Articles | Volume 17, issue 4
https://doi.org/10.5194/essd-17-1573-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-1573-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A worldwide event-based debris flow barrier dam dataset from 1800 to 2023
Haiguang Cheng
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Shuang Liu
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Xiaopeng Zhang
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Hao Li
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Qiyuan Zhang
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
Institute of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Lan Ning
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Manish Raj Gouli
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Pu Li
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Anna Yang
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Peng Zhao
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Junyu Liu
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
No articles found.
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024, https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Short summary
The damage patterns of the buildings were classified into three types: (I) buried by primary debris flow, (II) inundated by secondary dam-burst flood, and (III) sequentially buried by debris flow and inundated by dam-burst flood. The threshold of the impact pressures in Zones (II) and (III) where vulnerability is equal to 1 is 84 kPa and 116 kPa, respectively. Heavy damage occurs at an impact pressure greater than 50 kPa, while slight damage occurs below 30 kPa.
Shaojie Zhang, Xiaohu Lei, Hongjuan Yang, Kaiheng Hu, Juan Ma, Dunlong Liu, and Fanqiang Wei
Hydrol. Earth Syst. Sci., 28, 2343–2355, https://doi.org/10.5194/hess-28-2343-2024, https://doi.org/10.5194/hess-28-2343-2024, 2024
Short summary
Short summary
Antecedent effective precipitation (AEP) plays an important role in debris flow formation, but the relationship between AEP and the debris flow occurrence (Pdf) is still not quantified. We used numerical calculation and the Monte Carlo integration method to solve this issue. The relationship between Pdf and AEP can be described by the piecewise function, and debris flow is a small-probability event comparing to rainfall frequency because the maximum Pdf in Jiangjia Gully is only 15.88 %.
Kaiheng Hu, Manish Raj Gouli, Hao Li, Yong Nie, Yifan Shu, Shuang Liu, Pu Li, and Xiaopeng Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-884, https://doi.org/10.5194/egusphere-2024-884, 2024
Preprint archived
Short summary
Short summary
An integrated approach comprising a field survey, remote sensing, and hydrodynamic modeling was applied to investigate the Rijieco Glacial Lake Outburst Flood (GLOF) in 1991. The flood caused devastating ecological consequences, like sedimentation and the expansion of an inland lake, which has not yet recovered after three decades. The results help understand the ecological impacts of outburst floods on the Tibetan inland lake system and make future flood hazard assessments more robust.
Kaiheng Hu, Hao Li, Shuang Liu, Li Wei, Xiaopeng Zhang, Limin Zhang, Bo Zhang, and Manish Raj Gouli
EGUsphere, https://doi.org/10.5194/egusphere-2024-312, https://doi.org/10.5194/egusphere-2024-312, 2024
Short summary
Short summary
This paper shows how glacier-related sediment supply changes in response to earthquakes and climate warming at a catchment in the eastern Himalayas using several decades of aerial imagery and high-resolution UAV data. The results highlight the importance of debris-flow-driven extreme sediment delivery on landscape change in High Mountain Asia that have undergone substantial climate warming. This study is helpful for a better understanding of future risk of periglacial debris flows.
Shaojie Zhang, Hongjuan Yang, Dunlong Liu, Kaiheng Hu, and Fangqiang Wei
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-57, https://doi.org/10.5194/hess-2022-57, 2022
Manuscript not accepted for further review
Short summary
Short summary
We use a numerical model to find that the relationships of AEP-α and AEP-β can be respectively described by the specific function. The I-D threshold curve can regularly move in the I-D coordinate system rather than a conventional threshold curve stay the same regardless of AEP variation. This work is helpful to understand the influence mechanism of AEP on I-D threshold curve and are beneficial to improve the prediction capacity of the I-D threshold.
Bin Liu, Zhenghui Xie, Shuang Liu, Yujing Zeng, Ruichao Li, Longhuan Wang, Yan Wang, Binghao Jia, Peihua Qin, Si Chen, Jinbo Xie, and ChunXiang Shi
Hydrol. Earth Syst. Sci., 25, 387–400, https://doi.org/10.5194/hess-25-387-2021, https://doi.org/10.5194/hess-25-387-2021, 2021
Short summary
Short summary
We implemented both urban water use schemes in a model (Weather Research and Forecasting model) and assessed their cooling effects with different amounts of water in different parts of the city (center, suburbs, and rural areas) for both road sprinkling and urban irrigation by model simulation. Then, we developed an optimization scheme to find out the optimal water use strategies for mitigating high urban temperatures.
Yujin Zeng, Zhenghui Xie, and Shuang Liu
Earth Syst. Dynam., 8, 113–127, https://doi.org/10.5194/esd-8-113-2017, https://doi.org/10.5194/esd-8-113-2017, 2017
Short summary
Short summary
Irrigation constitutes 70 % of human water consumption. In this study, using the improved CLM4.5 with an active crop model, two 1 km simulations investigating the effects of irrigation on latent heat, sensible heat, and carbon fluxes in the Heihe River basin in northwestern China were conducted using a high-quality irrigation dataset compiled from 1981 to 2013. The results revealed the key role of irrigation in the control of land–atmosphere water, energy, and carbon fluxes in semiarid basin.
Kaiheng Hu, Pu Li, Yong You, and Fenghuan Su
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2016-13, https://doi.org/10.5194/nhess-2016-13, 2016
Manuscript not accepted for further review
Short summary
Short summary
The region inundated by a debris-flow event in valleys of a basin depends on its peak discharge and channel topography. The larger the discharge is, the bigger the inundation area is. If we know the discharge at each cross section of the main channel, it can delineate the area reached by debris flow on the both sides of the channel. But, in most cases we can only get the discharge at one downstream section. So, an assumption is made to calculate the discharge at any section from a known section.
Related subject area
Domain: ESSD – Land | Subject: Hydrology
CAMELS-DK: hydrometeorological time series and landscape attributes for 3330 Danish catchments with streamflow observations from 304 gauged stations
An in situ daily dataset for benchmarking temporal variability of groundwater recharge
CAMELS-FR dataset: a large-sample hydroclimatic dataset for France to explore hydrological diversity and support model benchmarking
Features of Italian large dams and their upstream catchments
Gridded rainfall erosivity (2014–2022) in mainland China using 1 min precipitation data from densely distributed weather stations
High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
CAMELS-IND: hydrometeorological time series and catchment attributes for 228 catchments in Peninsular India
LakeBeD-US: a benchmark dataset for lake water quality time series and vertical profiles
HERA: a high-resolution pan-European hydrological reanalysis (1951–2020)
BCUB – a large-sample ungauged basin attribute dataset for British Columbia, Canada
Comprehensive inventory of large hydropower systems in the Italian Alpine Region
Lena River biogeochemistry captured by a 4.5-year high-frequency sampling program
CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany
Observational partitioning of water and CO2 fluxes at National Ecological Observatory Network (NEON) sites: a 5-year dataset of soil and plant components for spatial and temporal analysis
An integrated high-resolution bathymetric model for the Danube Delta system
GRILSS: Opening the Gateway to Global Reservoir Sedimentation Data Curation
Benchmark dataset for hydraulic simulations of flash floods in the French Mediterranean region
CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
HANZE v2.1: an improved database of flood impacts in Europe from 1870 to 2020
A Copernicus-based evapotranspiration dataset at 100 m spatial resolution over four Mediterranean basins
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
A 1985–2023 time series dataset of absolute reservoir storage in Mainland Southeast Asia (MSEA-Res)
One year of high frequency monitoring of groundwater physico-chemical parameters in the Weierbach Experimental Catchment, Luxembourg
A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps
Satellite-based near-real-time global daily terrestrial evapotranspiration estimates
Multivariate characterisation of a blackberry–alder agroforestry system in South Africa: hydrological, pedological, dendrological and meteorological measurements
CAMELS-AUS v2: updated hydrometeorological timeseries and landscape attributes for an enlarged set of catchments in Australia
SHIFT: a spatial-heterogeneity improvement in DEM-based mapping of global geomorphic floodplains
First comprehensive stable isotope dataset of diverse water units in a permafrost-dominated catchment on the Qinghai–Tibet Plateau
Mapping the world’s inland surface waters: an update to the Global Lakes and Wetlands Database (GLWD v2)
LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland
High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020
Optimal feature selection for improved ML based reconstruction of Global Terrestrial Water Storage Anomalies
Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
A hydrogeomorphic dataset for characterizing catchment hydrological behavior across the Tibetan Plateau
Discrete Global Grid System-based Flow Routing Datasets in the Amazon and Yukon Basins
Deriving a Transformation Rate Map of Dissolved Organic Carbon over the Contiguous U.S.
A synthesis of Global Streamflow Characteristics, Hydrometeorology, and Catchment Attributes (GSHA) for large sample river-centric studies
FOCA: a new quality-controlled database of floods and catchment descriptors in Italy
Dams in the Mekong: a comprehensive database, spatiotemporal distribution, and hydropower potentials
A global dataset of the shape of drainage systems
An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
Flood simulation with the RiverCure approach: the open dataset of the 2016 Águeda flood event
GloLakes: water storage dynamics for 27 000 lakes globally from 1984 to present derived from satellite altimetry and optical imaging
AltiMaP: altimetry mapping procedure for hydrography data
CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
The use of GRDC gauging stations for calibrating large-scale hydrological models
A long-term dataset of simulated epilimnion and hypolimnion temperatures in 401 French lakes (1959–2020)
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, Anker Lajer Højberg, Hans Thodsen, Mark F. T. Hansen, and Raphael J. M. Schneider
Earth Syst. Sci. Data, 17, 1551–1572, https://doi.org/10.5194/essd-17-1551-2025, https://doi.org/10.5194/essd-17-1551-2025, 2025
Short summary
Short summary
We developed a CAMELS-style dataset in Denmark, which contains hydrometeorological time series and landscape attributes for 3330 catchments (304 gauged). Many catchments in CAMELS-DK are small and at low elevations. The dataset provides information on groundwater characteristics and dynamics, as well as quantities related to the human impact on the hydrological system in Denmark. The dataset is especially relevant for developing data-driven and hybrid physically informed modeling frameworks.
Pragnaditya Malakar, Aatish Anshuman, Mukesh Kumar, Georgios Boumis, T. Prabhakar Clement, Arik Tashie, Hitesh Thakur, Nagaraj Bhat, and Lokendra Rathore
Earth Syst. Sci. Data, 17, 1515–1528, https://doi.org/10.5194/essd-17-1515-2025, https://doi.org/10.5194/essd-17-1515-2025, 2025
Short summary
Short summary
Groundwater dynamics depend on groundwater recharge, but daily benchmark data of recharge are scarce. Here we present a daily groundwater recharge per unit specified yield (RpSy) data at 485 US groundwater monitoring wells. RpSy can be used to validate the temporal consistency of recharge products from land surface and hydrologic models and facilitate assessment of recharge-driver functional relationships in them.
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025, https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyze hydrological behavior and perform model assessments.
Giulia Evangelista, Paola Mazzoglio, Daniele Ganora, Francesca Pianigiani, and Pierluigi Claps
Earth Syst. Sci. Data, 17, 1407–1426, https://doi.org/10.5194/essd-17-1407-2025, https://doi.org/10.5194/essd-17-1407-2025, 2025
Short summary
Short summary
This paper presents the first comprehensive dataset of 528 large dams in Italy. It contains structural characteristics of the dams, such as coordinates, reservoir surface areas and volumes, together with a range of geomorphological, climatological, extreme rainfall, land cover and soil-related attributes of their upstream catchments.
Yueli Chen, Yun Xie, Xingwu Duan, and Minghu Ding
Earth Syst. Sci. Data, 17, 1265–1274, https://doi.org/10.5194/essd-17-1265-2025, https://doi.org/10.5194/essd-17-1265-2025, 2025
Short summary
Short summary
Rainfall erosivity maps are crucial for identifying key areas of water erosion. Due to the limited historical precipitation data, there are certain biases in rainfall erosivity estimates in China. This study develops a new rainfall erosivity map for mainland China using 1 min precipitation data from 60 129 weather stations, revealing that areas exceeding 4000 MJ mm ha−1 h−1yr−1 of annual rainfall erosivity are mainly concentrated in southern China and on the southern Tibetan Plateau.
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data, 17, 703–717, https://doi.org/10.5194/essd-17-703-2025, https://doi.org/10.5194/essd-17-703-2025, 2025
Short summary
Short summary
In this study, we present a dataset for the Dischma catchment in eastern Switzerland, which represents a typical high-alpine watershed in the European Alps. Accurate monitoring and reliable forecasting of snow and water resources in such basins are crucial for a wide range of applications. Our dataset is valuable for improving physics-based snow, land surface, and hydrological models, with potential applications in similar high-alpine catchments.
Nikunj K. Mangukiya, Kanneganti Bhargav Kumar, Pankaj Dey, Shailza Sharma, Vijaykumar Bejagam, Pradeep P. Mujumdar, and Ashutosh Sharma
Earth Syst. Sci. Data, 17, 461–491, https://doi.org/10.5194/essd-17-461-2025, https://doi.org/10.5194/essd-17-461-2025, 2025
Short summary
Short summary
We introduce CAMELS-IND (Catchment Attributes and MEteorology for Large-sample Studies – India), which provides daily hydrometeorological time series and static catchment attributes representing the location, topography, climate, hydrological signatures, land use, land cover, soil, geology, and anthropogenic influences for 472 catchments in Peninsular India to foster large-sample hydrological studies in India and promote the inclusion of Indian catchments in global hydrological research.
Bennett J. McAfee, Aanish Pradhan, Abhilash Neog, Sepideh Fatemi, Robert T. Hensley, Mary E. Lofton, Anuj Karpatne, Cayelan C. Carey, and Paul C. Hanson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-27, https://doi.org/10.5194/essd-2025-27, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
LakeBeD-US is a dataset of lake water quality data collected by multiple long-term monitoring programs around the United States. This dataset is designed to foster collaboration between lake scientists and computer scientists to improve predictions of water quality. By offering a way for computer models to be tested against real-world lake data, LakeBeD-US offers opportunities for both sciences to grow and to give new insights into the causes of water quality changes.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, Cinzia Mazzetti, and Luc Feyen
Earth Syst. Sci. Data, 17, 293–316, https://doi.org/10.5194/essd-17-293-2025, https://doi.org/10.5194/essd-17-293-2025, 2025
Short summary
Short summary
This article presents a reanalysis of Europe's river streamflow for the period 1951–2020. Streamflow is estimated through a state-of-the-art hydrological simulation framework benefitting from detailed information about the landscape, climate, and human activities. The resulting Hydrological European ReAnalysis (HERA) can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources and flood and drought risks.
Daniel Kovacek and Steven Weijs
Earth Syst. Sci. Data, 17, 259–275, https://doi.org/10.5194/essd-17-259-2025, https://doi.org/10.5194/essd-17-259-2025, 2025
Short summary
Short summary
We made a dataset for British Columbia describing the terrain, soil, land cover, and climate of over 1 million watersheds. The attributes are often used in hydrology because they are related to the water cycle. The data are meant to be used for water resources problems that can benefit from lots of watersheds and their attributes. The data and instructions needed to build the dataset from scratch are freely available. The permanent home for the data is https://doi.org/10.5683/SP3/JNKZVT.
Andrea Galletti, Soroush Zarghami Dastjerdi, and Bruno Majone
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-521, https://doi.org/10.5194/essd-2024-521, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We propose IAR-HP, a detailed inventory of large hydropower systems in Italy's Alpine Region, aimed at improving hydrological modeling for climate impact studies by providing the most relevant information with a consistent level of detail. It includes structural, geographical, and operational data for over 300 hydropower plants and their related reservoirs and water intakes. Validated through modeling, IAR-HP accurately reproduces observed hydropower, capturing 96.2 % of actual production.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Einara Zahn and Elie Bou-Zeid
Earth Syst. Sci. Data, 16, 5603–5624, https://doi.org/10.5194/essd-16-5603-2024, https://doi.org/10.5194/essd-16-5603-2024, 2024
Short summary
Short summary
Quantifying water and CO2 exchanges through transpiration, evaporation, net photosynthesis, and soil respiration is essential for understanding how ecosystems function. We implemented five methods to estimate these fluxes over a 5-year period across 47 sites. This is the first dataset representing such large spatial and temporal coverage of soil and plant exchanges, and it has many potential applications, such as examining the response of ecosystems to weather extremes and climate change.
Lauranne Alaerts, Jonathan Lambrechts, Ny Riana Randresihaja, Luc Vandenbulcke, Olivier Gourgue, Emmanuel Hanert, and Marilaure Grégoire
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-529, https://doi.org/10.5194/essd-2024-529, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We created the first comprehensive, high-resolution, and easily-accessible bathymetry dataset for the three main branches of the Danube Delta. By combining four data sources, we obtained a detailed representation of the riverbed, with resolutions ranging from 2 to 100 m. This dataset will support future studies on water and nutrient exchanges between the Danube and the Black Sea, and provide insights into the Delta’s buffer role within the understudied Danube-Black Sea continuum.
Sanchit Minocha and Faisal Hossain
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-470, https://doi.org/10.5194/essd-2024-470, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Trustworthy and independently verifiable information on declining storage capacity or sedimentation rates around the world is sparse and suffers from inconsistent metadata and curation to allow global-scale archiving and analyses. Global Reservoir Inventory of Lost Storage by Sedimentation (GRILSS) dataset addresses this challenge by providing organized, well-curated and open-source data on sedimentation rates and capacity loss for 1,015 reservoirs in 75 major river basins across 54 countries.
Juliette Godet, Pierre Nicolle, Nabil Hocini, Eric Gaume, Philippe Davy, Frederic Pons, Pierre Javelle, Pierre-André Garambois, Dimitri Lague, and Olivier Payrastre
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-472, https://doi.org/10.5194/essd-2024-472, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes a dataset that includes input, output, and validation data for the simulation of flash flood hazards and three specific flash flood events in the French Mediterranean region. This dataset is particularly valuable as flood mapping methods often lack sufficient benchmark data. Additionally, we demonstrate how the hydraulic method we used, named Floodos, produces highly satisfactory results.
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024, https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
Short summary
This study presented new annual maps of irrigated cropland in China from 2000 to 2020 (CIrrMap250). These maps were developed by integrating remote sensing data, irrigation statistics and surveys, and an irrigation suitability map. CIrrMap250 achieved high accuracy and outperformed currently available products. The new irrigation maps revealed a clear expansion of China’s irrigation area, with the majority (61%) occurring in the water-unsustainable regions facing severe to extreme water stress.
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data, 16, 5145–5170, https://doi.org/10.5194/essd-16-5145-2024, https://doi.org/10.5194/essd-16-5145-2024, 2024
Short summary
Short summary
Knowledge about past natural disasters can help adaptation to their future occurrences. Here, we present a dataset of 2521 riverine, pluvial, coastal, and compound floods that have occurred in 42 European countries between 1870 and 2020. The dataset contains available information on the inundated area, fatalities, persons affected, or economic loss and was obtained by extensive data collection from more than 800 sources ranging from news reports through government databases to scientific papers.
Paulina Bartkowiak, Bartolomeo Ventura, Alexander Jacob, and Mariapina Castelli
Earth Syst. Sci. Data, 16, 4709–4734, https://doi.org/10.5194/essd-16-4709-2024, https://doi.org/10.5194/essd-16-4709-2024, 2024
Short summary
Short summary
This paper presents the Two-Source Energy Balance evapotranspiration (ET) product driven by Copernicus Sentinel-2 and Sentinel-3 imagery together with ERA5 climate reanalysis data. Daily ET maps are available at 100 m spatial resolution for the period 2017–2021 across four Mediterranean basins: Ebro (Spain), Hérault (France), Medjerda (Tunisia), and Po (Italy). The product is highly beneficial for supporting vegetation monitoring and sustainable water management at the river basin scale.
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024, https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
Short summary
Nitrogen (N) and phosphorus (P) contamination of water bodies is a long-term issue due to the long history of N and P inputs to the environment and their persistence. Here, we introduce a long-term and high-resolution dataset of N and P inputs from wastewater (point sources) for Germany, combining data from different sources and conceptual understanding. We also account for uncertainties in modelling choices, thus facilitating robust long-term and large-scale water quality studies.
Shanti Shwarup Mahto, Simone Fatichi, and Stefano Galelli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-441, https://doi.org/10.5194/essd-2024-441, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The MSEA-Res database offers an open-access dataset tracking absolute water storage for 185 large reservoirs across Mainland Southeast Asia from 1985–2023. It provides valuable insights into how reservoir storage has grown by 130 % between 2008 and 2017, driven by dams in key river basins. Our data also reveal how droughts, like the 2019–2020 event, significantly impacted water reservoirs. This resource can aid water management, drought planning, and research globally.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-259, https://doi.org/10.5194/essd-2024-259, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. This data helps predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behavior and serves as a resource for future environmental studies.
Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner
Earth Syst. Sci. Data, 16, 4311–4323, https://doi.org/10.5194/essd-16-4311-2024, https://doi.org/10.5194/essd-16-4311-2024, 2024
Short summary
Short summary
Global water resource monitoring is crucial due to climate change and population growth. This study presents a hand-labeled dataset of 100 PlanetScope images for surface water detection, spanning diverse biomes. We use this dataset to evaluate two state-of-the-art mapping methods. Results highlight performance variations across biomes, emphasizing the need for diverse, independent validation datasets to enhance the accuracy and reliability of satellite-based surface water monitoring techniques.
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024, https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Short summary
Timely global terrestrial evapotranspiration (ET) data are crucial for water resource management and drought forecasting. This study introduces the VISEA algorithm, which integrates satellite data and shortwave radiation to provide daily 0.05° gridded near-real-time ET estimates. By employing a vegetation index–temperature method, this algorithm can estimate ET without requiring additional data. Evaluation results demonstrate VISEA's comparable accuracy with accelerated data availability.
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024, https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
Short summary
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a sustainable land use option which protects natural resources and biodiversity. Introducing trees into agricultural systems can positively affect water resources, soil characteristics, biomass and microclimate. We studied an AFS in South Africa in a multidisciplinary approach to assess the different influences and present the resulting dataset consisting of water, soil, tree and meteorological variables.
Keirnan J. A. Fowler, Ziqi Zhang, and Xue Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-263, https://doi.org/10.5194/essd-2024-263, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper presents Version 2 of the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS v2 comprises data for an increased number (561) of catchments, each with with long-term monitoring, combining hydrometeorological time series with attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://zenodo.org/doi/10.5281/zenodo.12575680.
Kaihao Zheng, Peirong Lin, and Ziyun Yin
Earth Syst. Sci. Data, 16, 3873–3891, https://doi.org/10.5194/essd-16-3873-2024, https://doi.org/10.5194/essd-16-3873-2024, 2024
Short summary
Short summary
We develop a globally applicable thresholding scheme for DEM-based floodplain delineation to improve the representation of spatial heterogeneity. It involves a stepwise approach to estimate the basin-level floodplain hydraulic geometry parameters that best respect the scaling law while approximating the global hydrodynamic flood maps. A ~90 m resolution global floodplain map, the Spatial Heterogeneity Improved Floodplain by Terrain analysis (SHIFT), is delineated with demonstrated superiority.
Yuzhong Yang, Qingbai Wu, Xiaoyan Guo, Lu Zhou, Helin Yao, Dandan Zhang, Zhongqiong Zhang, Ji Chen, and Guojun Liu
Earth Syst. Sci. Data, 16, 3755–3770, https://doi.org/10.5194/essd-16-3755-2024, https://doi.org/10.5194/essd-16-3755-2024, 2024
Short summary
Short summary
We present the temporal data of stable isotopes in different waterbodies in the Beiluhe Basin in the hinterland of the Qinghai–Tibet Plateau (QTP) produced between 2017 and 2022. In this article, the first detailed stable isotope data of 359 ground ice samples are presented. This first data set provides a new basis for understanding the hydrological effects of permafrost degradation on the QTP.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Pilippe Bousquet, Josep G. Canadell, Nick Davidson, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, and Michele Thieme
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-204, https://doi.org/10.5194/essd-2024-204, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies—that is, the maximum extent—covers 18.2 million km2, equivalent to 13.4 % of total global land area.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological time series, including observed streamflow and basin characteristics, for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets and additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Chengcheng Hou, Yan Li, Shan Sang, Xu Zhao, Yanxu Liu, Yinglu Liu, and Fang Zhao
Earth Syst. Sci. Data, 16, 2449–2464, https://doi.org/10.5194/essd-16-2449-2024, https://doi.org/10.5194/essd-16-2449-2024, 2024
Short summary
Short summary
To fill the gap in the gridded industrial water withdrawal (IWW) data in China, we developed the China Industrial Water Withdrawal (CIWW) dataset, which provides monthly IWWs from 1965 to 2020 at a spatial resolution of 0.1°/0.25° and auxiliary data including subsectoral IWW and industrial output value in 2008. This dataset can help understand the human water use dynamics and support studies in hydrology, geography, sustainability sciences, and water resource management and allocation in China.
Nehar Mandal, Prabal Das, and Kironmala Chanda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-109, https://doi.org/10.5194/essd-2024-109, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Optimal features among hydroclimatic variables and land surface model (LSM) outputs are selected using a novel Bayesian network (BN) approach for simulating Terrestrial Water Storage Anomalies (TWSA). TWSA is simulated using ML models (CNN, SVR, ETR, and Stacking Ensemble Regression), and gridwise leader models are identified globally. TWSA is reconstructed (BNML_TWSA) with the selected leader models from January 1960 to December 2022 to generate a continuous global gridded dataset.
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024, https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Short summary
Nature-based solutions (NBSs), such as green roofs, have appeared as relevant solutions to mitigate urban heat islands. The evapotranspiration (ET) process allows NBSs to cool the air. To improve our knowledge about ET assessment, this paper presents some experimental measurement campaigns carried out during three consecutive summers. Data are available for three different (large, small, and point-based) spatial scales.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Chang Liao, Darren Engwirda, Matthew Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-398, https://doi.org/10.5194/essd-2023-398, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Discrete Global Grid systems, or DGGs, are digital frameworks that help us organize information about our planet. Although scientists have used DGGs in areas like weather and nature, using them in the water cycle has been challenging because some core datasets are missing. We created a way to generate these datasets. We then developed the datasets in the Amazon Basin, which plays an important role in our planet's climate. These datasets may help us improve our water cycle models.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-43, https://doi.org/10.5194/essd-2024-43, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We have developed a new map that reveals how organic carbon from soil leaches into headwater streams over the contiguous United States. We use advanced artificial intelligence techniques and a massive amount of data, including observations at over 2,500 gauges and a wealth of climate and environmental information. The map is a critical step in understanding and predicting how carbon moves through our environment, hence a useful tool for tackling climate challenges.
Ziyun Yin, Peirong Lin, Ryan Riggs, George H. Allen, Xiangyong Lei, Ziyan Zheng, and Siyu Cai
Earth Syst. Sci. Data, 16, 1559–1587, https://doi.org/10.5194/essd-16-1559-2024, https://doi.org/10.5194/essd-16-1559-2024, 2024
Short summary
Short summary
Large-sample hydrology (LSH) datasets have been the backbone of hydrological model parameter estimation and data-driven machine learning models for hydrological processes. This study complements existing LSH studies by creating a dataset with improved sample coverage, uncertainty estimates, and dynamic descriptions of human activities, which are all crucial to hydrological understanding and modeling.
Pierluigi Claps, Giulia Evangelista, Daniele Ganora, Paola Mazzoglio, and Irene Monforte
Earth Syst. Sci. Data, 16, 1503–1522, https://doi.org/10.5194/essd-16-1503-2024, https://doi.org/10.5194/essd-16-1503-2024, 2024
Short summary
Short summary
FOCA (Italian FlOod and Catchment Atlas) is the first systematic collection of data on Italian river catchments. It comprises geomorphological, soil, land cover, NDVI, climatological and extreme rainfall catchment attributes. FOCA also contains 631 peak and daily discharge time series covering the 1911–2016 period. Using this first nationwide data collection, a wide range of applications, in particular flood studies, can be undertaken within the Italian territory.
Wei Jing Ang, Edward Park, Yadu Pokhrel, Dung Duc Tran, and Ho Huu Loc
Earth Syst. Sci. Data, 16, 1209–1228, https://doi.org/10.5194/essd-16-1209-2024, https://doi.org/10.5194/essd-16-1209-2024, 2024
Short summary
Short summary
Dams have burgeoned in the Mekong, but information on dams is scattered and inconsistent. Up-to-date evaluation of dams is unavailable, and basin-wide hydropower potential has yet to be systematically assessed. We present a comprehensive database of 1055 dams, a spatiotemporal analysis of the dams, and a total hydropower potential of 1 334 683 MW. Considering projected dam development and hydropower potential, the vulnerability and the need for better dam management may be highest in Laos.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Jingyu Lin, Peng Wang, Jinzhu Wang, Youping Zhou, Xudong Zhou, Pan Yang, Hao Zhang, Yanpeng Cai, and Zhifeng Yang
Earth Syst. Sci. Data, 16, 1137–1149, https://doi.org/10.5194/essd-16-1137-2024, https://doi.org/10.5194/essd-16-1137-2024, 2024
Short summary
Short summary
Our paper provides a repository comprising over 330 000 observations encompassing daily, weekly, and monthly records of surface water quality spanning the period 1980–2022. It included 18 distinct indicators, meticulously gathered at 2384 monitoring sites, ranging from inland locations to coastal and oceanic areas. This dataset will be very useful for researchers and decision-makers in the fields of hydrology, ecological studies, climate change, policy development, and oceanography.
Ana M. Ricardo, Rui M. L. Ferreira, Alberto Rodrigues da Silva, Jacinto Estima, Jorge Marques, Ivo Gamito, and Alexandre Serra
Earth Syst. Sci. Data, 16, 375–385, https://doi.org/10.5194/essd-16-375-2024, https://doi.org/10.5194/essd-16-375-2024, 2024
Short summary
Short summary
Floods are among the most common natural disasters responsible for severe damages and human losses. Agueda.2016Flood, a synthesis of locally sensed data and numerically produced data, allows complete characterization of the flood event that occurred in February 2016 in the Portuguese Águeda River. The dataset was managed through the RiverCure Portal, a collaborative web platform connected to a validated shallow-water model.
Jiawei Hou, Albert I. J. M. Van Dijk, Luigi J. Renzullo, and Pablo R. Larraondo
Earth Syst. Sci. Data, 16, 201–218, https://doi.org/10.5194/essd-16-201-2024, https://doi.org/10.5194/essd-16-201-2024, 2024
Short summary
Short summary
The GloLakes dataset provides historical and near-real-time time series of relative (i.e. storage change) and absolute (i.e. total stored volume) storage for more than 27 000 lakes worldwide using multiple sources of satellite data, including laser and radar altimetry and optical remote sensing. These data can help us understand the influence of climate variability and anthropogenic activities on water availability and system ecology over the last 4 decades.
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024, https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Short summary
As satellite technology advances, there is an incredible amount of remotely sensed data for observing terrestrial water. Satellite altimetry observations of water heights can be utilized to calibrate and validate large-scale hydrodynamic models. However, because large-scale models are discontinuous, comparing satellite altimetry to predicted water surface elevation is difficult. We developed a satellite altimetry mapping procedure for high-resolution river network data.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Peter Burek and Mikhail Smilovic
Earth Syst. Sci. Data, 15, 5617–5629, https://doi.org/10.5194/essd-15-5617-2023, https://doi.org/10.5194/essd-15-5617-2023, 2023
Short summary
Short summary
We address an annoying problem every grid-based hydrological model must solve to compare simulated and observed river discharge. First, station locations do not fit the high-resolution river network. We update the database with stations based on a new high-resolution network. Second, station locations do not work with a coarser grid-based network. We use a new basin shape similarity concept for station locations on a coarser grid, reducing the error of assigning stations to the wrong basin.
Najwa Sharaf, Jordi Prats, Nathalie Reynaud, Thierry Tormos, Rosalie Bruel, Tiphaine Peroux, and Pierre-Alain Danis
Earth Syst. Sci. Data, 15, 5631–5650, https://doi.org/10.5194/essd-15-5631-2023, https://doi.org/10.5194/essd-15-5631-2023, 2023
Short summary
Short summary
We present a regional long-term (1959–2020) dataset (LakeTSim) of daily epilimnion and hypolimnion water temperature simulations in 401 French lakes. Overall, less uncertainty is associated with the epilimnion compared to the hypolimnion. LakeTSim is valuable for providing new insights into lake water temperature for assessing the impact of climate change, which is often hindered by the lack of observations, and for decision-making by stakeholders.
Cited articles
Ashraf, A., Iqbal, M. B., Mustafa, N., Naz, R., and Ahmad, B.: Prevalent risk of glacial lake outburst flood hazard in the Hindu Kush–Karakoram–Himalaya region of Pakistan, Environ. Earth Sci., 80, 451, https://doi.org/10.1007/s12665-021-09740-1, 2021.
Azimi, R., Vatankhah, A. R., and Kouchakzadeh, S.: Predicting peak discharge from breached embankment dams, in: the 36th IAHR World Congress, 28 June–3 July 2015, Hague, Netherlands, https://www.researchgate.net/publication/279845430_PREDICTING_PEAK_DISCHARGE_FROM_BREACHED_EMBANKMENT_DAMS (last access: 6 April 2025), 2015.
Bazai, N. A., Cui, P., Carling, P. A., Wang, H., Hassan, J., Liu, D., Zhang, G., and Jin, W.: Increasing glacial lake outburst flood hazard in response to surge glaciers in the Karakoram, Earth-Sci. Rev., 212, 103432, https://doi.org/10.1016/j.earscirev.2020.103432, 2021.
Cao, Z., Yue, Z., and Pender, G.: Landslide dam failure and flood hydraulics. Part II: coupled mathematical modelling, Nat. Hazards, 59, 1021–1045, https://doi.org/10.1007/s11069-011-9815-7, 2011.
Casagli, N. and Ermini, L.: Geomorphic analysis of landslide dams in the Northern Apennine, Transactions of the Japanese Geomorphological Union, 20, 219–249, https://flore.unifi.it/handle/2158/206201 (last access: 6 April 2025), 1999.
Casagli, N., Ermini, L., and Rosati, G.: Determining grain size distribution of the material composing landslide dams in the Northern Apennines: sampling and processing methods, Eng. Geol., 69, 83–97, https://doi.org/10.1016/S0013-7952(02)00249-1, 2003.
Chai, H. J., Liu, H. C., and Zhang, Z. Y.: The catalog of Chinese landslide dam events, Journal of Geological Hazards and Environment Preservation, 6, 1–9, https://kns.cnki.net/kcms2/article/abstract?v=bYx4kmIyqoUE5l (last access: 6 April 2025), 1995 (in Chinese).
Chen, H., Ruan, H., Chen, J., Li, X., and Yu, Y.: Review of investigations on hazard chains triggered by river blocking debris flows and dam break floods, Front. Earth Sci., 10, 830044, https://doi.org/10.3389/feart.2022.830044, 2022.
Chen, K. T., Chen, X. Q., Niu, Z. P., and Guo, X. J.: Early identification of river blocking induced by tributary debris flow based on dimensionless volume index, Landslides, 16, 2335–2352, https://doi.org/10.1007/s10346-019-01221-8, 2019.
Cheng, H. G., Hu, K. H., Liu, S., Zhang, X. P., Li, H., Zhang, Q. Y., Ning, L., Manish, R. G., Li, P., Yang, A. N., Liu, J. Y., and Wei, L.: A worldwide event-based debris-flow barrier dam dataset from 1800 to the 2023, Zenodo [Data set], https://doi.org/10.5281/zenodo.14766647, 2025.
Cheng, Z. L., Dang, C., Liu, J. J., and Gong, Y. W.: Experiments of debris flow damming in Southeast Tibet, Earth Science Frontiers, 14, 181–185, https://doi.org/10.1016/S1872-5791(08)60010-X, 2007a.
Cheng, Z. L., Geng, X. Y., Dang, C., and Liu, J. J.: Modeling experiment of break of debris-flow dam, Wuhan University Journal of Natural Sciences, 12, 588–594, https://doi.org/10.1007/s11859-006-0302-z, 2007b.
Chong, Y., Chen, G., Meng, X., Yang, Y., Shi, W., Bian, S., Zhang, Y., and Yue, D.: Quantitative analysis of artificial dam failure effects on debris flows – A case study of the Zhouqu '8.8' debris flow in northwestern China, Sci. Total Environ., 792, 148439, https://doi.org/10.1016/j.scitotenv.2021.148439, 2021.
Costa, J. E.: Floods from dam failures, Open File Rep. 85-560, USGS, https://doi.org/10.3133/ofr85560, 1985.
Costa, J. E. and Schuster, R. L.: The formation and failure of natural dams, Geol. Soc. Am. Bull., 100, 1054–1068, https://doi.org/10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2, 1988.
Costa, J. E. and Schuster, R. L.: Documented historical landslide dams from around the world, Vancouver, WA, Open File Rep. 91-239, USGS, https://doi.org/10.3133/ofr91239, 1991.
Cui, P., Lei, Y., Hu, K., Zhou, G. G. D., Zhu, X., and Chen, H.: Amplification mechanism and hazard analysis for Zhouqu giant debris flow, International Journal of Erosion Control Engineering, 9, 71–79, https://doi.org/10.13101/ijece.9.71, 2016.
Dang, C., Cui, P., and Cheng, Z. L.: The formation and failure of debris flow-dams, background, key factors and model tests: case studies from China, Environ. Geol., 57, 1901–1910, https://doi.org/10.1007/s00254-008-1479-6, 2009.
Dong, J. J., Tung, Y. H., Chen, C. C., Liao, J. J., and Pan, Y. W.: Logistic regression model for predicting the failure probability of a landslide dam, Eng. Geol., 117, 52–61, https://doi.org/10.1016/j.enggeo.2010.10.004, 2011.
Dong, J. J., Lai, P. J., Chang, C. P., Yang, S. H., Yeh, K. C., Liao, J. J., and Pan, Y. W.: Deriving land-slide dam geometry from remote sensing images for the rapid assessment of critical parameters related to dam-breach hazards, Landslides, 11, 93–105, https://doi.org/10.1007/s10346-012-0375-z, 2014.
Dubey, S. and Goyal, M. K.: Glacial lake outburst flood hazard, downstream impact, and risk over the Indian Himalayas, Water Resour. Res., 56, e2019WR026533, https://doi.org/10.1029/2019WR026533, 2020.
Ermini, L. and Casagli, N.: Prediction of the behaviour of landslide dams using a geomorphological dimensionless index, Earth Surf. Proc. Land., 28, 31–47, https://doi.org/10.1002/esp.424, 2003.
Evans, S. G.: The maximum discharge of outburst floods caused by the breaching of man-made and natural dams, Can. Geotech. J., 23, 385–387, https://doi.org/10.1139/t86-053, 1986.
Fan, X. M., van Westen, C. J., Xu, Q., Gorum, T., and Dai, F.: Analysis of landslide dams induced by the 2008 Wenchuan earthquake, J. Asian Earth Sci., 57, 25–37, https://doi.org/10.1016/j.jseaes.2012.06.002, 2012a.
Fan, X., van Westen, C. J., Korup, O., Gorum, T., Xu, Q., Dai, F., Huang, R., and Wang, G.: Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China, Geomorphology, 171–172, 58–68, https://doi.org/10.1016/j.geomorph.2012.05.003, 2012b.
Fan, X., Xu, Q., van Westen, C. J., Huang, R., and Tang, R.: Characteristics and classification of landslide dams associated with the 2008 Wenchuan earthquake, Geoenvironmental Disasters, 4, 12, https://doi.org/10.1186/s40677-017-0079-8, 2017.
Fan, X., Scaringi, G., Domènech, G., Yang, F., Guo, X., Dai, L., He, C., Xu, Q., and Huang, R.: Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake, Earth Syst. Sci. Data, 11, 35–55, https://doi.org/10.5194/essd-11-35-2019, 2019.
Fan, X., Dufresne, A., Siva Subramanian, S., Strom, A., Hermanns, R., Tacconi Stefanelli, C., Hewitt, K., Yunus, A. P., Dunning, S., Capra, L., Geertsema, M., Miller, B., Casagli, N., Jansen, J. D., and Xu, Q.: The formation and impact of landslide dams – State of the art, Earth-Sci. Rev., 203, 103116, https://doi.org/10.1016/j.earscirev.2020.103116, 2020.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017.
Froehlich, D. C.: Peak outflow from breached embankment dam, Journal of Water Resources Planning and Management, 121, 90–97, https://doi.org/10.1061/(ASCE)0733-9496(1995)121:1(90), 1995.
Gouli, M. R., Hu, K. H., Khadka, N., Liu, S., Shu, Y. F., Adhikari, M., and Talchabhadel, R.: Quantitative assessment of the GLOF risk along China–Nepal transboundary basins by integrating remote sensing, machine learning, and hydrodynamic model, Int. J. Disast. Risk Re., 118, 105231, https://doi.org/10.1016/j.ijdrr.2025.105231, 2025.
Hagen, V. K.: Re-evaluation of design and dam safety, in: 14th International Commission on Large Dams Congress, 3–7 May 1982, Rio de Janerio, 475–491, https://www.researchgate.net/publication/288007025_Re-evaluation_of_design_floods_and_dam_safety (last access: 6 April 2025), 1982.
Hakimzadeh, H., Nourani, V., and Amini, A. B.: Genetic programming simulation of dam breach hydrograph and peak outflow discharge, J. Hydrol. Eng., 19, 757–768, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000849, 2014.
Hooshyaripor, F., Tahershamsi, A., and Golian, S.: Application of copula method and neural networks for predicting peak outflow from breached embankments, J. Hydro-Environ. Res., 8, 292–303, https://doi.org/10.1016/j.jher.2013.11.004, 2014.
Hu, K., Zhang, X., You, Y., Hu, X., Liu, W., and Li, Y.: Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge, Landslides, 16, 993–1001, https://doi.org/10.1007/s10346-019-01168-w, 2019.
Hu, K., Zhang, X., Gouli, M. R., Liu, S., and Nie, Y.: Retrospective analysis and hazard assessment of Gega glacial lake in the eastern Himalayan syntaxis, Natural Hazards Research, 2, 331–342, https://doi.org/10.1016/j.nhres.2022.11.003, 2022.
Hu, K. H., Ge, Y., Cui, P., Guo, X. J., and Yang, W.: Preliminary analysis of extra-large-scale debris flow disaster in Zhouqu County of Gansu Province, Mountain Research, 28, 628–634, https://doi.org/10.16089/j.cnki.1008-2786.2010.05.012, 2010.
Hu, K. H., Wei, F. Q., and Li, Y.: Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China, Earth Surf. Proc. Land., 36, 9, 1268–1278, https://doi.org/10.1002/esp.2155, 2011.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update, Landslides, 11, 167–194, https://doi.org/10.1007/s10346-013-0436-y, 2014.
Iverson, R. M.: The physics of debris flows, Rev. Geophys., 35, 245–296, https://doi.org/10.1029/97RG00426, 1997.
Jiang, H., Zou, Q., Zhou, B., Hu, Z., Li, C., Yao, S., and Yao, H.: Susceptibility assessment of debris flows coupled with ecohydrological activation in the eastern Qinghai-Tibet Plateau, Remote Sens.-Basel, 14, 1444, https://doi.org/10.3390/rs14061444, 2022.
Jiang, X., Cheng, H., Gao, L., and Liu, W.: The formation and geometry characteristics of boulder bars due to outburst floods triggered by overtopped landslide dam failure, Earth Surf. Dynam., 9, 1263–1277, https://doi.org/10.5194/esurf-9-1263-2021, 2021.
Jin, X.: Review and reflections on emergency response countermeasures for barrier lakes in Jinsha river and Yarlung Zangbo river, Yangtze River, 50, 5–9, https://doi.org/10.16232/j.cnki.1001-4179.2019.03.002, 2019 (in Chinese).
Kirkpatrick, G. W.: Guidelines for evaluating spillway capacity, Water Power Dam Constr., 29, 29–33, http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7780430034 (last access: 6 April 2025), 1977.
Korup, O.: Geomorphometric characteristics of New Zealand landslide dams, Eng. Geol., 73, 13–35, https://doi.org/10.1016/j.enggeo.2003.11.003, 2004.
Latrubesse, E. M., Park, E., Sieh, K., Dang, T. D., Lin, Y. N., and Yun, S.: Dam failure and a catastrophic flood in the Mekong basin (Bolaven Plateau), southern Laos, 2018, Geomorphology, 362, 107221, https://doi.org/10.1016/j.geomorph.2020.107221, 2020.
Liao, H. M., Yang, X. G., Lu, G. D., Tao, J., and Zhou, J. W.: A geotechnical index for landslide dam stability assessment, Geomat. Nat. Haz. Risk, 13, 854–876, https://doi.org/10.1080/19475705.2022.2048906, 2022.
Liu, J., You, Y., Chen, X., Liu, J., and Chen, X.: Characteristics and hazard prediction of large-scale debris flow of Xiaojia Gully in Yingxiu Town, Sichuan Province, China, Eng. Geol., 180, 55–67, https://doi.org/10.1016/j.enggeo.2014.03.017, 2014.
Liu, W., Carling, P. A., Hu, K., Wang, H., Zhou, Z., Zhou, L., Liu, D., Lai, Z., and Zhang, X.: Outburst floods in China: A review, Earth-Sci. Rev., 197, 102895, https://doi.org/10.1016/j.earscirev.2019.102895, 2019.
Ma, C., Chen, Y., Hu, K., Du, C., Dong, J., and Lyu, L. Q.: Climate warming triggered a glacial lake outburst flood and debris flow events in an Alpine Watershed, Western Himalayas, Tibet Plateau, B. Eng. Geol. Environ., 83, 201, https://doi.org/10.1007/s10064-024-03706-w, 2024.
MacDonald, T. C. and Langridge-Monopolis, J.: Breaching characteristics of dam failures, J. Hydraul. Eng., 110, 567–586, https://doi.org/10.1061/(ASCE)0733-9429(1984)110:5(567), 1984.
Peng, M. and Zhang, L. M.: Breaching parameters of landslide dams, Landslides, 9, 13–31, https://doi.org/10.1007/s10346-011-0271-y, 2012a.
Peng, M. and Zhang, L. M.: Analysis of human risks due to dam break floods-part 2: application to Tangjiashan landslide dam failure, Nat. Hazards, 64, 1899–1923, https://doi.org/10.1007/s11069-012-0336-9, 2012b.
Peruccacci, S., Gariano, S. L., Melillo, M., Solimano, M., Guzzetti, F., and Brunetti, M. T.: The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy, Earth Syst. Sci. Data, 15, 2863–2877, https://doi.org/10.5194/essd-15-2863-2023, 2023.
Pisaniello, J. D., Dam, T. T., and Tingey-Holyoak, J. L.: International small dam safety assurance policy benchmarks to avoid dam failure flood disasters in developing countries, J. Hydrol., 531, 1141–1153, https://doi.org/10.1016/j.jhydrol.2015.09.077, 2015.
Rizzo, C., Maranzoni, A., and D'Oria, M.: Probabilistic mapping and sensitivity assessment of dam-break flood hazard, Hydrolog. Sci. J., 68, 700–718, https://doi.org/10.1080/02626667.2023.2174026, 2023.
Ruan, H., Chen, H., Li, Y., Chen, J. G., and Li, H., B.: Study on the downcutting rate of a debris flow dam based on grain-size distribution, Geomorphology, 391, 107891, https://doi.org/10.1016/j.geomorph.2021.107891, 2021.
Schuster, R. L.: Dams built on pre-existing landslides, in: GeoEng 2000 – Geotechnical and Geological Engineering: International Society for Rock Mechanics and Rock Engineering, 19–24 November 2000, Melbourne, Australia, 1537–1589, https://pubs.usgs.gov/publication/70206221 (last access: 7 April 2025), 2000.
Schuster, R. L. and Costa, J. E.: Landslide dams: processes, risk, and mitigation, Amer Society of Civil Engineers, New York, 164 pp., ISBN 0-87262-524-9, 1986.
Sharma, A., Sajjad, H., Roshani, and Rahaman, M. H.: A systematic review for assessing the impact of climate change on landslides: research gaps and directions for future research, Spatial Information Research, 32, 165–185, https://doi.org/10.1007/s41324-023-00551-z, 2024.
Shi, Z. M., Wang, Y. Q., Peng, M., Chen, J. F., and Yuan, J.: Characteristics of the landslide dams induced by the 2008 Wenchuan earthquake and dynamic behavior analysis using large-scale shaking table tests, Eng. Geol., 194, 25–37, https://doi.org/10.1016/j.enggeo.2014.10.009, 2015.
Singh, K. P. and Snorrason, A.: Sensitivity of outflow peaks and flood stages to the selection of dam breach parameters and simulation models, J. Hydrol., 68, 295–310, https://doi.org/10.1016/0022-1694(84)90217-8, 1984.
SCS – Soil Conservation Service: Simplified dam-breach routing procedure, U. S. Dept. of Agriculture, Washington, D.C., https://directives.nrcs.usda.gov/sites/default/files2/1720451567/TR-210-66, Simplified Dam-Breach Routing Procedure.pdf (last access: 6 April 2025), 1981.
Song, Z., Fan, G., Chen, Y., and Liu, D.: Identification method of river blocking by debris flow in the middle reaches of the Dadu River, Southwest of China, Water, 15, 4301, https://doi.org/10.3390/w15244301, 2023.
Stuart-Smith, R. F., Roe, G. H., Li, S. J., and Allen, M. R.: Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat, Nat. Geosci., 14, 85–90, https://doi.org/10.1038/s41561-021-00686-4, 2021.
Tacconi Stefanelli, C., Catani, F., and Casagli, N.: Geomorphological investigations on landslide dams, Geoenvironmental Disasters, 2, 21, https://doi.org/10.1186/s40677-015-0030-9, 2015.
Tacconi Stefanelli, C., Segoni, S., Casagli, N., and Catani, F.: Geomorphic indexing of landslide dams evolution, Eng. Geol., 208, 1–10, https://doi.org/10.1016/j.enggeo.2016.04.024, 2016.
Takayama, S., Miyata, S., Fujimoto, M., and Satofuka, Y.: Numerical simulation method for predicting a flood hydrograph due to progressive failure of a landslide dam, Landslides, 18, 3655–3670, https://doi.org/10.1007/s10346-021-01712-7, 2021.
USBR – The United States Bureau of Reclamation: Downstream hazard classification guidelines, ACER Technical Memorandum No. 11, U. S. Bureau of Reclamation, US Department of the Interior, Denver, https://damtoolbox.org/wiki/Downstream_Hazard_Classification_Guidelines_(ACER_TM_11) (last access: 7 February 2025), 1988.
Tian, Y., Jiang, L., and Guo, J.: Numerical simulation of glacier avalanche-river blocking-outburst in Sedongpu gully of the Yarlung Zangbo River, J. Geol., 47, 196–202, 2023 (in Chinese).
Tong, L., Tu, J., Pei, L., Guo, Z., Zheng, X., Fan, J., Zhong, C., Liu, C., Wang, S., He, P., and Chen, H.: Preliminary discussion of the frequently debris flow events in Sedongpu basin at Gyalaperi peak, Yarlung Zangbo river, Journal of Engineering Geology, 26, 1552-1561, https://doi.org/10.13544/j.cnki.jeg.2018-401, 2018 (in Chinese).
Tong, Y. X.: Quantitative analysis for stability of landslide dams, MS thesis, National Central University, Taiwan, https://ncu.primo.exlibrisgroup.com/discovery/search?vid=886UST_NCU:886UST_NCU (last access: 7 April 2025), 2008 (in Chinese).
Vázquez-Tarrío, D., Ruiz-Villanueva, V., Garrote, J., Benito, G., Calle, M., Lucía, A., and Díez-Herrero, A.: Effects of sediment transport on flood hazards: Lessons learned and remaining challenges, Geomorphology, 446, 108976, https://doi.org/10.1016/j.geomorph.2023.108976, 2024.
Veh, G., Korup, O., and Walz, A.: Hazard from Himalayan glacier lake outburst floods, P. Natl. Acad. Sci. USA, 117, 907–912, https://doi.org/10.1073/pnas.1914898117, 2020.
Vilca, O., Mergili, M., Emmer, A., Frey, H., and Huggel, C.: The 2020 glacial lake outburst flood process chain at Lake Salkantaycocha (Cordillera Vilcabamba, Peru), Landslides, 18, 2211–2223, https://doi.org/10.1007/s10346-021-01670-0, 2021.
Walder, J. and O'Connor, J.: Methods for predicting peak discharge of floods caused by failure of natural and constructed dams, Water Resour. Res., 33, 2337–2348, https://doi.org/10.1029/97WR01616, 1997.
Wang, L., Chang, M., Dou, X., Ma, G., and Yang, C.: Analysis of river blocking induced by a debris flow, Geofluids, 2017, 1268135, https://doi.org/10.1155/2017/1268135, 2017.
Wang, L., Chang, M., Le, J., and Zhang, N.: Two multi-temporal datasets to track debris flow after the 2008 Wenchuan earthquake, Scientific Data, 9, 525, https://doi.org/10.1038/s41597-022-01658-y, 2022.
Wang, S., Qin, D., and Xiao, C.: Moraine-dammed lake distribution and outburst flood risk in the Chinese Himalaya, J. Glaciol., 61, 115–126, https://doi.org/10.3189/2015JoG14J097, 2015.
Wang, Z., Hu, K., and Liu, S.: Classification and sediment estimation for debris flow-prone catchments in the Parlung Zangbo Basin on the southeastern Tibet, Geomorphology, 413, 108348, https://doi.org/10.1016/j.geomorph.2022.108348, 2022.
Webby, M. G.: Discussion of “Peak Outflow from Breached Embankment Dam” by David C. Froehlich, J. Water Res. Pl., 122, 316–317, https://doi.org/10.1061/(ASCE)0733-9496(1996)122:4(316), 1996.
Wei, R., Zeng, Q., Davies, T., and Yin, Q.: Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring, Eng. Geol., 233, 172–182, https://doi.org/10.1016/j.enggeo.2017.12.013, 2018.
Wu, H., Shan, Z. G., Ni, W. D., and Wang, K. J.: Study on the application of rapid evaluation model of landslide dam stability, Journal of Engineering Geology, 29, 135–143, https://doi.org/10.13544/j.cnki.jeg.2021-0464, 2021 (in Chinese).
Xu, F.: A rapid evaluation model of the stability of landslide dam, Journal of Natural Disasters, 29, 54–63, https://doi.org/10.13577/j.jnd.2020.0206, 2020 (in Chinese).
Xu, Y. and Zhang, L. M.: Breaching Parameters for earth and rockfill dams, J. Geotech. Geoenviron. Eng., 135, 1957–1970, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162, 2009.
Yan, R.: Secondary disaster and environmental effect of landslides and collapsed dams in the upper reaches of Minjiang River, Master thesis, Sichuan University, https://kns.cnki.net/kcms2/article/abstract?v=bYx4kmIyqoVeZP (last access: 6 April 2025), 2006.
Yang, A., Wang, H., Liu, W., Hu, K., Liu, D., Wu, C., and Hu, X.: Two megafloods in the middle reach of Yarlung Tsangpo River since Last-glacial period: Evidence from giant bars, Global Planet. Change, 208, 103726, https://doi.org/10.1016/j.gloplacha.2021.103726, 2022.
Yin, Y., Cheng, Y., Liang, J., and Wang, W.: Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake, Landslides, 13, 9–23, https://doi.org/10.1007/s10346-015-0554-9, 2016.
Yu, B., Yang, C., and Yu, M.: Experimental study on the critical condition of river blockage by a viscous debris flow, Catena, 213, 106198, https://doi.org/10.1016/j.catena.2022.106198, 2022.
Yu, G. A., Yao, W., Huang, H. Q., and Liu, Z.: Debris flows originating in the mountain cryosphere under a changing climate: A review, Prog. Phys. Geog., 45, 339–374, 2021.
Zhang, Q., Hu, K., Wei, L., and Liu, W.: Rapid changes in fluvial morphology in response to the high-energy Yigong outburst flood in 2000: Integrating channel dynamics and flood hydraulics, J. Hydrol., 612, 128199, https://doi.org/10.1016/j.jhydrol.2022.128199, 2022a.
Zhang, X. P., Hu, K. H., Liu, S., Nie, Y., and Han, Y.: Comprehensive interpretation of the Sedongpu glacier-related mass flows in the eastern Himalayan syntaxis, J. Mt. Sci., 19, 1672–6316, 2022b.
Zhong, Q. M. and Shan, Y. B.: Comparison of rapid evaluation methods for barrier dam's stability, Yangtze River, 50, 20–24+64, https://doi.org/10.16232/j.cnki.1001-4179.2019.04.004, 2019.
Zhong, Q. M., Wang, L., Chen, S., Chen, Z. Y., Shan, Y. B., Zhang, Q., Ren, Q., Mei, S. Y., Jiang, J. D., Hu, L., and Liu, J. X.: Breaches of embankment and landslide dams – State of the art review, Earth-Sci. Rev., 12, 103597, https://doi.org/10.1016/j.earscirev.2021.103597, 2021.
Zhou, Y., Yue, D., Liang, G., Li, S., Zhao, Y., Chao, Z., and Meng, X.: Risk assessment of debris flow in a mountain-basin area, Western China, Remote Sens.-Basel, 14, 2942, https://doi.org/10.3390/rs14122942, 2022.
Zhou, Y., Hu, X., Xi, C., Wen, H., Cao, X., Jin, T., Zhou, R., Zhang, Y., and Gong, X.: Glacial debris flow susceptibility mapping based on combined models in the Parlung Tsangpo Basin, China, J. Mt. Sci., 21, 1231–1245, https://doi.org/10.1007/s11629-023-8500-0, 2024.
Zou, Q., Cui, P., Jiang, H., Wang, J., Li, C., and Zhou, B.: Analysis of regional river blocking by debris flows in response to climate change, Sci. Total Environ., 741, 140262, https://doi.org/10.1016/j.scitotenv.2020.140262, 2020.
Short summary
After reviewing 2519 literature and media reports, we compiled the first comprehensive global dataset of 555 debris flow barrier dams (DFBDs) from 1800 to 2023. Our dataset meticulously documents 38 attributes of DFBDs, and we have utilized Google Earth for validation. Additionally, we discussed the applicability of landslide dam stability and peak-discharge models to DFBDs. This dataset offers a rich foundation of data for future studies on DFBDs.
After reviewing 2519 literature and media reports, we compiled the first comprehensive global...
Altmetrics
Final-revised paper
Preprint