Articles | Volume 16, issue 10
https://doi.org/10.5194/essd-16-4673-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-4673-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
Fanny J. Sarrazin
CORRESPONDING AUTHOR
Department Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
now at: Université Paris-Saclay, INRAE, UR HYCAR, 92160 Antony, France
Sabine Attinger
Department Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
Institute of Environmental Science and Geography, University of Potsdam, 14476 Potsdam-Golm, Germany
Rohini Kumar
Department Computational Hydrosystems, UFZ – Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
Related authors
Masooma Batool, Fanny J. Sarrazin, and Rohini Kumar
Earth Syst. Sci. Data, 17, 881–916, https://doi.org/10.5194/essd-17-881-2025, https://doi.org/10.5194/essd-17-881-2025, 2025
Short summary
Short summary
Our paper presents a reconstruction and analysis of the gridded P surplus in European landscapes from 1850 to 2019 at a 5 arcmin resolution. By utilizing 48 different estimates, we account for uncertainties in major components of the P surplus. Our findings highlight substantial historical changes, with the total P surplus in the EU 27 tripling over 170 years. Our dataset enables flexible aggregation at various spatial scales, providing critical insights for land and water management strategies.
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023, https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Short summary
This publication provides an introduction to the CREDIBLE Uncertainty Estimation (CURE) toolbox. CURE offers workflows for a variety of uncertainty estimation methods. One of its most important features is the requirement that all of the assumptions on which a workflow analysis depends be defined. This facilitates communication with potential users of an analysis. An audit trail log is produced automatically from a workflow for future reference.
Pia Ebeling, Rohini Kumar, Stefanie R. Lutz, Tam Nguyen, Fanny Sarrazin, Michael Weber, Olaf Büttner, Sabine Attinger, and Andreas Musolff
Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022, https://doi.org/10.5194/essd-14-3715-2022, 2022
Short summary
Short summary
Environmental data are critical for understanding and managing ecosystems, including the mitigation of water quality degradation. To increase data availability, we present the first large-sample water quality data set (QUADICA) of riverine macronutrient concentrations combined with water quantity, meteorological, and nutrient forcing data as well as catchment attributes. QUADICA covers 1386 German catchments to facilitate large-sample data-driven and modeling water quality assessments.
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021, https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Short summary
Increased nitrate concentrations in surface waters can compromise river ecosystem health. As riverine nitrate uptake is hard to measure, we explore how low-frequency nitrate concentration and discharge observations (that are widely available) can help to identify (in)efficient uptake in river networks. We find that channel geometry and water velocity rather than the biological uptake capacity dominate the nitrate-discharge pattern at the outlet. The former can be used to predict uptake.
Vishal Thakur, Yannis Markonis, Rohini Kumar, Johanna Ruth Thomson, Mijael Rodrigo Vargas Godoy, Martin Hanel, and Oldrich Rakovec
Hydrol. Earth Syst. Sci., 29, 4395–4416, https://doi.org/10.5194/hess-29-4395-2025, https://doi.org/10.5194/hess-29-4395-2025, 2025
Short summary
Short summary
Understanding the changes in water movement in earth is crucial for everyone. To quantify this water movement there are several techniques. We examined how different methods of estimating evaporation impact predictions of various types of water movement across Europe. We found that, while these methods generally agree on whether changes are increasing or decreasing, they differ in magnitude. This means selecting the right evaporation method is crucial for accurate predictions of water movement.
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, Yannis Markonis, and Miroslav Trnka
Hydrol. Earth Syst. Sci., 29, 3341–3358, https://doi.org/10.5194/hess-29-3341-2025, https://doi.org/10.5194/hess-29-3341-2025, 2025
Short summary
Short summary
We present a robust method for identification and classification of global land drought events (GLDEs) based on soil moisture. Two models were used to calculate soil moisture and delimit soil drought over global land from 1980–2022, with clusters of 775 and 630 GLDEs. Using four spatiotemporal and three motion-related characteristics, we categorized GLDEs into seven severity and seven dynamic categories. The frequency of GLDEs has generally increased in recent decades.
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 29, 2925–2950, https://doi.org/10.5194/hess-29-2925-2025, https://doi.org/10.5194/hess-29-2925-2025, 2025
Short summary
Short summary
Groundwater is a crucial resource at risk due to droughts. To understand drought effects on groundwater levels in Germany, we grouped 6626 wells into six regional and two national patterns. Weather explained half of the level variations with varied response times. Shallow groundwater responds fast and is more vulnerable to short droughts (a few months). Dampened deep heads buffer short droughts but suffer from long droughts and recoveries. Two nationwide trend patterns were linked to human water use.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Masooma Batool, Fanny J. Sarrazin, and Rohini Kumar
Earth Syst. Sci. Data, 17, 881–916, https://doi.org/10.5194/essd-17-881-2025, https://doi.org/10.5194/essd-17-881-2025, 2025
Short summary
Short summary
Our paper presents a reconstruction and analysis of the gridded P surplus in European landscapes from 1850 to 2019 at a 5 arcmin resolution. By utilizing 48 different estimates, we account for uncertainties in major components of the P surplus. Our findings highlight substantial historical changes, with the total P surplus in the EU 27 tripling over 170 years. Our dataset enables flexible aggregation at various spatial scales, providing critical insights for land and water management strategies.
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024, https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Short summary
This study establishes a framework to incorporate cosmic-ray neutron measurements into the mesoscale Hydrological Model (mHM). We evaluate different approaches to estimate neutron counts within the mHM using the Desilets equation, with uniformly and non-uniformly weighted average soil moisture, and the physically based code COSMIC. The data improved not only soil moisture simulations but also the parameterisation of evapotranspiration in the model.
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848, https://doi.org/10.5194/egusphere-2024-3848, 2024
Short summary
Short summary
The German federal state of Brandenburg is particularly prone to soil moisture droughts. To support the management of related risks, we introduce a novel soil moisture and drought monitoring network based on cosmic-ray neutron sensing technology. This initiative is driven by a collaboration of research institutions and federal state agencies, and it is the first of its kind in Germany to have started operation. In this brief communication, we outline the network design and share first results.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Falk Heße, Sebastian Müller, and Sabine Attinger
Hydrol. Earth Syst. Sci., 28, 357–374, https://doi.org/10.5194/hess-28-357-2024, https://doi.org/10.5194/hess-28-357-2024, 2024
Short summary
Short summary
In this study, we have presented two different advances for the field of subsurface geostatistics. First, we present data of variogram functions from a variety of different locations around the world. Second, we present a series of geostatistical analyses aimed at examining some of the statistical properties of such variogram functions and their relationship to a number of widely used variogram model functions.
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023, https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Short summary
We analyzed the uncertainty of the water transit time distribution (TTD) arising from model input (interpolated tracer data) and structure (StorAge Selection, SAS, functions). We found that uncertainty was mainly associated with temporal interpolation, choice of SAS function, nonspatial interpolation, and low-flow conditions. It is important to characterize the specific uncertainty sources and their combined effects on TTD, as this has relevant implications for both water quantity and quality.
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023, https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Short summary
This publication provides an introduction to the CREDIBLE Uncertainty Estimation (CURE) toolbox. CURE offers workflows for a variety of uncertainty estimation methods. One of its most important features is the requirement that all of the assumptions on which a workflow analysis depends be defined. This facilitates communication with potential users of an analysis. An audit trail log is produced automatically from a workflow for future reference.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Friedrich Boeing, Oldrich Rakovec, Rohini Kumar, Luis Samaniego, Martin Schrön, Anke Hildebrandt, Corinna Rebmann, Stephan Thober, Sebastian Müller, Steffen Zacharias, Heye Bogena, Katrin Schneider, Ralf Kiese, Sabine Attinger, and Andreas Marx
Hydrol. Earth Syst. Sci., 26, 5137–5161, https://doi.org/10.5194/hess-26-5137-2022, https://doi.org/10.5194/hess-26-5137-2022, 2022
Short summary
Short summary
In this paper, we deliver an evaluation of the second generation operational German drought monitor (https://www.ufz.de/duerremonitor) with a state-of-the-art compilation of observed soil moisture data from 40 locations and four different measurement methods in Germany. We show that the expressed stakeholder needs for higher resolution drought information at the one-kilometer scale can be met and that the agreement of simulated and observed soil moisture dynamics can be moderately improved.
Bahar Bahrami, Anke Hildebrandt, Stephan Thober, Corinna Rebmann, Rico Fischer, Luis Samaniego, Oldrich Rakovec, and Rohini Kumar
Geosci. Model Dev., 15, 6957–6984, https://doi.org/10.5194/gmd-15-6957-2022, https://doi.org/10.5194/gmd-15-6957-2022, 2022
Short summary
Short summary
Leaf area index (LAI) and gross primary productivity (GPP) are crucial components to carbon cycle, and are closely linked to water cycle in many ways. We develop a Parsimonious Canopy Model (PCM) to simulate GPP and LAI at stand scale, and show its applicability over a diverse range of deciduous broad-leaved forest biomes. With its modular structure, the PCM is able to adapt with existing data requirements, and run in either a stand-alone mode or as an interface linked to hydrologic models.
Sadaf Nasreen, Markéta Součková, Mijael Rodrigo Vargas Godoy, Ujjwal Singh, Yannis Markonis, Rohini Kumar, Oldrich Rakovec, and Martin Hanel
Earth Syst. Sci. Data, 14, 4035–4056, https://doi.org/10.5194/essd-14-4035-2022, https://doi.org/10.5194/essd-14-4035-2022, 2022
Short summary
Short summary
This article presents a 500-year reconstructed annual runoff dataset for several European catchments. Several data-driven and hydrological models were used to derive the runoff series using reconstructed precipitation and temperature and a set of proxy data. The simulated runoff was validated using independent observed runoff data and documentary evidence. The validation revealed a good fit between the observed and reconstructed series for 14 catchments, which are available for further analysis.
Pia Ebeling, Rohini Kumar, Stefanie R. Lutz, Tam Nguyen, Fanny Sarrazin, Michael Weber, Olaf Büttner, Sabine Attinger, and Andreas Musolff
Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022, https://doi.org/10.5194/essd-14-3715-2022, 2022
Short summary
Short summary
Environmental data are critical for understanding and managing ecosystems, including the mitigation of water quality degradation. To increase data availability, we present the first large-sample water quality data set (QUADICA) of riverine macronutrient concentrations combined with water quantity, meteorological, and nutrient forcing data as well as catchment attributes. QUADICA covers 1386 German catchments to facilitate large-sample data-driven and modeling water quality assessments.
Robert Schweppe, Stephan Thober, Sebastian Müller, Matthias Kelbling, Rohini Kumar, Sabine Attinger, and Luis Samaniego
Geosci. Model Dev., 15, 859–882, https://doi.org/10.5194/gmd-15-859-2022, https://doi.org/10.5194/gmd-15-859-2022, 2022
Short summary
Short summary
The recently released multiscale parameter regionalization (MPR) tool enables
environmental modelers to efficiently use extensive datasets for model setups.
It flexibly ingests the datasets using user-defined data–parameter relationships
and rescales parameter fields to given model resolutions. Modern
land surface models especially benefit from MPR through increased transparency and
flexibility in modeling decisions. Thus, MPR empowers more sound and robust
simulations of the Earth system.
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021, https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Short summary
Increased nitrate concentrations in surface waters can compromise river ecosystem health. As riverine nitrate uptake is hard to measure, we explore how low-frequency nitrate concentration and discharge observations (that are widely available) can help to identify (in)efficient uptake in river networks. We find that channel geometry and water velocity rather than the biological uptake capacity dominate the nitrate-discharge pattern at the outlet. The former can be used to predict uptake.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Alraune Zech, Peter Dietrich, Sabine Attinger, and Georg Teutsch
Hydrol. Earth Syst. Sci., 25, 1–15, https://doi.org/10.5194/hess-25-1-2021, https://doi.org/10.5194/hess-25-1-2021, 2021
Cited articles
Arle, J., Blondzik, K., Claussen, U., Duffek, A., Grimm, S., Hilliges, F., Kirschbaum, B., Kirst, I., Koch, D., Koschorreck, J., Lepom, P., Leujak, W., Mohaupt, V., Naumann, S., Pirntke, U., Rechenberg, J., Schilling, P., Ullrich, A., Wellmitz, J., Werner, S., and Wolter, R.: Waters in Germany: Status and assessment German environment, German Environmental Agency (UBA), Dessau-Roßlau, Germany, https://www.umweltbundesamt.de/en/publikationen/waters-in-germany (last access: 3 October 2023), 2017. a, b
Ascott, M. J., Gooddy, D. C., Wang, L., Stuart, M. E., Lewis, M. A., Ward, R. S., and Binley, A. M.: Global patterns of nitrate storage in the vadose zone, Nat. Commun., 8, 1416, https://doi.org/10.1038/s41467-017-01321-w, 2017. a
Basu, N. B., Meter, K. J. V., Byrnes, D. K., Cappellen, P. V., Brouwer, R., Jacobsen, B. H., Jarsjö, J., Rudolph, D. L., Cunha, M. C., Nelson, N., Bhattacharya, R., Destouni, G., and Olsen, S. B.: Managing nitrogen legacies to accelerate water quality improvement, Nat. Geosci., 15, 97–105, https://doi.org/10.1038/s41561-021-00889-9, 2022. a
Batool, M., Sarrazin, F. J., Attinger, S., Basu, N. B., Van Meter, K., and R., K.: Long-term annual soil nitrogen surplus across Europe (1850–2019), Scientific Data, 9, 612, https://doi.org/10.1038/s41597-022-01693-9, 2022. a, b
Behrendt, H., Huber, P., Kornmilch, M., Opitz, D., Schmoll, O., Scholz, G., Uebe, R., Pagenkopf, W.-G., Bach, M., and Schweikart, U.: Nutrient emissions into River Basins of Germany, Texte 23/2000, German Environmental Agency (UBA), Berlin, Germany, https://www.umweltbundesamt.de/en/publikationen/nutrient-emissions-into-river-basins-of-germany (last access: 7 November 2021), 2000. a, b, c
Berth, P., Berg, M., and Hachmann, K.: Mehrkomponentensysteme als Waschmittelbuilder, Tenside Detergents, 20, 276–282, https://doi.org/10.1515/tsd-1983-200610, 1983. a
BMU (Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit): Bericht der Bundesregierung an den Deutschen Bundestag über Wirkungen des Wasch- und Reinigungsmittelgesetzes vom 19.12.1986, Drucksache 11/4315, Zugeleitet mit Schreiben des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit vom 5. April 1989 – WA I 3 – 521 140/1 – gemäß Beschluß des Deutschen Bundestages vom 13. November 1986 – Drucksache 10/6404, Dr. Hans Heger, Bonn, Germany, https://dserver.bundestag.de/btd/11/043/1104315.pdf (last access: 21 September 2024), 1989. a, b, c, d
Bouraoui, F., Grizzetti, B., and Aloe, A.: Long term nutrient loads entering European seas, Joint Research Centre JRC62873, Publications Office of the European Union, https://doi.org/10.2788/54513, 2011. a
Büttner, O.: DE-WWTP – data collection of wastewater treatment plants of Germany (status 2015, metadata), HydroShare [data set], https://doi.org/10.4211/hs.712c1df62aca4ef29688242eeab7940c, 2020. a, b, c
Byrnes, D. K., Van Meter, K. J., and Basu, N. B.: Long-Term Shifts in U.S. Nitrogen Sources and Sinks Revealed by the New TREND-Nitrogen Data Set (1930–2017), Global Biogeochem. Cy., 34, e2020GB006626, https://doi.org/10.1029/2020GB006626, 2020. a
Camargo, J. A. and Alonso, A.: Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 32, 831–849, https://doi.org/10.1016/j.envint.2006.05.002, 2006. a, b
Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., and Likens, G. E.: Controlling Eutrophication: Nitrogen and Phosphorus, Science, 323, 1014–1015, https://doi.org/10.1126/science.1167755, 2009. a
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for Marine Ecosystems, Science, 321, 926–929, https://doi.org/10.1126/science.1156401, 2008. a
Dodds, W. K. and Smith, V. H.: Nitrogen, phosphorus, and eutrophication in streams, Inland Waters, 6, 155–164, https://doi.org/10.5268/IW-6.2.909, 2016. a
Duarte, C. M., Agusti, S., Barbier, E., Britten, G. L., Castilla, J. C., Gattuso, J.-P., Fulweiler, R. W., Hughes, T. P., Knowlton, N., Lovelock, C. E., Lotz, H. K., Predragovic, M., Poloczanska, E., Roberts, C., and Worm, B.: Rebuilding marine life, Nature, 580, 39–51, https://doi.org/10.1038/s41586-020-2146-7, 2020. a
Ebeling, P., Kumar, R., Lutz, S. R., Nguyen, T., Sarrazin, F., Weber, M., Büttner, O., Attinger, S., and Musolff, A.: QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany, Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022, 2022. a
EC: Regulation (EC) No 166/2006 of the European Parliament and of the Council of 18 January 2006 concerning the establishment of a European Pollutant Release and Transfer Register and amending Council Directives 91/689/EEC and 96/61/EC, Official Journal of the European Union, https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1578566025656&uri=CELEX:32006R0166 (last access: 20 July 2024), 2006. a
EC: Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control), Official Journal of the European Union, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32010L0075, (last access: 2 October 2023), 2010. a
EC: Regulation (EU) No 259/2012 of the European Parliament and of the Council of 14 March 2012 amending Regulation (EC) No 648/2004 as regards the use of phosphates and other phosphorus compounds in consumer laundry detergents and consumer automatic dishwasher detergents, Offical Journal of the European Union, https://eur-lex.europa.eu/eli/reg/2012/259/oj (last access: 11 May 2023), 2012. a, b
EEA: Source apportionment of nitrogen and phosphorus inputs into the aquatic environment, European Environment Agency (EEA) report No 7/2005, Luxembourg, https://www.eea.europa.eu/ds_resolveuid/328c70e765d5978d6efec90d980c0a23 (last access: 4 February 2023), 2005. a
EEA: Industrial waste water treatment – pressures on Europe's environment, European Environment Agency (EEA) report No 23/2018, Publications Office of the European Union, Luxembourg, https://www.eea.europa.eu/ds_resolveuid/9316d500ad82400bab4ad5383b118396 (last access: 12 November 2023), 2019. a
EEA: European Pollutant Release and Transfer Register (E-PRTR), European Environmental Agency (EEA) [data set], https://www.eea.europa.eu/ds_resolveuid/3578652f4e8e43bba4f0555a4b5933d0 (last access: 20 July 2024), 2020. a
EEA: Industrial Reporting under the Industrial Emissions Directive 2010/75/EU and European Pollutant Release and Transfer Register Regulation (EC) No 166/2006, European Environmental Agency (EEA) [data set], https://www.eea.europa.eu/en/datahub/datahubitem-view/9405f714-8015-4b5b-a63c-280b82861b3d, last access: 5 February 2023a. a
EEA, Andersen, J., Harvey, T., and Reker, J.: Nutrient enrichment and eutrophication in Europe's seas: Moving towards a healthy marine environment, European Environment Agency (EEA) report No 14/2019, Publications Office of the European Union, Luxembourg, https://doi.org/10.2800/092643, 2019. a
Ehalt Macedo, H., Lehner, B., Nicell, J., Grill, G., Li, J., Limtong, A., and Shakya, R.: Distribution and characteristics of wastewater treatment plants within the global river network, Earth Syst. Sci. Data, 14, 559–577, https://doi.org/10.5194/essd-14-559-2022, 2022. a
Ehrhardt, S., Kumar, R., Fleckenstein, J. H., Attinger, S., and Musolff, A.: Trajectories of nitrate input and output in three nested catchments along a land use gradient, Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, 2019. a
Eurostat: Population connected to wastewater collection and treatment systems by NUTS 2 regions (env_wwcon_r2), 11.04.2016 update, European Commission [data set], https://db.nomics.world/Eurostat/env_wwcon_r2 (last access: 22 June 2023), 2016. a
Eurostat: Population connected to wastewater treatment plants (env_ww_con), 23.03.2023 update, European Commission [data set], https://ec.europa.eu/eurostat/databrowser/view/ENV_WW_CON/default/table?lang=en, last access: 22 June 2023. a
FAO and SIK: Global food losses and food waste - Extent, causes and prevention, Study conducted for the International Congress SAVE FOOD! at Interpack2011 Düsseldorf, Germany, FAO, Rome, Italy, https://www.fao.org/3/i2697e/i2697e.pdf (last access: 26 October 2023), 2011. a
Floyd, P., Zarogiannis, P., and Fox, K.: Non-surfactant organic ingredients and zeolite-based detergents – Final report prepare for the European Commission, Risk & Policy Analysts Limited (RPA), Swindon, UK, https://fdocuments.in/document/europa-enterprise-chemicals-non-surfactant-organic-non-surfactant-organic.html (last access: 7 December 2021), 2006. a, b
Foroutan-Rad, M.: Phosphatsubstitute für Wasch- und Reinigungsmittel – okologische und toxikologische Betrachtung, Umwelt, 3, 218–224, 1981. a
Fuchs, S., Scherer, U., Wander, R., Behrendt, H., Venohr, M., Opitz, D., Hillenbrand, T., Marscheider-Weidemann, F., and Götz, T.: Calculation of Emissions into Rivers in Germany using the MONERIS Model, Texte 46/2010, German Environmental Agency (UBA), Berlin, Germany, https://www.umweltbundesamt.de/en/publikationen/calculation-of-emissions-into-rivers-in-germany (last access: 26 January 2023), 2010. a, b, c, d, e, f
Fuchs, S., Weber, T., Wander, R., Toshovski, S., Kittlaus, S., Reid, L., Bach, M., Klement, L., Hillenbrand, T., and Tettenborn, F.: Effizienz von Maßnahmen zur Reduktion von Stoffeinträgen – Neue Ansätze und aktualisierte Ergebnisse von MoRE-DE, Texte 05/2017, German Environmental Agency (UBA), Berlin, Germany, https://www.umweltbundesamt.de/publikationen/effizienz-von-massnahmen-zur-reduktion-von (last access: 26 January 2023), 2017. a, b
Fuchs, S., Brecht, K., Gebel, M., Bürger, S., Uhlig, M., and Halbfaß, S.: Phosphoreinträge in die Gewässer bundesweit modellieren - Neue Ansätze und aktualisierte Ergebnisse von MoRE-DE, Texte 142/2022, German Environmental Agency (UBA), Berlin, Germany, https://www.umweltbundesamt.de/publikationen/phosphoreintraege-in-die-gewaesser-bundesweit (last access: 26 January 2023), 2022. a, b
Glennie, E. B., Littlejohn, C., Gendebien, A., Hayes, A., Palfrey, R., Sivil, D., and Wright, K.: Phosphates and alternative detergent builders – Final report prepared for the EU Environment Directorate, UC 4011, Water Research Centre Limited, Swindon, UK, https://www.oieau.fr/eaudoc/system/files/documents/36/183877/183877_doc.pdf (last access: 20 July 2024), 2002. a, b, c, d
Grimvall, A., Stålnacke, P., and Tonderski, A.: Time scales of nutrient losses from land to sea – A European perspective, Ecol. Eng., 14, 363–371, https://doi.org/10.1016/S0925-8574(99)00061-0, 2000. a
Grizzetti, B., Vigiak, O., Udias, A., Bisselink, B., Pistocchi, A., Bouraoui, F., Malagó, A., Aloe, A., Zanni, M., Weiss, F., Hristov, J., Wilson, J., Pisoni, E., De Meij, A., De Roo, A., Macias, M., and Stips, A.: A European assessment of freshwater availability and nutrient pollution : historical analysis and scenarios developed in the project Blue2.2, Joint Research Centre JRC130025, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/924432, 2022. a, b, c, d
Groß, R., Leisewitz, A., and Moch, K.: Untersuchung der Einsatzmengen von schwer abbaubaren organischen Inhaltsstoffen in Wasch- und Reinigungsmitteln im Vergleich zum Einsatz dieser Stoffe in anderen Branchen im Hinblick auf den Nutzen einer Substitution, prepared for the German Environment Agency, Tech. Rep. UBA-FB 3709 65 430, öko-Institut and öko-Recherche, https://www.bmuv.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/fkz_3709_65_430_wasch_und_reinigungsmittel_bf.pdf (last access: 13 November 2023), 2012. a, b
Gustafsson, B. G., Schenk, F., Blenckner, T., Eilola, K., Meier, H. E. M., Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchu, O. P., and Zorita, E.: Reconstructing the Development of Baltic Sea Eutrophication 1850–2006, AMBIO, 14, 534–548, https://doi.org/10.1007/s13280-012-0318-x, 2012. a, b
Happel, O., Armbruster, D., Brauch, H.-J., Rott, E., and Minke, R.: Phosphonate in Wasch- und Reinigungsmitteln und deren Verbleib in der Umwelt – Entwicklung von Analyseverfahren und deren praktische Anwendung bei Proben von Oberflächenwasser, Abwasser und Sediment, Texte 69/2021, German Environment Agency, Berlin, Germany, https://www.umweltbundesamt.de/publikationen/phosphonate-in-wasch-reinigungsmitteln-deren (last access: 13 November 2023), 2021. a, b
Häußermann, U., Klement, L., and Breuer, L.: Nitrogen soil surface budgets for districts in Germany 1995 to 2017, Environmental Sciences Europe, 32, 109, https://doi.org/10.1186/s12302-020-00382-x, 2020. a
Herbert, D. and Fourqurean, J.: Ecosystem Structure and Function Still Altered Two Decades After Short-Term Fertilization of a Seagrass Meadow, Ecosystems, 11, 688–700, https://doi.org/10.1007/s10021-008-9151-2, 2008. a
IPCC: Chapter 6 – Wastewater Treatment and Discharge, in: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 5 Waste, edited by Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., and Federici, S., IPCC, Switzerland, 6.1–6.72, https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol5.html (last access: 25 June 2023), 2019. a, b, c, d, e, f
Jager, A. D. and Vogt, J.: Rivers and Catchments of Europe – Catchment Characterisation Model (CCM), European Commission, Joint Research Centre [data set], http://data.europa.eu/89h/fe1878e8-7541-4c66-8453-afdae7469221 (last access: 2 October 2023), 2007. a
Jaworska, J., Van Genderen-Takken, H., Hanstveit, A., van de Plassche, E., and Feijtel, T.: Environmental risk assessment of phosphonates, used in domestic laundry and cleaning agents in the Netherlands, Chemosphere, 47, 655–665, https://doi.org/10.1016/S0045-6535(01)00328-9, 2002. a, b
Jenkinson, D. S.: The Rothamsted long-term experiments: Are they still of use?, Agron. J., 83, 2–10, https://doi.org/10.2134/agronj1991.00021962008300010008x, 1991. a
Jones, E. R., van Vliet, M. T. H., Qadir, M., and Bierkens, M. F. P.: Country-level and gridded estimates of wastewater production, collection, treatment and reuse, Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, 2021. a
Jones, H. P., Jones, P. C., Barbier, E. B., Blackburn, R. C., Rey Benayas, J. M., Holl, K. D., McCrackin, M., Meli, P., Montoya, D., and Mateos, D. M.: Restoration and repair of Earth's damaged ecosystems, P. Roy. Soc. B-Biol. Sci., 285, 20172577, https://doi.org/10.1098/rspb.2017.2577, 2018. a
Kemp, W. M., Testa, J. M., Conley, D. J., Gilbert, D., and Hagy, J. D.: Temporal responses of coastal hypoxia to nutrient loading and physical controls, Biogeosciences, 6, 2985–3008, https://doi.org/10.5194/bg-6-2985-2009, 2009. a
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017. a, b, c
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: History Database of the Global Environment 3.2, Data publication platform of Utrecht University [data set], Utrecht, the Netherlands, https://doi.org/10.24416/UU01-MO2FF3, 2022. a, b
Kloepfer, M. and Kröger, H.: Das Umweltrecht in der deutschen Einigung – Zum Umweltrecht im Einigungsvertrag und zum Umweltrahmengesetz, Schriften zum Umweltrecht (SUR), Band 22, Duncker & Humblot, Berlin, Germany, https://www.duncker-humblot.de/buch/das-umweltrecht-in-der-deutschen-einigung-9783428472390/?page_id=1 (last access: 6 January 2022), 1991. a
Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P. O. J., Humborg, C., Jilbert, T., Jürgens, K., Meier, H. E. M., Müller-Karulis, B., Naumann, M., Olesen, J. E., Savchuk, O., Schramm, A., Slomp, C. P., Sofiev, M., Sobek, A., Szymczycha, B., and Undeman, E.: Biogeochemical functioning of the Baltic Sea, Earth Syst. Dynam., 13, 633–685, https://doi.org/10.5194/esd-13-633-2022, 2022. a
Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., Moatar, F., Pannard, A., Souchu, P., Lefebvre, A., and Pinay, G.: Eutrophication: A new wine in an old bottle?, Sci. Total Environ., 651, 1–11, https://doi.org/10.1016/j.scitotenv.2018.09.139, 2019. a
Lee, M., Shevliakova, E., Malyshev, S., Milly, P. C. D., and Jaffé, P. R.: Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk, Geophys. Res. Lett., 43, 7520–7528, https://doi.org/10.1002/2016GL069254, 2016. a
Lehner, B. and Grill, G.: Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems, Hydrol. Process., 27, 2171–2186, https://doi.org/10.1002/hyp.9740, 2013. a, b
Lemley, D. A. and Adams, J. B.: Eutrophication, in: Encyclopedia of Ecology (Second Edition), edited by Fath, B., Elsevier, Oxford, UK, second edition edn., 86–90, https://doi.org/10.1016/B978-0-12-409548-9.10957-1, 2019. a
Lin, L., Clair, S. S., Gamble, G. D., Crowther, C. A., Dixon, L., Bloomfield, F. H., and Harding, J. E.: Nitrate contamination in drinking water and adverse reproductive and birth outcomes: a systematic review and meta-analysis, Scientific Reports, 13, 563, https://doi.org/10.1038/s41598-022-27345-x, 2023. a
Lottermoser, B. G.: Effect of long-term irrigation with sewage effluent on the metal content of soils, Berlin, Germany, Environ. Geochem. Hlth., 34, 67–76, https://doi.org/10.1007/s10653-011-9391-5, 2012. a
LU-RP and MKUEM-RP (Landesamt für Umwelt, und Ministerium für Klimaschutz, Umwelt, Energie und Mobilität Rheinland-Pfalz): Stand der Abwasserbeseitigung in Rheinland-Pfalz - Lagebericht 2020, Ministerium für Klimaschutz, Umwelt, Energie und Mobilität Rheinland-Pfalz, Mainz, https://wasser.rlp-umwelt.de/servlet/is/1120/Lagebericht_2020.pdf?command=downloadContent&filename=Lagebericht_2020.pdf (last access: 30 June 2023), 2021. a
Macias Moy, D., Stips, A., Grizzetti, B., Aloe, A., Bisselink, B., De Meij, A., De Roo, A., Dutiel, O., Ferreira, N., Garcia Gorriz, E., Gonzalez-Fernandez, D., Hristov, J., Miladinova-Marinova, S., Pärn, O., Piroddi, C., Pisoni, E., Pistocchi, A., Polimene, L., Serpetti, N., Thoma, C., Udias Moinelo, A., Vigiak, O., Weiss, F., Wilson, J., and Zanni, M.: Water/marine Zero Pollution Outlook, Joint Research Centre JRC 131197, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/681817, 2022. a, b
McCrackin, M. L., Jones, H. P., Jones, P. C., and Moreno-Mateos, D.: Recovery of lakes and coastal marine ecosystems from eutrophication: A global meta-analysis, Limnol. Oceanogr., 62, 507–518, https://doi.org/10.1002/lno.10441, 2017. a, b
Mehlhart, G., Bulach, W., Moch, K., and Blepp, M.: Relevanz der gewerblichen Textil- und Geschirrreinigung am Eintrag von Phosphat und anderen Phosphorverbindungen (P) in das Abwasser, 98/2021, Umwelbundesamt, Dessau-Roßlau, Germany, https://www.umweltbundesamt.de/publikationen/relevanz-der-gewerblichen-textil-geschirrreinigung (last access: 6 January 2022), 2021. a, b, c
Millenium Ecosystem Assessment: Ecosystems and human well-being: Synthesis, Island Press, Washington, DC., http://www.millenniumassessment.org/ (last access: 8 November 2023), 2005. a
Mittelstet, A. and Storm, D.: Quantifying Legacy Phosphorus Using a Mass Balance Approach and Uncertainty Analysis, J. Am. Water Resour. As., 52, 1297–1310, https://doi.org/10.1111/1752-1688.12453, 2016. a
Morée, A. L., Beusen, A. H. W., Bouwman, A. F., and Willems, W. J.: Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century, Global Biogeochem. Cy., 27, 836–846, https://doi.org/10.1002/gbc.20072, 2013. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v
Moreno-Mateos, D., Barbier, E. B., Jones, P. C., Jones, H. P., Aronson, J., López-López, J. A., McCrackin, M. L., Meli, P., Montoya, D., and Rey Benayas, J. M.: Anthropogenic ecosystem disturbance and the recovery debt, Nat. Commun., 8, 14163, https://doi.org/10.1038/ncomms14163, 2017. a
Moreno-Mateos, D., Alberdi, A., Morriën, E., van der Putten, W. H., Rodríguez-Uña, A., and Montoya, D.: The long-term restoration of ecosystem complexity, Nature Ecology and Evolution, 4, 676–685, https://doi.org/10.1038/s41559-020-1154-1, 2020. a
MUGV (Ministerium für Umwelt, Gesundheit und Verbraucherschutz Brandenburg): Wegweiser für den Einsatz von Kleinkläranlagen und Sammelgruben, Potsdam, https://mluk.brandenburg.de/sixcms/media.php/9/Wegweiser-Kleinklaeranlage-Sammelgruben.pdf (last access: 19 May 2024), 2010. a
MUNLV-NW (Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen): Entwicklung und Stand der Abwasserbeseitigung in Nordrhein-Westfalen. 19 Auflage, Düsseldorf, https://www.lanuv.nrw.de/fileadmin/lanuv/wasser/abwasser/lagebericht/00_EStAb2020_Gesamtversion.pdf (last access: 29 June 2023), 2020. a
Nguyen, T. V., Sarrazin, F. J., Ebeling, P., Musolff, A., Fleckenstein, J. H., and Kumar, R.: Toward Understanding of Long-Term Nitrogen Transport and Retention Dynamics Across German Catchments, Geophys. Res. Lett., 49, e2022GL100278, https://doi.org/10.1029/2022GL100278, 2022. a
Noleppa, S. and Cartsburg, M.: Das grosse Wegschmeissen – Vom Acker bis zum Verbraucher: Ausmaß und Umwelteffekte der Lebensmittelverschwendung in Deutschland, WWF Deutschland, https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF_Studie_Das_grosse_Wegschmeissen.pdf (last access: 26 October 2023), 2015. a
Nork, M. E.: Umweltschutz in unternehmerischen Entscheidungen – Eine theoretische und empirische Analyse, Deutscher Universitäts-Verlag, Wiesbaden, Germany, https://doi.org/10.1007/978-3-322-86359-1, 1992. a, b
O'Connell, D. W., Ansems, N., Kukkadapu, R. K., Jaisi, D., Orihel, D. M., Cade-Menun, B. J., Hu, Y., Wiklund, J., Hall, R. I., Chessell, H., Behrends, T., and Van Cappellen, P.: Changes in Sedimentary Phosphorus Burial Following Artificial Eutrophication of Lake 227, Experimental Lakes Area, Ontario, Canada, J. Geophys. Res.-Biogeo., 125, e2020JG005713, https://doi.org/10.1029/2020JG005713, 2020. a
OECD: Diffuse Pollution, Degraded Waters: Emerging Policy Solutions, OECD Studies on Water, OECD Publishing, Paris, https://doi.org/10.1787/9789264269064-en, 2017. a
Parkhurst, T., Standish, R. J., and Prober, S. M.: P is for persistence: Soil phosphorus remains elevated for more than a decade after old field restoration, Ecol. Appl., 32, e2547, https://doi.org/10.1002/eap.2547, 2022. a
Pavinato, P. S., Cherubin, M. R., Soltangheisi, A., Rocha, G. C., Chadwick, D. R., and Jones, D. L.: Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil, Scientific Reports, 10, 15615, https://doi.org/10.1038/s41598-020-72302-1, 2020. a
Penuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., and Janssens, I. A.: Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe, Nat. Commun., 4, 2934, https://doi.org/10.1038/ncomms3934, 2013. a
Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M., and Sardans, J.: Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health, Glob. Change Biol., 26, 1962–1985, https://doi.org/10.1111/gcb.14981, 2020. a
Pianosi, F., Sarrazin, F., and Wagener, T.: A Matlab toolbox for Global Sensitivity Analysis, Environ. Modell. Softw., 70, 80–85, https://doi.org/10.1016/j.envsoft.2015.04.009, 2015. a
Pistocchi, A., Dorati, C., Grizzetti, B., Moinelo, A. U., Vigiak, O., and Zanni, M.: Water quality in Europe: effects of the Urban Wastewater Treatment Directive, Joint Research Centre JRC115607, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/303163, 2019. a, b
Puckett, L. J., Tesoriero, A. J., and Dubrovsky, N. M.: Nitrogen contamination of surficial aquifers – A growing legacy, Environ. Sci. Technol., 45, 839–844, https://doi.org/10.1021/es1038358, 2011. a
Rudolph, K.-U. and Block, T.: The German water section – policies and experiences, Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BUNR) and German Environmental Agency (UBA), https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/2752.pdf (last access: 6 February 2023), 2001. a
Sarrazin, F. J. and Kumar, R.: fannysarrazin/NP_point_sources_model: v1.0 (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.10501238, 2024. a
Sarrazin, F. J., Kumar, R., Basu, N. B., Musolff, A., Weber, M., Van Meter, K. J., and Attinger, S.: Characterizing Catchment-Scale Nitrogen Legacies and Constraining Their Uncertainties, Water Resour. Res., 58, e2021WR031587, https://doi.org/10.1029/2021WR031587, 2022. a, b, c, d
Sarrazin, F. J., Attinger, S., and Kumar, R.: Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019) (v1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.10500535, 2024. a, b
Schmidt, T., Schneider, F., and Claupein, E.: Food waste in private households in Germany – Analysis of findings of a representative survey conducted by GfK SE in 2016/2017 (Thünen Working Paper 92a), https://www.thuenen.de/media/publikationen/thuenen-workingpaper/ThuenenWorkingPaper_92a.pdf (last access: 17 December 2021), 2019. a
Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G., and Mariotti, A.: Long-term fate of nitrate fertilizer in agricultural soils, P. Natl. Acad. Sci., 110, 18185–18189, https://doi.org/10.1073/pnas.1305372110, 2013. a
Selman, M., Sugg, Z., and Greenhalgh, S.: Eutrophication and Hypoxia in Coastal Areas A Global Assessment of the State of Knowledge, WRI Policy Note, Water Quality: Eutrophication and Hypoxia no 1, World Resources Institute, Washington, DC, https://www.wri.org/research/eutrophication-and-hypoxia-coastal-areas (last access: 24 January 2023), 2008. a
Sharpley, A., Jarvie, H. P., Buda, A., May, L., Spears, B., and Kleinman, P.: Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment, J. Environ. Qual., 42, 1308–1326, https://doi.org/10.2134/jeq2013.03.0098, 2013. a, b
Smith, V. H.: Eutrophication of freshwater and coastal marine ecosystems a global problem, Environ. Sci. Pollut. R., 10, 126–139, https://doi.org/10.1065/espr2002.12.142, 2003. a
SO-BE (Statistisches Landesamt Berlin): Statistisches Jahrbuch 2001, Kulturbuch-Verlag, Berlin, Germany, https://www.statistischebibliothek.de/mir/receive/BBAusgabe_mods_00000271 (last access: 18 May 2023), 2001. a
SO-DE (Statistisches Bundesamt): Fachserie. 19, Umwelt. Reihe 2, Wasserversorgung und Abwasserbeseitigung. 1, öffentliche Wasserversorgung und Abwasserbeseitigung 1975 (Fachserie / 19 / 2 / 1), Wiesbaden, https://www.statistischebibliothek.de/mir/receive/DESerie_mods_00000203 (last access: 3 October 2023), 1975–2007. a
SO-DE (Statistisches Bundesamt): Fachserie : 15, Wirtschaftsrechnungen – Einkommens- und Verbrauchsstichprobe. Heft 1, Ausstattung privater Haushalte mit ausgewählten Gebrauchsgütern und Versicherungen, Fachserie 15 Heft 1, https://www.statistischebibliothek.de/mir/receive/DESerie_mods_00000154 (last access: 16 May 2023), 1979–2018. a, b, c, d, e
SO-DE (Statistisches Bundesamt): Fachserie. 19, Umwelt. 2, Wasserversorgung und Abwasserbeseitigung. 1, öffentliche Wasserversorgung und öffentliche Abwasserentsorgung. 2, öffentliche Abwasserbehandlung und -entsorgung 2019 (Fachserie/19/2/1/2), Wiesbaden, https://www.statistischebibliothek.de/mir/receive/DESerie_mods_00000929 (last access: 3 Octobre 2023), 2010–2022. a
SO-EDE (Staatlichen Zentralverwaltung für Statistik DDR): Statistisches Jahrbuch der Deutschen Demokratischen Republik, Staatsverl. d. Deutschen Demokratischen Republik, Berlin, Germany, https://www.statistischebibliothek.de/mir/receive/DESerie_mods_00007446 (last access: 10 August 2023), 1955–1990. a, b
Stuart, M., Chilton, P., Kinniburgh, D., and Cooper, D.: Screening for long-term trends in groundwater nitrate monitoring data, Q. J. Eng. Geol. Hydroge., 40, 361–376, https://doi.org/10.1144/1470-9236/07-040, 2007. a
Van Meter, K. J., Basu, N. B., Veenstra, J. J., and Burras, C. L.: The nitrogen legacy: Emerging evidence of nitrogen accumulation in anthropogenic landscapes, Environ. Res. Lett., 11, 035014, https://doi.org/10.1088/1748-9326/11/3/035014, 2016. a
Van Meter, K. J., Basu, N. B., and Van Cappellen, P.: Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins, Global Biogeochem. Cy., 31, 2–23, https://doi.org/10.1002/2016GB005498, 2017. a
Van Meter, K. J., McLeod, M. M., Liu, J., Tenkouano, G. T., Hall, R. I., Van Cappellen, P., and Basu, N. B.: Beyond the Mass Balance: Watershed Phosphorus Legacies and the Evolution of the Current Water Quality Policy Challenge, Water Resour. Res., 57, e2020WR029316, https://doi.org/10.1029/2020WR029316, 2021. a
Van Puijenbroek, P., Beusen, A., and Bouwman, A.: Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways, J. Environ. Manage., 231, 446–456, https://doi.org/10.1016/j.jenvman.2018.10.048, 2019. a
Vero, S., Basu, N., Van Meter, K., Richards, K. G., Mellander, P.-E., Healy, M. G., and Fenton, O.: Review: the environmental status and implications of the nitrate time lag in Europe and North America, Hydrogeol. J., 26, 7–22, https://doi.org/10.1007/s10040-017-1650-9, 2018. a
Vigiak, O., Aloe, B. G. A., Zanni, M., Bouraoui, F., and Pistocchi, A.: Domestic waste emissions to European freshwaters 1990–2016 (v. 1.0), European Commission, Joint Research Centre [data set], http://data.europa.eu/89h/104da345-4ba1-444b-8df4-97bb57950a8e, last access: 2 October 2023. a, b, c, d, e, f, g, h
Vikolainen, V.: Initial Appraisal of a European Commission Impact Assessment – Revising the Urban Wastewater Treatment Directive, PE 740.240, EPRS, European Parliamentary Research Service, Luxembourg, https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/740240/EPRS_BRI(2023)740240_EN.pdf, last access: 3 October 2023. a
Wang, L., Stuart, M. E., Bloomfield, J. P., Butcher, A. S., Gooddy, D. C., McKenzie, A. A., Lewis, M. A., and Williams, A. T.: Prediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great Britain, Hydrol. Process., 26, 226–239, https://doi.org/10.1002/hyp.8164, 2012. a
WHO: Nitrate and nitrite in drinking-water – Background document for development of WHO Guidelines for Drinking-water Quality, WHO/FWC/WSH/16.52, World Health Organization (WHO) Press, Geneva, Switzerland, https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/nitrate-nitrite-background-jan17.pdf?sfvrsn=1c1e1502_4 (last access: 21 September 2024), 2016. a
Yang, S., Büttner, O., Jawitz, J. W., Kumar, R., Rao, P. S. C., and Borchardt, D.: Spatial Organization of Human Population and Wastewater Treatment Plants in Urbanized River Basins, Water Resour. Res., 55, 6138–6152, https://doi.org/10.1029/2018WR024614, 2019a. a
Yang, S., Büttner, O., Kumar, R., Jäger, C., Jawitz, J. W., Rao, P., and Borchardt, D.: Spatial patterns of water quality impairments from point source nutrient loads in Germany's largest national River Basin (Weser River), Sci. Total Environ., 697, 134145, https://doi.org/10.1016/j.scitotenv.2019.134145, 2019b. a
Yang, Y.-Y. and Toor, G. S.: Stormwater runoff driven phosphorus transport in an urban residential catchment: Implications for protecting water quality in urban watersheds, Scientific Reports, 8, 11681, https://doi.org/10.1038/s41598-018-29857-x, 2018. a
ZEODET: Zeolites for detergents as nature intended, European Chemical Industry Council (Cefic), Bruxelles, Belgium, https://www.euzepa.eu/images/3.ZEODETbrochure.pdf (last access: 6 January 2022), 2000. a
Zhang, L., Chen, J., and Chu, G.: Legacy phosphorus in calcareous soil under 33 years of P fertilizer application: Implications for efficient P management in agriculture, Soil Use Manage., 38, 1380–1393, https://doi.org/10.1111/sum.12792, 2022. a
Short summary
Nitrogen (N) and phosphorus (P) contamination of water bodies is a long-term issue due to the long history of N and P inputs to the environment and their persistence. Here, we introduce a long-term and high-resolution dataset of N and P inputs from wastewater (point sources) for Germany, combining data from different sources and conceptual understanding. We also account for uncertainties in modelling choices, thus facilitating robust long-term and large-scale water quality studies.
Nitrogen (N) and phosphorus (P) contamination of water bodies is a long-term issue due to the...
Altmetrics
Final-revised paper
Preprint