Articles | Volume 17, issue 3
https://doi.org/10.5194/essd-17-1153-2025
https://doi.org/10.5194/essd-17-1153-2025
Data description paper
 | 
19 Mar 2025
Data description paper |  | 19 Mar 2025

Global projections of heat stress at high temporal resolution using machine learning

Pantelis Georgiades, Theo Economou, Yiannis Proestos, Jose Araya, Jos Lelieveld, and Marco Neira

Related authors

High-resolution global ultrafine particle concentrations through a machine learning model and Earth observations
Pantelis Georgiades, Matthias Kohl, Mihalis A. Nicolaou, Theodoros Christoudias, Andrea Pozzer, Constantine Dovrolis, and Jos Lelieveld
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-314,https://doi.org/10.5194/essd-2024-314, 2024
Manuscript not accepted for further review
Short summary
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024,https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary

Cited articles

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., and Younis, I.: A review of the global climate change impacts, adaptation, and sustainable mitigation measures, Environ. Sci. Pollut. Res., 29, 42539–42559, https://doi.org/10.1007/s11356-022-19718-6, 2022. a
Ashiotis, G., Georgiades, P., Christoudias, T., and Nicolaou, M. A.: Toward Explainable and Transferable Deep Downscaling of Atmospheric Pollutants, IEEE Geosci. Remote Sens. Lett., 20, 1–5, https://doi.org/10.1109/lgrs.2023.3329710, 2023. a, b
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Radu, R., Schepers, D., Soci, C., Villaume, S., Bidlot, J., Haimberger, L., Woollen, J., Buontempo, C., and Thépaut, J.: The ERA5 global reanalysis: Preliminary extension to 1950, Q. J. Roy. Meteor. Soc., 147, 4186–4227, https://doi.org/10.1002/qj.4174, 2021. a
Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., and Nardone, A.: The effects of heat stress in Italian Holstein dairy cattle, J. Dairy Sci., 97, 471–486, https://doi.org/10.3168/jds.2013-6611, 2014. a
Bohmanova, J., Misztal, I., and Cole, J.: Temperature-Humidity Indices as Indicators of Milk Production Losses due to Heat Stress, J. Dairy Sci., 90, 1947–1956, https://doi.org/10.3168/jds.2006-513, 2007. a, b
Download
Short summary
Climate change is posing increasing challenges in the dairy cattle farming sector, as heat stress adversely affects the animals' health and milk production. To accurately assess these impacts, we developed a machine learning model to downscale daily climate data to hourly Temperature Humidity Index (THI) values. We utilized historical weather data to train our model and applied them to future climate projections, under two climate scenarios.
Share
Altmetrics
Final-revised paper
Preprint