study shows that global warming made these extreme temperatures at least 2 °C hotter than in pre-industrial times. Heat-related deaths surged, with climate change contributing to one in three fatalities during the peak event. Without adaptation, future heat waves will claim even more lives. This underscores the urgent need for policies to mitigate climate impacts from escalating heat threats.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Santiago Beguería, Dhais Peña-Angulo, Víctor Trullenque-Blanco, and Carlos González-Hidalgo
Earth Syst. Sci. Data, 15, 2547–2575, https://doi.org/10.5194/essd-15-2547-2023, https://doi.org/10.5194/essd-15-2547-2023, 2023
Short summary
Short summary
A gridded dataset on monthly precipitation over mainland Spain between spans 1916–2020. The dataset combines ground observations from the Spanish National Climate Data Bank and new data rescued from meteorological yearbooks published prior to 1951, which almost doubled the number of weather stations available during the first decades of the 20th century. Geostatistical techniques were used to interpolate a regular 10 x 10 km grid.
Joshua Lizundia-Loiola, Magí Franquesa, Martin Boettcher, Grit Kirches, M. Lucrecia Pettinari, and Emilio Chuvieco
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-399, https://doi.org/10.5194/essd-2020-399, 2021
Preprint withdrawn
Short summary
Short summary
The article presents the burned area product of the Copernicus Climate Change Service, called C3SBA10. It is the adaptation to Sentinel-3 OLCI data of the FireCCI51 global BA product. The paper shows how C3SBA10 is fully consistent with its predecessor, ensuring an uninterrupted provision of global burned area data from 2001 to present. The product is freely available in two monthly formats: in continental tiles at 300m spatial resolution, and globally at 0.25 degrees.
Magí Franquesa, Melanie K. Vanderhoof, Dimitris Stavrakoudis, Ioannis Z. Gitas, Ekhi Roteta, Marc Padilla, and Emilio Chuvieco
Earth Syst. Sci. Data, 12, 3229–3246, https://doi.org/10.5194/essd-12-3229-2020, https://doi.org/10.5194/essd-12-3229-2020, 2020
Short summary
Short summary
The article presents a database of reference sites for the validation of burned area products. We have compiled 2661 reference files from different international projects. The paper describes the methods used to generate and standardize the data. The Burned Area Reference Data (BARD) is publicly available and will facilitate the arduous task of validating burned area algorithms.
Cited articles
Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1046, ISBN 978-0486612720, 1965.
Aklilu Tesfaye, A. and Gessesse Awoke, B.: Evaluation of the saturation property of vegetation indices derived from sentinel-2 in mixed crop-forest ecosystem, Spatial Information Research, 29, 109–121, https://doi.org/10.1007/s41324-020-00339-5, 2021.
Anon: NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event, International Journal of Remote Sensing, 22, 1847–1859, https://doi.org/10.1080/01431160010029156, 2001.
Asam, S., Eisfelder, C., Hirner, A., Reiners, P., Holzwarth, S., and Bachmann, M.: AVHRR NDVI Compositing Method Comparison and Generation of Multi-Decadal Time Series – A TIMELINE Thematic Processor, Remote Sensing, 15, https://doi.org/10.3390/rs15061631, 2023.
Atkinson, P. M., Dash, J., and Jeganathan, C.: Amazon vegetation greenness as measured by satellite sensors over the last decade, Geophysical Research Letters, 38, https://doi.org/10.1029/2011GL049118, 2011.
Beck, H. E., McVicar, T. R., van Dijk, A. I. J. M., Schellekens, J., de Jeu, R. A. M., and Bruijnzeel, L. A.: Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery, Remote Sensing of Environment, 115, 2547–2563, https://doi.org/10.1016/j.rse.2011.05.012, 2011.
Beguería, S., Tomas-Burguera, M., Serrano-Notivoli, R., Peña-Angulo, D., Vicente-Serrano, S. M., and González-Hidalgo, J.-C.: Gap filling of monthly temperature data and its effect on climatic variability and trends, Journal of Climate, 32, 7797–7821, https://doi.org/10.1175/JCLI-D-19-0244.1, 2019.
Bellone, T., Boccardo, P., and Perez, F.: Investigation of Vegetation Dynamics using Long-Term Normalized Difference Vegetation Index Time-Series, American Journal of Environmental Sciences, 5, 461–467, https://doi.org/10.3844/ajessp.2009.461.467, 2009.
Benedict, T. D., Brown, J. F., Boyte, S. P., Howard, D. M., Fuchs, B. A., Wardlow, B. D., Tadesse, T., and Evenson, K. A.: Exploring VIIRS Continuity with MODIS in an Expedited Capability for Monitoring Drought-Related Vegetation Conditions, Remote Sensing, 13, https://doi.org/10.3390/rs13061210, 2021.
Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., Romme, W. H., Kastens, J. H., Floyd, M. L., Belnap, J., Anderson, J. J., Myers, O. B., and Meyer, C. W.: Regional vegetation die-off in response to global-change-type drought, Proceedings of the National Academy of Sciences, 102, 15144–15148, https://doi.org/10.1073/pnas.0505734102, 2005.
Camps-Valls, G., Campos-Taberner, M., Moreno-Martínez, Á., Walther, S., Duveiller, G., Cescatti, A., Mahecha, M. D., Muñoz-Marí, J., García-Haro, F. J., Guanter, L., Jung, M., Gamon, J. A., Reichstein, M., and Running, S. W.: A unified vegetation index for quantifying the terrestrial biosphere, Science Advances, 7, eabc7447, https://doi.org/10.1126/sciadv.abc7447, 2021.
Cuevas-González, M., Gerard, F., Balzter, H., and Riaño, D.: Analysing forest recovery after wildfire disturbance in boreal Siberia using remotely sensed vegetation indices, Global Change Biology, 15, 561–577, https://doi.org/10.1111/j.1365-2486.2008.01784.x, 2009.
Didan, K.: MODIS/Aqua Vegetation Indices 16-Day L3 Global 1km SIN Grid V061, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MYD13A2.061, 2021.
Earth Resources Observation and Science (EROS) Center: USGS EROS Archive – AVHRR Normalized Difference Vegetation Index (NDVI) Composites, EROS Center, https://doi.org/10.5066/F7707ZKN, 2019.
Eckert, S., Hüsler, F., Liniger, H., and Hodel, E.: Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia, Journal of Arid Environments, 113, 16–28, https://doi.org/10.1016/j.jaridenv.2014.09.001, 2015.
Endsley, K. A., Zhao, M., Kimball, J. S., and Devadiga, S.: Continuity of Global MODIS Terrestrial Primary Productivity Estimates in the VIIRS Era Using Model-Data Fusion, Journal of Geophysical Research: Biogeosciences, 128, e2023JG007457, https://doi.org/10.1029/2023JG007457, 2023.
Escuin, S., Navarro, R., and Fernandez, P.: Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images, International Journal of Remote Sensing, 29, 1053–1073, https://doi.org/10.1080/01431160701281072, 2008.
Ferreira, L. G. and Huete, A. R.: Assessing the seasonal dynamics of the Brazilian Cerrado vegetation through the use of spectral vegetation indices, International Journal of Remote Sensing, 25, 1837–1860, https://doi.org/10.1080/0143116031000101530, 2004.
Franquesa, M., Fergus, R., and Vicente-Serrano, S. M.: Vegetation Indices for the Iberian Peninsula and Balearic Islands (VIIB) Database, DIGITAL.CSIC [data set], https://doi.org/10.20350/digitalCSIC/16201, 2024.
Gao, S., Zhong, R., Yan, K., Ma, X., Chen, X., Pu, J., Gao, S., Qi, J., Yin, G., and Myneni, R. B.: Evaluating the saturation effect of vegetation indices in forests using 3D radiative transfer simulations and satellite observations, Remote Sensing of Environment, 295, 113665, https://doi.org/10.1016/j.rse.2023.113665, 2023.
García-Herrera, R., Hernández, E., Barriopedro, D., Paredes, D., Trigo, R. M., Trigo, I. F., and Mendes, M. A.: The Outstanding 2004/05 Drought in the Iberian Peninsula: Associated Atmospheric Circulation, Journal of Hydrometeorology, 8, 483–498, https://doi.org/10.1175/JHM578.1, 2007.
García-Herrera, R., Garrido-Perez, J. M., Barriopedro, D., Ordóñez, C., Vicente-Serrano, S. M., Nieto, R., Gimeno, L., Sorí, R., and Yiou, P.: The European 2016/17 drought, Journal of Climate, 32, 3169–3187, https://doi.org/10.1175/JCLI-D-18-0331.1, 2019.
González-Hidalgo, J. C., Vicente-Serrano, S. M., Peña-Angulo, D., Salinas, C., Tomas-Burguera, M., and Beguería, S.: High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula), Acta Geophysica, 66, 381–392, https://doi.org/10.1007/s11600-018-0138-x, 2018.
Government of Canada: Corrected representation of the NDVI using historical AVHRR satellite images (1 km resolution) from 1987 to 2021, in: Statistics Canada, Government of Canada: Ottawa, ON, Canada [data set], https://open.canada.ca/data/en/dataset/44ced2fa-afcc-47bd-b46e-8596a25e446e (last access: September 2025), 2021.
Gu, Y., Wylie, B. K., Howard, D. M., Phuyal, K. P., and Ji, L.: NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA, Ecological Indicators, 30, 1–6, https://doi.org/10.1016/j.ecolind.2013.01.041, 2013.
Hamed, K. and Rao, A. R. (Eds.): Flood Frequency Analysis, CRC Press, Boca Raton, 376 pp., https://doi.org/10.1201/9780429128813, 2019.
Hilker, T., Lyapustin, A. I., Tucker, C. J., Hall, F. G., Myneni, R. B., Wang, Y., Bi, J., Mendes de Moura, Y., and Sellers, P. J.: Vegetation dynamics and rainfall sensitivity of the Amazon, Proceedings of the National Academy of Sciences, 111, 16041–16046, https://doi.org/10.1073/pnas.1404870111, 2014.
Holben, B. N.: Characteristics of maximum-value composite images from temporal AVHRR data, International Journal of Remote Sensing, 7, 1417–1434, https://doi.org/10.1080/01431168608948945, 1986.
Hosking, J. R. M.: L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics, Journal of the Royal Statistical Society: Series B (Methodological), 52, 105–124, https://doi.org/10.1111/j.2517-6161.1990.tb01775.x, 1990.
Huang, S., Tang, L., Hupy, J. P., Wang, Y., and Shao, G.: A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing, Journal of Forestry Research, 32, 1–6, https://doi.org/10.1007/s11676-020-01155-1, 2021.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Jiang, Z. and Huete, A.: Linearization of NDVI Based on its Relationship with Vegetation Fraction, Photogrammetric Engineering and Remote Sensing, 76, 965–975, https://doi.org/10.14358/PERS.76.8.965, 2010.
Jinru, X. and Su, B.: Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications, Journal of Sensors, 2017, 1–17, https://doi.org/10.1155/2017/1353691, 2017.
Kogan, F. N.: Remote sensing of weather impacts on vegetation in non-homogeneous areas, International Journal of Remote Sensing, 11, 1405–1419, https://doi.org/10.1080/01431169008955102, 1990.
Laimighofer, J. and Laaha, G.: How standard are standardized drought indices? Uncertainty components for the SPI & SPEI case, Journal of Hydrology, 613, https://doi.org/10.1016/j.jhydrol.2022.128385, 2022.
Li, M., Cao, S., Zhu, Z., Wang, Z., Myneni, R. B., and Piao, S.: Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022, Earth Syst. Sci. Data, 15, 4181–4203, https://doi.org/10.5194/essd-15-4181-2023, 2023.
Li, R., Tsunekawa, A., and Tsubo, M.: Index-based assessment of agricultural drought in a semi-arid region of Inner Mongolia, China, Journal of Arid Land, 6, 3–15, https://doi.org/10.1007/s40333-013-0193-8, 2014.
Liu, F., Qin, Q., and Zhan, Z.: A novel dynamic stretching solution to eliminate saturation effect in NDVI and its application in drought monitoring, Chinese Geographical Science, 22, 683–694, https://doi.org/10.1007/s11769-012-0574-5, 2012.
Liu, W., Guan, H., Hesp, P. A., and Batelaan, O.: Remote sensing delineation of wildfire spatial extents and post-fire recovery along a semi-arid climate gradient, Ecological Informatics, 78, 102304, https://doi.org/10.1016/j.ecoinf.2023.102304, 2023.
Llorens, R., Sobrino, J. A., Fernández, C., Fernández-Alonso, J. M., and Vega, J. A.: A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula, International Journal of Applied Earth Observation and Geoinformation, 95, 102243, https://doi.org/10.1016/j.jag.2020.102243, 2021.
Malo, A. R. and Nicholson, S. E.: A study of rainfall and vegetation dynamics in the African Sahel using normalized difference vegetation index, Journal of Arid Environments, 19, 1–24, https://doi.org/10.1016/S0140-1963(18)30825-5, 1990.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, in: Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Anaheim, CA, 17–22 January 1993, 179–183, 1993.
Moccia, B., Mineo, C., Ridolfi, E., Russo, F., and Napolitano, F.: SPI-Based Drought Classification in Italy: Influence of Different Probability Distribution Functions, Water (Switzerland), 14, https://doi.org/10.3390/w14223668, 2022.
Moesinger, L., Zotta, R.-M., van der Schalie, R., Scanlon, T., de Jeu, R., and Dorigo, W.: Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI), Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, 2022.
Myneni, R. B., Hall, F. G., Sellers, P. J., and Marshak, A. L.: The interpretation of spectral vegetation indexes, IEEE Transactions on Geoscience and Remote Sensing, 33, 481–486, https://doi.org/10.1109/TGRS.1995.8746029, 1995.
Nanzad, L., Zhang, J., Tuvdendorj, B., Nabil, M., Zhang, S., and Bai, Y.: NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016, Journal of Arid Environments, 164, 69–77, https://doi.org/10.1016/j.jaridenv.2019.01.019, 2019.
Naresh Kumar, M., Murthy, C. S., Sesha sai, M. V. R., and Roy, P. S.: On the use of Standardized Precipitation Index (SPI) for drought intensity assessment, Meteorological Applications, 16, 381–389, https://doi.org/10.1002/met.136, 2009.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999, Science, 300, 1560–1563, https://doi.org/10.1126/science.1082750, 2003.
Peters, A. J., Walter-Shea, E. A., Ji, L., Viña, A., Hayes, M., and Svoboda, M. D.: Drought monitoring with NDVI-based Standardized Vegetation Index, Photogrammetric Engineering and Remote Sensing, 68, 71–75, 2002.
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., and Stenseth, N. C.: Using the satellite-derived NDVI to assess ecological responses to environmental change, Trends in Ecology & Evolution, 20, 503–510, https://doi.org/10.1016/j.tree.2005.05.011, 2005.
Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., Bjerke, J. W., Chen, A., Ciais, P., Tømmervik, H., Nemani, R. R., and Myneni, R. B.: Characteristics, drivers and feedbacks of global greening, Nature Reviews Earth & Environment, 1, 14–27, https://doi.org/10.1038/s43017-019-0001-x, 2020.
Pinzon, J. E., Pak, E. W., Tucker, C. J., Bhatt, U. S., Frost, G. V., and Macander, M. J.: “Global Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022”, 1 January 2023, ORNL Distributed Active Archive Center [data set], https://doi.org/10.3334/ORNLDAAC/2187, 2023.
Poroarson, A. F., Baum, A., Garcia, M., Vicente-Serrano, S. M., and Stockmarr, A.: Gap-Filling of NDVI Satellite Data Using Tucker Decomposition: Exploiting Spatio-Temporal Patterns, Remote Sensing, 13, https://doi.org/10.3390/rs13194007, 2021.
Powell, S. J., Jakeman, A., and Croke, B.: Can NDVI response indicate the effective flood extent in macrophyte dominated floodplain wetlands?, Ecological Indicators, 45, 486–493, https://doi.org/10.1016/j.ecolind.2014.05.009, 2014.
Sannier, C. A. D., Taylor, J. C., Du Plessis, W., and Campbell, K.: Real-time vegetation monitoring with NOAA-AVHRR in Southern Africa for wildlife management and food security assessment, International Journal of Remote Sensing, 19, 621–639, https://doi.org/10.1080/014311698215892, 1998.
Scheftic, W., Zeng, X., Broxton, P., and Brunke, M.: Intercomparison of Seven NDVI Products over the United States and Mexico, Remote Sensing, 6, 1057–1084, https://doi.org/10.3390/rs6021057, 2014.
Shabanov, N., Vargas, M., Miura, T., Sei, A., and Danial, A.: Evaluation of the performance of Suomi NPP VIIRS top of canopy vegetation indices over AERONET sites, Remote Sensing of Environment, 162, 29–44, https://doi.org/10.1016/j.rse.2015.02.004, 2015.
Shrestha, R., Di, L., Yu, E. G., Kang, L., Shao, Y., and Bai, Y.: Regression model to estimate flood impact on corn yield using MODIS NDVI and USDA cropland data layer, Journal of Integrative Agriculture, 16, 398–407, https://doi.org/10.1016/S2095-3119(16)61502-2, 2017.
Slavková, J., Gera, M., Nikolova, N., and Siman, C.: Standardized Precipitation and Evapotranspiration Index Approach for Drought Assessment in Slovakia – Statistical Evaluation of Different Calculations, Atmosphere, 14, https://doi.org/10.3390/atmos14091464, 2023.
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Loon, A. F. V., and Stahl, K.: Candidate Distributions for Climatological Drought Indices (SPI and SPEI), International Journal of Climatology, 35, 4027–4040, https://doi.org/10.1002/joc.4267, 2015.
Tam, B. Y., Cannon, A. J., and Bonsal, B. R.: Standardized precipitation evapotranspiration index (SPEI) for Canada: assessment of probability distributions, Canadian Water Resources Journal, 48, 283–299, https://doi.org/10.1080/07011784.2023.2183143, 2023.
Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y., Gámiz-Fortis, S., and Esteban-Parra, M. J.: North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula, International Journal of Climatology, 24, 925–944, https://doi.org/10.1002/joc.1048, 2004.
Trullenque-Blanco, V., Beguería, S., Vicente-Serrano, S. M., Peña-Angulo, D., and González-Hidalgo, C.: Catalogue of drought events in peninsular Spanish along 1916–2020 period, Sci. Data, 11, 703, https://doi.org/10.1038/s41597-024-03484-w, 2024.
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, 8, 127–150, https://doi.org/10.1016/0034-4257(79)90013-0, 1979.
Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., Vermote, E. F., and El Saleous, N.: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data, International Journal of Remote Sensing, 26, 4485–4498, https://doi.org/10.1080/01431160500168686, 2005.
Vicente-Serrano, S. M., López-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C., and Morán-Tejeda, E.: Accurate Computation of a Streamflow Drought Index, Journal of Hydrologic Engineering, 17, 318–332, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433, 2012.
Vicente-Serrano, S. M., Martín-Hernández, N., Reig, F., Azorin-Molina, C., Zabalza, J., Beguería, S., Domínguez-Castro, F., El Kenawy, A., Peña-Gallardo, M., Noguera, I., and García, M.: Vegetation greening in Spain detected from long term data (1981–2015), International Journal of Remote Sensing, 41, 1709–1740, https://doi.org/10.1080/01431161.2019.1674460, 2020.
Vicente-Serrano, S. M., Reig, F., Beguería, S., El-Kenawy, A., Domínguez-Castro, F., Franquesa, M., Gimeno-Sotelo, L., Adell-Michavilla, M., Halifa-Marín, A., Noguera, I., Andres-Martin, M., Azorin-Molina, C., Crespillo, A., and Pérez-Pajuelo, D.: An Optimal and Flexible Approach for Drought Quantification Based on Standardised Indices, International Journal of Climatology, 45, e8906, https://doi.org/10.1002/joc.8906, 2025.
Willmott, C. J.: On the Validation of Models, Physical Geography, 2, 184–194, https://doi.org/10.1080/02723646.1981.10642213, 1981.
Willmott, C. J.: On the Evaluation of Model Performance in Physical Geography, in: Spatial Statistics and Models, edited by: Gaile, G. L. and Willmott, C. J., Springer Netherlands, Dordrecht, 443–460, https://doi.org/10.1007/978-94-017-3048-8_23, 1984.
Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O'Donnell, J., and Rowe, C. M.: Statistics for the evaluation and comparison of models, Journal of Geophysical Research: Oceans, 90, 8995–9005, https://doi.org/10.1029/JC090iC05p08995, 1985.
Zambrano-Bigiarini, M.: hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series, Zenodo, https://doi.org/10.5281/zenodo.839854, 2024.
Zeng, J., Zhou, T., Qu, Y., Bento, V. A., Qi, J., Xu, Y., Li, Y., and Wang, Q.: An improved global vegetation health index dataset in detecting vegetation drought, Scientific Data, 10, 338, https://doi.org/10.1038/s41597-023-02255-3, 2023.
Zhang, Y., Song, C., Band, L. E., Sun, G., and Li, J.: Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?, Remote Sensing of Environment, 191, 145–155, https://doi.org/10.1016/j.rse.2016.12.018, 2017.
Short summary
Our study created a unique database that tracks vegetation health across Spain and the Balearic Islands from 1981 to now, updated every two weeks. By using satellite images from multiple sources, we provide accurate and consistent data that helps detect changes in vegetation due to factors like fires. This tool is crucial for farmers, environmental managers, and policymakers to monitor and protect plant life, ensuring better management of natural resources and agricultural productivity.
Our study created a unique database that tracks vegetation health across Spain and the Balearic...
Altmetrics
Final-revised paper
Preprint