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Abstract. Climate change poses a significant threat to agriculture, with potential impacts on food security, eco-
nomic stability, and human livelihoods. Dairy cattle, a crucial component of the livestock sector, are particularly
vulnerable to heat stress, which can adversely affect milk production, immune function, and feed intake and,
in extreme cases, lead to mortality. The Temperature Humidity Index (THI) is a widely used metric to quantify
the combined effects of temperature and humidity on cattle. However, the THI was previously estimated using
daily-level data, which do not capture the daily thermal load and cumulative heat stress, especially during nights
when cooling is inadequate. To address this limitation, we developed a machine learning approach to tempo-
rally downscale daily climate data to hourly THI values. Utilizing historical ERA5 reanalysis data, we trained
an XGBoost model and generated hourly THI datasets for 12 NEX-GDDP-CMIP6 climate models under two
emission scenarios (SSP2-4.5 and SSP5-8.5) extending to the end of the century. These high-resolution THI data
provide an accurate quantification of heat stress in dairy cattle, enabling improved predictions and management
strategies to mitigate the impacts of climate change on this vital agricultural sector. The dataset created in this
study is publicly available at https://doi.org/10.26050/WDCC/THI (Georgiades, 2024b).

1 Introduction

Climate change, driven by anthropogenic greenhouse gas
emissions, is a multifaceted challenge with profound im-
plications for ecosystems and human societies alike (IPCC,
2023; Malhi et al., 2020). The agricultural sector, which has
been the cornerstone of global food security and economic
activities for the past centuries, is particularly vulnerable to
climate change and variability (Abbass et al., 2022). Within
this sector, livestock farming emerges as a critical area of
concern due to its susceptibility to environmental stressors,
making the assessment and management of climate impacts
critical for sustaining agricultural productivity and liveli-
hoods (Cheng et al., 2022; Escarcha et al., 2018).

Dairy farming, an integral component of the livestock in-
dustry, is particularly sensitive to climatic conditions. Eco-
nomic losses due to heat stress in the United States alone
are estimated at USD 1.5–1.7 billion per year, accounting for
approximately 63.9 % of the national yearly losses of this
economic sector (North et al., 2023; St-Pierre et al., 2003;
Cartwright et al., 2023). Predictive models for the US fore-
cast monetary losses as high as USD 2.2 billion by the end of
the century (Mauger et al., 2014).

The effects of heat stress on cattle are determined by
complex interactions between environmental factors (partic-
ularly temperature and humidity) and biological parameters.
Modern-day breeds of dairy cattle are the result of intensive
genetic selection, aimed primarily at increasing milk pro-
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ductivity. However, this increased productivity is genetically
linked to physiological traits such as greater metabolic rates
and increased feed intake, both of which augment endoge-
nous heat generation in the animals, thereby making high-
productivity breeds particularly susceptible to heat stress
(Kadzere et al., 2002; Moore et al., 2023a).

Dairy cows depend on evaporative heat loss as their main
thermoregulatory mechanism (Zhou et al., 2023). Therefore,
when exposed to increased temperatures, they rely heavily on
their ability to dissipate heat by either sweating or panting in
order to regulate their body temperature. Water evaporation
rates are negatively correlated with the relative humidity of
the surrounding environment, so a cow’s ability to regulate its
body temperature is progressively diminished with increas-
ing moisture in the air (Bohmanova et al., 2007). As a con-
sequence, even moderate increases in temperature can have
severe biological repercussions under high-humidity condi-
tions. Heat stress has been linked to multiple deleterious ef-
fects in dairy cattle, including reductions in milk yield and
quality; decreased reproductive success; decreased feed in-
take; body-weight loss; reduced immune function; altered
behaviour; and, in extreme cases, mortality (Burhans et al.,
2022; Cartwright et al., 2023; Kadzere et al., 2002; Polsky
and von Keyserlingk, 2017).

The Temperature Humidity Index (THI) is a robust, non-
invasive metric developed to quantify the levels of thermal
stress caused by the combined effects of temperature and
humidity on cattle. Its calculation requires meteorological
data that are generally easy to access (i.e. air temperature
and relative humidity), and their correlation with physiolog-
ical parameters has been validated by a large body of lit-
erature (Bohmanova et al., 2007; Ravagnolo et al., 2000;
Bouraoui et al., 2002; Brügemann et al., 2012; Igono et al.,
1992; Bernabucci et al., 2014). For example, THI values
above 68 have been associated with reductions in milk yield
in dairy cows (Moore et al., 2023b; Collier et al., 2012; Zim-
belman et al., 2009), and a recent systematic review of the
scientific literature published during the last 2 decades about
the effects of THI on dairy cattle found that values above
68.8 were associated with increased mortality and reduced
fertility, in addition to reductions in milk production (North
et al., 2023). The THI can also be used for the definition
and classification of heatwaves in relation to their effect on
cattle (Hahn et al., 1999, 2009), and it constitutes the ba-
sic metric for the Livestock Weather Safety Index, an early-
warning system which provides specific THI thresholds for
normal (THI ≤ 74), alert (THI 75–78), danger (THI 79–83),
and emergency (THI ≥ 84) climatic conditions (Hahn et al.,
2009).

In most of the available scientific literature, THI values are
estimated using daily-level data (e.g. daily averages or daily
extremes in temperature and humidity). The reason for this
is twofold: on the one hand, working at finer temporal res-
olutions (e.g. hourly) generally requires the processing and
storage of very large datasets, which can pose logistic and

computational difficulties. On the other hand, data provided
by climate projections of future scenarios are only available
at daily or coarser temporal resolutions. Unfortunately, daily-
level calculations can neither accurately estimate the daily
thermal load caused by fluctuating climatic conditions across
each day (e.g. diurnal vs nocturnal temperatures) nor capture
cumulative effects over consecutive days, particularly during
periods such as heatwaves, when night-time conditions might
not allow for efficient heat dissipation (St-Pierre et al., 2003;
Hahn, 1997; Hahn et al., 2009). This underscores the need
for increasing the temporal resolution of climate projections
in order to reflect the environmental stressors impacting dairy
cattle, thereby allowing for improved forecasts of the poten-
tial impacts of climate change on this key economic sector.

Recent decades have seen significant advances in compu-
tational capabilities, allowing machine learning algorithms
to improve the spatial and temporal resolution of climate
data (Huntingford et al., 2019). These innovations enable
the downscaling of global climate model outputs to pro-
duce high-resolution projections that better address the needs
of agricultural planning and management. However, despite
progress in spatial downscaling through traditional statistical
methods (Nyeko-Ogiramoi et al., 2012; Tang et al., 2016) and
artificial intelligence techniques (Rampal et al., 2022; Pour
et al., 2016; Ashiotis et al., 2023), studies focused on tempo-
ral downscaling remain scarce. Most recent research has pri-
marily concentrated on downscaling precipitation data with
restricted spatial coverage, predominantly employing tradi-
tional statistical approaches rather than machine learning
methodologies (Requena et al., 2021; Michel et al., 2021).
A notable exception is the work by Wang et al. (2024), who
demonstrated the capability of deep learning models to tem-
porally downscale temperature data, albeit at a regional level.

Traditionally, two methodologies have been employed for
temporal downscaling of climatic data: dynamical and statis-
tical. Dynamical downscaling involves physical models but
is often prohibitively expensive in terms of computational
resources for long-term, global applications that require rel-
atively high spatial resolution. In contrast, statistical meth-
ods are data-driven and focus on extrapolation using aux-
iliary parameters. Machine learning, as an advanced form
of statistical downscaling, leverages large datasets to cap-
ture complex patterns and dependencies. Our analysis aims
to provide improved estimates of both the duration and in-
tensity of heat stress periods for cattle on an hourly basis,
integrating data on expected diel fluctuations in Tempera-
ture Humidity Index (THI) values, using a highly scalable
machine learning approach that accommodates multi-year,
multi-model, and multi-scenario analyses. This need stems
from the fact that previous work relied on daily-level data,
which only allow for approximate estimations of these fluctu-
ations through simplified mathematical models. For instance,
St-Pierre et al. (2003) modelled the intensity of heat stress in
the United States by assuming a perfect counter-cyclical re-
lationship between temperature and humidity, with THI vari-
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ations following an ideal sine wave pattern. While such ide-
alized models can be useful in the absence of high-resolution
temporal data, they often overlook the inherent complexities
of climatic cycles, such as the influence of geographic diver-
sity and seasonal variations.

Our study aims to bridge the gap between coarse-
resolution climate projections and the fine-scale environmen-
tal data required for effective farm management under chang-
ing climatic conditions.

2 Methodology

We utilized a well-established machine learning algorithm,
specifically the “Extreme Gradient Boosting” (XGBoost)
model, to temporally downscale daily climate projections to
hourly THI values. We opted for the XGBoost model for
its computational efficiency compared to random forest and
other analogous algorithms, specifically for our application.
Additionally, the implementation of random forest in Python
does not support incremental learning, which was crucial for
this study due to the vast number of data the model needed to
process during training. Furthermore, the model was trained
on CPU rather than GPU due to memory limitations of our
available GPUs and the extensive nature of our dataset.

Our approach involves the training of the model using the
ERA5 reanalysis dataset, which contains historical hourly
data (Hersbach et al., 2020). The model was subsequently
applied to generate hourly THI projections until the end of
the century, based on bias-adjusted climate projections from
the NASA NEX-GDDP-CMIP6 datasets (Thrasher et al.,
2022). We developed data using 12 climate models and con-
centrated on two distinct Shared Socioeconomic Pathways
(SSPs), SSP2-4.5 and SSP5-8.5, which represent moderate
and high greenhouse gas emissions scenarios, respectively,
aiming to capture a broad range of potential climatic out-
comes.

2.1 Data

Two distinct sources for climate data were used in this study:
ERA5 reanalysis and NEX-GDDP-CMIP6. Details on each
one are provided below.

2.1.1 ERA5 reanalysis

The ERA5 reanalysis data, produced by the European Centre
for Medium-Range Weather Forecasts (ECMWF) as part of
the Copernicus Climate Change Service, combine historical
observations and global estimates using forecasting models
(Hersbach et al., 2020). This dataset is provided at a spa-
tial resolution of 0.25° and hourly temporal resolution (at-
mosphere component). For the purposes of this study, we re-
trieved the variables t2m (temperature at 2 m) and d2m (dew
point temperature at 2 m), for a time period spanning 1980
to 2020, from the “ERA5 hourly data on single levels from

1940 to present” entry available in the Copernicus Data Store
(CDS), using the Python API.

We estimated the relative humidity variable using the
Magnus formula (WMO, 2021), as follows:

e(Td)= 6.1078 · exp
(

17.1 · Td

235+ Td

)
[hPa] (1)

es(T )= 6.1078 · exp
(

17.1 · T
235+ T

)
[hPa]. (2)

where T and Td are the ambient and dew point temperature
in degrees Celsius, respectively. e(Td) is the vapour pressure
at temperature Td and es(T ) the saturation vapour pressure
at temperature T . Finally, the relative humidity can be calcu-
lated by taking the ratio of the two, as follows:

RH= 100 ·
e

es
[%]. (3)

The ground truth THI values were derived from the ERA5
reanalysis dataset, as detailed in Sect. 2.2. This dataset rep-
resents the current state of the art for global atmospheric
condition proxies, integrating sophisticated numerical model
simulations with assimilated observational data. Its perfor-
mance has been validated in the scientific literature (Bell
et al., 2021; Tarek et al., 2020). Furthermore, Napoli (2020)
demonstrated its capacity for estimating thermal stress and
discomfort indices. Moreover, ERA5 offers a continuous
global time series, which was crucial to our study.

2.1.2 NEX-GDDP-CMIP6

The NEX-GDDP-CMIP6 ensemble dataset comprises global
downscaled climate change scenarios. These were derived
from the general circulation model (GCM) runs conducted
under the Coupled Model Intercomparison Project Phase
6 (CMIP6) (Thrasher et al., 2022). It includes global
downscaled and bias-adjusted projections from ScenarioMIP
model runs and features a 0.25° spatial resolution and
daily temporal resolution. The data for 12 climate models
and two greenhouse gas emissions scenarios (SSP2-4.5 and
SSP5-8.5) were retrieved in netCDF format from the NCCS
THREDDS data service. From these datasets, we utilized
the daily average, minimum, and maximum temperatures, as
well as the mean relative humidity variables. Table 1 presents
the full list of NEX-GDDP-CMIP6 models used in this study
to generate hourly THI projections until the end of the cen-
tury.

2.2 Feature selection

The Temperature Humidity Index is not a directly measured
physical quantity but rather a calculated metric derived from
temperature and relative humidity (Cheng et al., 2022). In
this study, we used the ERA5 reanalysis dataset to compute
THI values, which was the target variable for our machine
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Table 1. List of NEX-GDDP-CMIP6 models used in this study to
generate hourly THI predictions.

No. Model name No. Model name

1 ACCESS-ESM1-5 7 GFDL-ESM4
2 CMCC-CM2-SR5 8 INM-CM4-8
3 EC-Earth3 9 INM-CM5-0
4 EC-Earth3-Veg-LR 10 MIROC6
5 FGOALS-g3 11 MRI-ESM2-0
6 GFDL-CM4 12 NorESM2-MM

learning models. THI values were calculated using a com-
putational approach that preserved the spatial and temporal
resolution of the original ERA5 data, 0.25° and hourly, re-
spectively.

The computation of hourly THI values from the ERA5
dataset was performed using the following formula:

THI= (1.8× T + 32)− (0.55− 0.0055×RH)

× (1.8× T − 26), (4)

where T denotes the temperature in degrees Celsius (°C), and
RH represents the relative humidity in percent (%) (Yeck,
1971). This approach ensures that our derived THI values are
systematically calculated across the entire spatial and tempo-
ral domain of the ERA5 dataset, providing a consistent and
comprehensive representation of thermal comfort conditions.

To ensure compatibility with the variables available in the
NEX-GDDP-CMIP6 datasets, we generated features from
the hourly ERA5 dataset as follows:

– daily minimum, maximum, and average temperature;

– daily average THI, calculated using the daily average
temperature and average relative humidity;

– daily average relative humidity.

Lastly, we included the “hour of the day” and “day of the
year” features to account for diurnal and seasonal variations
of THI and the land–sea mask – ranging from 0 (sea) to 1
(land) – to differentiate between terrestrial and maritime en-
vironments.

2.3 Data workflow

This section outlines the utilization of ERA5 reanalysis data
and CMIP6 projections in constructing the input variables
for this study. Figure 1 provides a high-level overview of the
data pipeline procedures employed to train and implement
a machine learning model that temporally downscales daily
data to hourly THI values.

To allow for a one-to-one relationship between the hourly
ERA5 and daily CMIP6 data, daily features were constructed
from ERA5, which are also available in the projection

datasets, namely daily average relative humidity and tem-
perature and daily maximum and minimum temperature. For
each day the daily averaged relative humidity and temper-
ature were used to calculate the daily averaged THI. These
features were used with no modification from the CMIP6
dataset.

Subsequently, to build the training set, we calculated two
additional features, based on the location of each grid cell
(long, lat) and the date; namely the length of the day (num-
ber of hours for each grid cell that experienced sunshine for
each day) and the day of the year (1–366 to account for
leap years). The day length was calculated using the Brock
model (Brock, 1981). In this model, the day length is defined
at the point where the centre of the sun is even with the hori-
zon. The declination of the Earth is calculated by (Forsythe
et al., 1995)

φ = 23.45 · sin
(

283+ J
265

)
, (5)

where J is the day of the year. The sunrise–sunset hour angle
is calculated as

hourAngle= cos−1(− tan(L) tan(φ)), (6)

where L is the latitude. Finally, day length (D) is calculated
by

D = 2 ·
hourAngle

15
. (7)

The hourly THI value, calculated from hourly relative hu-
midity and temperature, was used as the target variable for
the model during training (depicted in red in Fig. 1).

To establish a one-to-one relationship between the hourly
ERA5 data and the daily CMIP6 data, daily features were
constructed from the ERA5 dataset that are also available in
the projection datasets. These features include daily average
relative humidity, daily average temperature, and daily maxi-
mum and minimum temperatures. For each day, the daily av-
eraged relative humidity and temperature were used to calcu-
late the average THI. These features were used without mod-
ification from the CMIP6 dataset, as they are available on a
daily temporal resolution already. To construct the training
set, we calculated the two additional features, day length and
day of the year.

Furthermore, these daily values were combined with a
land–sea mask for each grid cell to account for the distinc-
tion between coastal and land-locked grid cells. An addi-
tional feature, the hour of the day (ranging from 0 to 23), was
also included to create the hourly training set. The resulting
hourly dataset was utilized to train the model for predicting
hourly THI, with the hourly THI serving as the target vari-
able for this analysis.

Similarly, for inference, the daily CMIP6 data were com-
bined with features representing day length, day of the year,
land–sea mask, and hour of the day to construct the hourly
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Figure 1. High-level overview of the data workflow employed in this study to temporally downscale daily data to hourly THI values. On the
left, the data originating from the ERA5 data are presented, whereas on the right, the CMIP6 data are presented. The column in the middle
represents the feature set employed in the study to train and perform inference procedures.

Table 2. Feature set and temporal resolution of each feature. This
represents the input variables used in each time step (hourly) of the
model to temporally downscale daily data to hourly THI values.

Feature name Short name Temporal
resolution

Average THI THI_ Daily
Average relative humidity rhmean Daily
Average temperature t2m Daily
Minimum temperature t2min Daily
Maximum temperature t2mmax Daily
Day length dayLength Daily
Day of the year dayOfYear Daily
Land–sea mask lsm Constant
Hour of the day hourOfDay Hourly

datasets utilized in the inference procedures. Table 2 shows
the features used for each time step and their respective tem-
poral resolution.

2.4 Model training

An XGBoost regressor model was employed to perform the
temporal downscaling from daily to hourly resolution. Three
models of increasing complexity were trained to explore the
trade-off between model performance and computational ef-
ficiency. The parameters of each of these models are pre-
sented in Table 3.

Table 3. The parameters of the three XGBoost models trained to
temporally downscale daily climate data to hourly THI values.

Model Lambda Max Number of Learning
no. regularization depth parallel trees rate

1 1 5 10 0.1
2 1 5 20 0.1
3 5 6 30 0.01

The selection of the predictive model was partially influ-
enced by the necessity for an approach capable of incremen-
tal learning. This requirement was dictated by the sheer vol-
ume of the training data, which precluded the possibility of
training on the entire dataset simultaneously, due to techni-
cal limitations. The xgboost library, implemented in Python,
was chosen for its ability to accommodate this need as well
as the well-established accuracy and speed compared to other
ensemble learning models (Chen and Guestrin, 2016; Sheik
et al., 2024). The framework facilitated the training of the
model in monthly increments, commencing from the year
1980 and concluding in 2017. To ensure the continuity and
assess the model’s performance over time, checkpoints were
stored at the end of each training increment (monthly). The
first month of 2018 was used as a test set throughout the train-
ing procedures. Finally, the models were trained on a single
compute node, which was equipped with two AMD EPY-
C/Milan 64-core CPUs and 256 GB of RAM. During both
the training and inference phases, each model was config-
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ured to utilize 128 parallel processes, optimizing computa-
tional efficiency. In total, the models were trained on approx-
imately 130 billion examples; areas comprised entirely of sea
or ocean were omitted.

2.5 Model evaluation

The performance of the trained models was assessed using
ground truth data derived from the ERA5 dataset for the pe-
riod spanning February 2018 until December 2020, which
was not seen by the model during training. This evaluation
phase aimed to establish the models’ predictive accuracy
and their ability to generalize to unseen data. Model perfor-
mance was quantitatively evaluated using standard statistical
metrics, including the mean error (ME), mean squared error
(MSE), mean absolute error (MAE), and coefficient of deter-
mination (R2).

2.5.1 Implementation details

The data manipulation and the feature engineering were per-
formed using Python 3.11, utilizing the xarray, numpy, and
pandas libraries. The input variables were scaled to the 0–
1 range using the MinMaxScaler method from the scikit-
learn library, and the xgboost library was used to implement
training and inference procedures for temporally downscal-
ing daily climatic variables to hourly THI values.

For the XGBoost regression model, we used the
xgb.Booster() method, with each training epoch – corre-
sponding to a month in the ERA5 dataset – for 10 boost-
ing rounds. The XGBoost model’s hyperparameters were pri-
marily kept at their default values due to the computational
constraints of training on such an extensive dataset. Specifi-
cally, we used gamma=0 (minimum loss reduction required
to make a further partition on a leaf node), and both subsam-
ple and colsample_bytree were set to 1.0, meaning all data
points and features were used for building each tree. The
L2 regularization parameter (lambda) was set to 1.0, while
L1 regularization (alpha) was kept at 0. For tree construc-
tion, we employed the “hist” tree method with a “depthwise”
growth policy and 256 bins for feature discretization. The
model used a single tree per iteration (num_parallel_tree=1),
with the squared error as the objective function. The model
was trained incrementally using 1 month of data at a time
from the ERA5 dataset, spanning the time period from Jan-
uary 1980 to December 2017. Data from January 2018 served
as the test set to evaluate performance during training in each
epoch. These parameter choices balanced model complexity
with computational efficiency, as the incremental training ap-
proach already imposed significant computational demands.

An early stopping mechanism was applied during each
training epoch to prevent over-fitting; the training process
terminated if the error on the test set did not improve for
three consecutive boosting rounds. To reduce storage re-
quirements, data for each epoch were constructed in mem-

ory at runtime, bypassing the need for permanent storage of
monthly datasets.

This design resulted in progressively longer training times
as epochs progressed since each new boosting round effec-
tively added additional estimators to the model, increasing
both the training complexity and the inference computational
cost. This incremental training approach was essential to
handle the large volume of data and to allow periodic check-
point saves.

2.5.2 Applicability to high-spatial-resolution data

To evaluate the applicability of the trained model to higher
spatial resolutions, we used data from ERA5-Land (Muñoz-
Sabater et al., 2021), a dataset that provides global cov-
erage at approximately 9 km spatial resolution and hourly
temporal resolution. Our model had no exposure to ERA5-
Land data during training. To assess performance in data
with a different spatial resolution compared to the training
data, we utilized global data from 2018 to generate hourly
THI predictions using our model trained on coarser ERA5
data. These predictions were then validated against reference
ground truth THI values computed directly from ERA5-Land
data, following the procedures described above.

3 Results

3.1 Model training and evaluation

Consistent with the methodologies put forth in the Methods
section, this study included the training of three XGBoost re-
gression models, each varying in complexity, to establish the
optimal parameterization for the prediction of hourly Tem-
perature Humidity Index (THI) values from daily climatic
input. Figure 2 illustrates the progression of two key per-
formance indicators, MAE and MSE, throughout the train-
ing phases. These metrics were computed at the end of each
training epoch, corresponding to monthly intervals spanning
January 1980 to December 2017. The evaluation was car-
ried out using a test dataset, which included global data from
January 2018, to validate the predictive accuracy and gener-
alization capability.

Furthermore, the right panel of Fig. 2 presents a ground
truth versus prediction plot for Model 1’s inference on the
validation set (February 2018–December 2020). We em-
ployed a density plot instead of a scatter plot to facilitate
visualization of the clustering behaviour within the large
dataset (approximately 10 billion data points). As evident,
the model demonstrates good performance, with the major-
ity of points concentrated near the diagonal, representing op-
timal prediction. However, a potential limitation is observed
at the lower end of the Thermal Humidity Index (THI) range.
Here, the model appears to exhibit a prediction floor around
∼−40 THI. It is important to note that these low THI values
are of minimal interest for heat stress studies, as they pri-
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Figure 2. Evolution of MAE and MSE throughout the training process for three distinct XGBoost models, each represented by a different
colour. On the left, the MAE (a) and MSE (b) metrics over training epochs, conducted on a monthly basis from January 1980 to Decem-
ber 2017, are shown. Solid lines depict the metrics evaluated on the training set in each epoch, while dashed lines represent the MAE and
MSE evaluated on the test set at each epoch. Panel (c) displays a density plot of the predictions from Model 1 versus the ground truth for the
validation dataset (2018–2020), where the diagonal line indicates the optimal prediction performance.

Table 4. MAE, MSE and R2 performance metrics evaluated on the last epoch during the training process, the test set for the three models
(data from January 2018), and the validation set (February 2018–December 2020). Furthermore, the total training time and the time needed
by the models to perform inference on a single year are presented. The best metric in each category is denoted in bold.

Training set Test set Validation set Total training Time to evaluate

Model no. MAE MSE R2 MAE MSE R2 MAE MSE R2 Time (h) 1 year (min)

1 2.163 9.306 0.942 2.262 10.386 0.940 3.432 19.014 0.943 564 ∼ 205
2 2.160 9.294 0.940 2.260 10.392 0.941 3.402 18.624 0.944 792 ∼ 375
3 2.159 9.279 0.939 2.259 10.366 0.944 3.403 18.754 0.944 1156 ∼ 480

marily correspond to regions such as Antarctica, which are
normally devoid of human and livestock populations.

Following the approach outlined in the Methods section,
the training process for the models was executed incremen-
tally, with the dataset being segmented into monthly inter-
vals. This approach facilitated the storage of checkpoints at
the conclusion of each epoch, allowing for a systematic eval-
uation and resumption of the training process without loss of
progress.

The performance metrics of the three models were found
to be closely comparable across the evaluation criteria. Both
the MAE and MSE demonstrated a continuous decrease
throughout the training epochs, albeit at a diminished rate
of reduction as the training progressed. It is noteworthy that
these metrics were also assessed using a test set that was
not seen by the model during the training phase, ensuring
the evaluation of the model’s predictive capability on unseen
data. As the complexity of the models increased, notably,
Model 3 required a substantially longer duration for train-
ing compared to its counterparts. Furthermore, an observable
convergence between the curves representing MSE and MAE
was observed, in both the training and test sets, indicating a

stabilization in the models’ performance over time. Table 4
shows the performance metrics of the three models across
the training and test sets, as well as the total training time
and time needed to perform inference on a single year and
scenario. Lastly, the metrics obtained from the validation set
were closely comparable across all three models, with MAE
reaching ∼ 3.4, MSE ∼ 19, and R2

∼ 0.94.
To further assess the comparative performance of the three

trained models, we performed inference using data from
2018 to 2020 (ERA5 reanalysis) to evaluate the precision of
the THI predictions relative to the ground truth. Figure 3 dis-
plays THI predictions at six randomly selected grid points
and time intervals, representing diverse climatic conditions:
permanent frost regions from Antarctica (top row), moderate
climate (middle row), and two hot climate regions (bottom
row). In the two examples from Antarctica, the model was
found to have a lower limit in its prediction window close to
−40 THI units. Across the rest of the examples, the outputs
from all three models closely followed the real THI fluctua-
tions during the 10 d periods shown. In the examples of THI
originating from colder regions of the world (middle row of
panels), the THI prediction captures the average trend well,

https://doi.org/10.5194/essd-17-1153-2025 Earth Syst. Sci. Data, 17, 1153–1171, 2025



1160 P. Georgiades et al.: Global projections of heat stress

but the finer scale fluctuations are less well represented. Ad-
ditionally, the predictions generated by the three models were
nearly identical, as shown in Fig. 3.

The outputs from the three models on ERA5 data align
well with the ground truth THI, especially in mild and hot
environments. To evaluate the similarity of their performance
on CMIP6 future projection data, we conducted inference us-
ing a single year of data from the ACCESS-ESM1-5 model
(year 2020 under scenario SSP2-4.5) for all three models.
Figure 4 presents the THI outputs at four randomly se-
lected geographical locations and time points over a 10 d pe-
riod. The outputs from all models closely match each other,
corroborating their consistency. Combined with the previ-
ously obtained performance metrics, this indicates that the
three models exhibit similar performance on both ERA5 and
CMIP6 data. Consequently, we opted for the simplest model
(Model 1) due to its significant computational cost savings
compared to the other models. The marginal improvements
in performance metrics did not justify the additional tens of
thousands of CPU hours required for the more complex mod-
els, given the close similarity in their outputs.

To assess model performance, we employed global maps
at randomly chosen time points from the validation set.
These maps show the Temperature Humidity Index (THI)
using both ground truth data and the chosen model’s predic-
tions, along with their difference. Representative examples
are shown in Fig. 5. Deviations from the ground truth are ev-
ident in various regions across the globe at these hourly time
points.

In addition, to further assess the performance of the trained
model on a spatial level, we constructed maps of ME, MAE,
and MSE, using the evaluation set put aside during training.
These maps are presented in Fig. 6. The ME metric allowed
us to quantify whether there was any systematic overestima-
tion or underestimation in specific areas of the world. As ob-
served, there is significant overestimation of THI in a large
portion of Antarctica. This overestimation is not of concern
for the scope of this study, as Antarctica is an region with
no risk of heat stress for humans or livestock. Due to the low
relevance of heat stress in this uninhabited region and to opti-
mize computational resources, Antarctica was excluded from
further inference procedures. This was not found in the North
Pole regions, as it was excluded from training and evaluation
procedures due to the absence of land at latitudes higher than
83° N. We attribute this overestimation to the length of the
day feature, as this was only observed in months were there
was no sunlight in the specific region. A month-by-month
figure of ME is presented in Appendix C.

The spatial distribution of mean absolute error (MAE) in-
dicates that the model performs well in equatorial regions,
accurately predicting hourly THI values with MAEs around
1 THI unit. However, MAE values are higher in some moun-
tainous regions, such as the western United States, Tibet, and
Mongolia, where they range from 4 to 6 THI units. This
discrepancy is further highlighted in the mean squared er-

ror (MSE), which reaches values between 25 and 35 in these
areas. Since the model shows minimal mean error (ME) in
these regions, it effectively captures the average THI condi-
tions but struggles with the larger diurnal temperature varia-
tions typical of high altitudes (Pepin and Seidel, 2005).

This altitude-dependent performance if clearly demon-
strated in the kernel density estimation (KDE) plot, presented
in the bottom panel of Fig. 6, which shows a strong rela-
tionship between MAE and elevation. The KDE plot shows
that the vast majority of predictions at low altitudes (below
500 m) cluster around the model’s mean MAE of around 2–3
THI units, an indication of consistent performance in low-
land areas. There is however a positive relationship between
MAE and elevation, evident by the positive gradient of the
linear regression fit. While the model may have slight inac-
curacies in capturing THI at specific hours, there is no indi-
cation of a systematic bias across the dataset. These findings
suggest that, overall, the model’s hourly predictions are ro-
bust.

Lastly, we explored the applicability of the trained model
on a different dataset with similar hourly temporal reso-
lution but higher spatial resolution, namely ERA5-Land,
which is available at a 9 km resolution (Muñoz-Sabater et al.,
2021). When evaluating the model’s performance on ERA5-
Land data, we calculated the mean absolute error (MAE),
mean squared error (MSE), and R2 values by comparing
the model’s predictions against THI values derived directly
from the ERA5-Land dataset (shown in Appendix B). These
performance metrics were found to be closely aligned with
those obtained on the original ERA5 data, demonstrating the
model’s consistency when applied to datasets with finer spa-
tial resolution.

Notably, the model exhibited a similar overestimation of
THI values in Antarctica on ERA5-Land as it did on ERA5.
Furthermore, the spatial distribution of errors remained con-
sistent with that observed on the ERA5 data. Detailed results
of this analysis are presented in Appendix B.

3.2 THI projections

Building upon these findings, we employed Model 1 for in-
ference using 12 GDDP NASA-NEX CMIP6 models un-
der two distinct climate scenarios: SSP2-4.5 (representing a
moderate stabilization emission scenario) and SSP5-8.5 (rep-
resenting a business-as-usual scenario with rising emissions
until the end of the century). The implicit assumption in
this approach is that the diel cycle of the THI does not al-
ter significantly under climate change scenarios. Utilizing all
combinations of climate models and scenarios, we generated
datasets spanning the period 2020 to 2100. These datasets are
publicly available at https://doi.org/10.26050/WDCC/THI
for further investigation and use in climate change impact
studies (Georgiades, 2024b).

To address the uncertainties inherent in long-term climate
projections, especially those extending to the end of the cen-
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Figure 3. Comparative visualization of hourly THI calculations using ERA5 reanalysis data (ground truth) and the outputs from the three
XGBoost models, each differentiated by unique colours. The six-panel display (3× 2 arrangement) showcases THI profiles across varying
climatic conditions: the top row of panels presents examples from the South Pole, where a prediction minimum of ∼−40 THI units was
found in days with 0 h of sunshine; the middle row illustrates moderate climate conditions; and the bottom row of panels depicts examples
from warm climate regions. This arrangement provides a comprehensive overview of the models’ performance and accuracy in replicating
ground truth THI values across a spectrum of environmental conditions. This comparison explains the density q–q plot further.

tury, we employed an ensemble approach that incorporates
outputs from 12 climate models. Each model is based on
varying assumptions, parameterizations, and computational
algorithms, which result in different projections of future
conditions. By including this range of models, we capture

a broad spectrum of potential climate outcomes, thereby ac-
counting for the variability and uncertainty characteristic of
long-term projections. This approach allows for the construc-
tion of projection intervals that provide a probabilistic range
of possible scenarios, rather than relying on a single deter-

https://doi.org/10.5194/essd-17-1153-2025 Earth Syst. Sci. Data, 17, 1153–1171, 2025



1162 P. Georgiades et al.: Global projections of heat stress

Figure 4. Comparative visualization of the THI profiles from the three models’ predictions from the ACCESS-ESM1-5 model (SSP2-45
scenario) for the year 2020. The four panels show four randomly selected grid points, and the prediction from each model is colour-coded.

ministic outcome. This ensemble method, widely adopted in
climate science, allows us to average or analyse the full set
of outputs, offering robust estimates that reflect a range of
plausible future conditions.

3.3 Limitations

One limitation of the model, evident from the spatial distri-
bution of MAE and MSE, is the reduced accuracy in regions
with complex topography, such as certain mountainous areas,
where MAE and MSE values are higher when compared to
equatorial regions, even though the average THI is captured
well (ME is close to 0). This discrepancy likely originates
from the unique microclimates and larger diurnal variations
often observed at higher altitudes (Pepin and Seidel, 2005).
This limitation may lead to over- or underestimation of THI
values in mountainous terrain, affecting the precision of heat
stress predictions for livestock in these areas.

Additionally, our model relies on daily climate projec-
tions that are temporally downscaled to an hourly resolution.
While effective for capturing broad diurnal trends, this ap-
proach may not fully account for short-term extreme weather
events or rapidly changing temperature and humidity condi-
tions, especially in regions prone to sudden weather shifts.

To address these limitations, more advanced machine
learning techniques could be employed, including deep

learning models designed to capture complex temporal and
spatial dependencies, such as transformer-based models and
convolutional neural networks (Vaswani et al., 2023; Ashio-
tis et al., 2023). These architectures are capable of modelling
intricate patterns and variability within climate data, poten-
tially improving prediction accuracy in regions with complex
topography and variable climate conditions. However, im-
plementing these models would require significantly greater
computational resources.

4 Code and data availability

Code to reproduce the results presented in this paper is avail-
able in the public GitHub repository at https://github.com/
pantelisgeor/Temperature-Humidity-Index-ML (last access:
27 January 2025) (https://doi.org/10.5281/zenodo.14747375,
Georgiades, 2024a). The code provided is written in Python,
and the workload can be executed by running a series of
bash scripts, as documented in the repository description.
The code is provided under an MIT licence, which allows
for users to freely use and modify the code.

The data produced in this study are available at
https://doi.org/10.26050/WDCC/THI (Georgiades, 2024b) in
NetCDF format, with an hourly temporal resolution and
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Figure 5. Comparison of ground truth THI and model predictions for three randomly selected hourly time points. The first column displays
the ground truth THI values calculated from ERA5 data for three randomly selected time points within the evaluation period. The second
column shows the corresponding THI predictions from our model. The third column illustrates the differences between the ground truth and
the model predictions (ground truth− prediction).

0.25° spatial resolution. The datasets are published under a
CC BY 4.0 licence.

5 Conclusions

Climate change, driven by anthropogenic emissions, entails
a significant risk to ecosystems and societies worldwide. One
of the anticipated consequences is rising global tempera-
tures. The agricultural sector, vital for global food security
and economies, is particularly vulnerable. Dairy farming, a
crucial sub-sector, faces significant economic challenges due
to heat stress impacting dairy cattle and associated impacts
from the exposure to heat and humidity anomalies. Heat
stress in dairy cows is commonly quantified using the Ther-
mal Humidity Index (THI), a simple metric requiring only
temperature and humidity data. Previous work utilized daily
THI values, lacking the necessary granularity to capture the
crucial intraday climatic variability for accurate heat load es-
timation.

To address this limitation, we trained a machine learning
model (XGBoost regressor) on global hourly historical re-
analysis data (ERA5) to effectively downscale daily climate
variables to hourly THI values. Our models demonstrably
performed well against ground truth data from an indepen-

dent validation period. The implicit assumption in this ap-
proach is that the diel cycle of the THI does not alter signifi-
cantly under climate change scenarios.

Leveraging the good performance and agreement between
the three models, we employed the most computationally ef-
ficient model to generate global hourly THI projections until
the end of the century. This involved utilizing 0.25° GDDP
NASA-NEX CMIP6 data with 12 climate models and two
emission scenarios (SSP2-4.5 and SSP5-8.5).

The generated hourly THI datasets hold significant poten-
tial to contribute towards the optimization of heat stress man-
agement in the dairy industry. These datasets can empower
stakeholders with the ability to create highly accurate and
geographically specific heat stress risk assessments. This in-
formation can then be used to develop targeted mitigation
strategies, allowing farmers, agricultural communities, and
organizations to proactively manage heat stress and optimize
animal well-being and production efficiency. Furthermore,
incorporating these datasets into climate change adaptation
plans allows policymakers and the dairy cattle sector to de-
velop long-term strategies for ensuring the sustainability of
the dairy industry in the face of a changing climate. Ulti-
mately, this research paves the way for a more resilient and
sustainable future for dairy farming.

https://doi.org/10.5194/essd-17-1153-2025 Earth Syst. Sci. Data, 17, 1153–1171, 2025



1164 P. Georgiades et al.: Global projections of heat stress

Figure 6. Spatial and altitudinal distribution of model performance
metrics obtained from the evaluation set (February 2018 to Decem-
ber 2020). Panel (a) shows the ME, an indicator of systematic bias
in the THI predictions. Panel (b) shows MAE, an indicator of the
average magnitude of prediction errors, and panel (c) shows MSE,
which emphasizes larger prediction discrepancies. Panel (d) shows
the relationship between MAE and altitude is presented as a kernel
density estimation plot. The dashed line represents a linear regres-
sion fit between the two.

Appendix A: XGBoost and random forest
comparison

To aid our choice of predictive algorithm, we conducted a
comparison between the XGBoost and random forest regres-
sion algorithms, utilizing their respective implementations in
Python’s xgboost and scikit-learn libraries. For a fair com-
parison, we applied identical values for parameters that were
analogous between the two models.

– Number of estimators: 50.

– Maximum depth: 20.

– Loss function: root mean squared error (RMSE).

– Features in each tree: square root of the number of fea-
tures.

– Number of cores for parallelization: 128.

Both models were trained using global data from Jan-
uary 2000 and evaluated using data from January 2018. Ta-
ble A1 presents the time taken in minutes for each model to
train and evaluate 1 month’s worth of data (∼ 290 million
data points), along with the memory utilization during train-
ing. It is noted that the times reported here exclude data load-
ing and feature construction processes and only include the
training and inference procedures for the two models. Com-
paring these figures, it is evident that, in the current applica-
tion, the XGBoost algorithm is more efficient in both com-
pute time and memory utilization.

Next, we compared the predictive power of the two trained
models, using global data for January 2018. Both models
were used to predict the hourly THI values for this time pe-
riod and compared to ground truth (THI values calculated us-
ing the ERA5 data). Table A2 presents the MAE, MSE, and
R2 metrics obtained from evaluating the two models’ predic-
tions for the month of January 2018 against the ground truth
THI calculated using the ERA5 data. In all three metrics, the
XGBoost model outperformed the random forest model.

Figure A1 displays a 2×2 grid of predictions generated by
the XGBoost and random forest models against the ground
truth THI values, derived from the ERA5 dataset, for four
randomly selected locations. As shown, XGBoost performs
slightly better compared to the random forest model. Finally,
an important reason behind our decision to carry out this
study using the XGBoost model was the need for incremen-
tal learning, which the random forest implementation lacks.
Given the extensive data volume and the necessity for check-
point saves, the XGBoost algorithm was ultimately chosen.
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Table A1. Time taken for training and inference procedures and memory utilization during training for the XGBoost and random forest
models.

Model Training Inference Memory
time (min) time (min) utilization (GB)

XGBoost 3:02 0:11 ∼ 40
Random forest 8:43 0:52 ∼ 130

Table A2. The MAE, MSE, and R2 metrics obtained from comparing the two model predictions for January 2018 against the ground truth
THI, calculated using the ERA5 data.

Model MAE MSE R2

XGBoost 3.297 13.61 0.98
Random forest 3.494 15.82 0.96

Figure A1. Comparative time series plots of four randomly chosen locations between the predictions made by the XGBoost and the random
forest against the ground truth THI values. The predictions shown here are from January 2018.
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Appendix B: Applicability to high-spatial-resolution
data

To evaluate the applicability of the trained model on input
data with higher spatial resolution than ERA5, we utilized
the ERA5-Land dataset for the year 2018. This dataset of-
fers a spatial resolution of ∼ 9 km and an hourly temporal
resolution. The methods for feature construction employed
in this experiment were identical to those used for the ERA5
dataset.

Table B1 presents the evaluation metrics obtained from
comparing the model predictions and THI ground truth val-
ues, calculated using the ERA5-Land dataset for year 2018.
Finally, Fig. B3 displays the spatial distribution of ME,
MAE, and MSE for the model predictions against ground
truth THI values, evaluated using the ERA5-Land dataset.

Table B1. Evaluation metrics obtained using the trained model and ERA5-Land data for the year 2018.

MAE MSE R2

3.941 19.241 0.957

Figure B1. Ground truth (THI derived from ERA5-Land data) and model prediction examples for the year 2018.
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Figure B2. Examples of ground truth (THI derived from ERA5-Land data) and model predictions for the year 2018. The bottom panel
presents cases from Antarctica, where the model approaches a predictive limit of−40 THI units, comparable to the inference results obtained
using ERA5 data.

Figure B3. Spatial distribution of ME (a), MAE (b), and MSE (c) as evaluated from ERA5-Land for the year 2018.

Appendix C: Antarctica

We further examined the systematic overestimation of the
THI in Antarctica by calculating the mean error (ME) glob-
ally for each month of the year, as shown in Fig. C1. The
results indicate that ME is minimal during months with
non-zero sunlight, while significant THI overestimation oc-
curs from March through October in Antarctica, coinciding
with periods of continuous darkness at latitudes approaching
−90°, as shown in Fig. C2.
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Figure C1. Evolution of ME in Antarctica for each month of the year between ground truth THI, calculated from ERA5, and the trained
model prediction.

Figure C2. Number of hours of sunshine experienced by areas at latitudes ranging from −70 to −90° throughout a year.
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