Articles | Volume 16, issue 9
https://doi.org/10.5194/essd-16-3935-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-3935-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multivariate characterisation of a blackberry–alder agroforestry system in South Africa: hydrological, pedological, dendrological and meteorological measurements
Sibylle Kathrin Hassler
CORRESPONDING AUTHOR
Institute of Water and Environment – Hydrology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Institute of Meteorology and Climate Research, Atmospheric Trace Gases and Remote Sensing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Rafael Bohn Reckziegel
Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
Research Institute for the Environment and Livelihoods (RIEL), Faculty of Science and Technology, Charles Darwin University, Darwin, NT, Australia
Ben du Toit
Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
Svenja Hoffmeister
Institute of Water and Environment – Hydrology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Florian Kestel
Research Area 1 “Landscape Functioning”, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
Anton Kunneke
Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
Rebekka Maier
Chair of Soil Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
Jonathan Paul Sheppard
Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg im Breisgau, Germany
Related authors
Svenja Hoffmeister, Sibylle Kathrin Hassler, Friederike Lang, Rebekka Maier, Betserai Isaac Nyoka, and Erwin Zehe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1719, https://doi.org/10.5194/egusphere-2025-1719, 2025
Short summary
Short summary
Combining trees and crops in agroforestry systems can potentially be a sustainable option for agriculture facing climate change impacts. We used methods from soil science and hydrology to assess the effect of adding gliricidia trees to maize fields, on carbon content, soil properties and water availability. Our results show a clear increase in carbon contents and effects on physical soil characteristics and water uptake and retention as a consequence of the agroforestry treatment.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Svenja Hoffmeister, Sibylle Kathrin Hassler, Friederike Lang, Rebekka Maier, Betserai Isaac Nyoka, and Erwin Zehe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1719, https://doi.org/10.5194/egusphere-2025-1719, 2025
Short summary
Short summary
Combining trees and crops in agroforestry systems can potentially be a sustainable option for agriculture facing climate change impacts. We used methods from soil science and hydrology to assess the effect of adding gliricidia trees to maize fields, on carbon content, soil properties and water availability. Our results show a clear increase in carbon contents and effects on physical soil characteristics and water uptake and retention as a consequence of the agroforestry treatment.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Cited articles
Anderson, S. H., Udawatta, R. P., Seobi, T., and Garrett, H. E.: Soil water content and infiltration in agroforestry buffer strips, Agroforest. Syst., 75, 5–16, https://doi.org/10.1007/s10457-008-9128-3, 2009. a
Bohn Reckziegel, R., Larysch, E., Sheppard, J. P., Kahle, H.-P., and Morhart, C.: Modelling and Comparing Shading Effects of 3D Tree Structures with Virtual Leaves, Remote Sensing, 13, 532, https://doi.org/10.3390/rs13030532, 2021. a, b, c
Bohn Reckziegel, R., Sheppard, J. P., Kahle, H.-P., Larysch, E., Spiecker, H., Seifert, T., and Morhart, C.: Virtual pruning of 3D trees as a tool for managing shading effects in agroforestry systems, Agroforest. Syst., 96, 89–104, https://doi.org/10.1007/s10457-021-00697-5, 2022. a
Brenner, A., Jarvis, P., and Van Den Beldt, R.: Windbreak-crop interactions in the Sahel. 1. Dependence of shelter on field conditions, Agr. Forest Meteorol., 75, 215–234, https://doi.org/10.1016/0168-1923(94)02217-8, 1995. a
Burgess, S. S., Adams, M. A., Turner, N. C., and Ong, C. K.: The redistribution of soil water by tree root systems, Oecologia, 115, 306–311, https://doi.org/10.1007/s004420050521, 1998. a
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., Culvenor, D., Avitabile, V., Disney, M., Armston, J., and Kaasalainen, M.: Nondestructive estimates of above-ground biomass using terrestrial laser scanning, Methods Ecol. Evol., 6, 198–208, https://doi.org/10.1111/2041-210X.12301, 2015. a, b
Faé, G., Montes, F., Bazilevskaya, E., Añó, R., and Kemanian, A.: Making soil particle size analysis by laser diffraction compatible with standard soil texture determination methods, Soil Sci. Soc. Am. J., 83, 1244–1252, https://doi.org/10.2136/sssaj2018.10.0385, 2019. a
Frouz, J., Dvorščík, P., Vávrová, A., Doušová, O., Kadochová, and Matějíček, L.: Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites, Ecol. Eng., 84, 233–239, https://doi.org/10.1016/j.ecoleng.2015.09.027, 2015. a
Harja, D., Rahayu, S., and Pambudi, S.: Worldwide “open access” tree functional attributes and ecological database, http://db.worldagroforestry.org//wd/species/alnus, last access: 14 August 2023. a
Hassler, S. K., Bohn Reckziegel, R., du Toit, B., Hoffmeister, S., Kestel, F., Kunneke, A., Maier, R., and Sheppard, J. P.: Hydrological, pedological, dendrological and meteorological measurements in a blackberry-alder agroforestry system in South Africa, GFZ Data Services [data set], https://doi.org/10.5880/fidgeo.2023.028, 2024. a, b, c, d
Hoffmeister, S., Bohn Reckziegel, R., du Toit, B., Hassler, S. K., Kestel, F., Maier, R., Sheppard, J. P., and Zehe, E.: Hydrological and pedological effects of combining Italian alder and blackberries in an agroforestry windbreak system in South Africa, Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, 2024. a
Hombegowda, H. C., van Straaten, O., Köhler, M., and Hölscher, D.: On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India, SOIL, 2, 13–23, https://doi.org/10.5194/soil-2-13-2016, 2016. a
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, https://www.ipcc.ch/report/ar5/syr/ (last access: 22 August 2024), 2014. a
ISO: 11277: 2002-08: Bodenbeschaffenheit – Bestimmung der Partikelgrößenverteilung in Mineralböden – Verfahren mittels Siebung und Sedimentation (ISO 11277: 1998+ ISO 11277: 1998 Corrigendum 1: 2002), Standard, International Organization for Standardization, Geneva, CH, https://doi.org/10.31030/9283499, 2002. a, b, c
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, https://www.fao.org/3/i3794en/I3794en.pdf (last access: 22 August 2024), 2015. a, b, c
Jahn, R., Blume, H.-P., Asio, V. B., Spaargaren, O. C., and Schad, P.: Guidelines for soil description, 4th edn., FAO, https://www.fao.org/3/a0541e/a0541e.pdf (last access: 22 August 2024), 2006. a
Johansson, T.: Dry matter amounts and increment in 21- to 91-year-old common alder and grey alder and some practical implications, Can. J. Forest Res., 29, 1679–1690, https://doi.org/10.1139/x99-126, 1999. a
Kuekenbrink, D., Gardi, O., Morsdorf, F., Thürig, E., Schellenberger, A., and Mathys, L.: Above-ground biomass references for urban trees from terrestrial laser scanning data, Annals of Botany, 128, 709–724, https://doi.org/10.1093/aob/mcab002, 2021. a
Kutschera, L. and Lichtenegger, E.: Wurzelatlas mitteleuropäischer Waldbäume und Sträucher, Leopold Stocker Verlag Graz, ISBN 978-3-7020-0928-1, 2002. a
Mbow, C., Van Noordwijk, M., Luedeling, E., Neufeldt, H., Minang, P. A., and Kowero, G.: Agroforestry solutions to address food security and climate change challenges in Africa, Curr. Opin. Env. Sust., 6, 61–67, https://doi.org/10.1016/j.cosust.2013.10.014, 2014. a
Meadows, M. E.: Global change and southern Africa, Geogr. Res., 44, 135–145, https://doi.org/10.1111/j.1745-5871.2006.00375.x, 2006. a
Meadows, M. E.: The cape winelands, in: Landscapes and Landforms of South Africa, edited by: Grab, S. and Knight, J., Springer, Heidelberg, Germany, 103–109, https://doi.org/10.1007/978-3-319-03560-4_12, 2015. a
Montanarella, L., Pennock, D. J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G.-L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez, C. R., de Lourdes Mendonça-Santos, M., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., AlaviPanah, S. K., Elsheikh, E. A. E. M., Hempel, J., Camps Arbestain, M., Nachtergaele, F., and Vargas, R.: World's soils are under threat, SOIL, 2, 79–82, https://doi.org/10.5194/soil-2-79-2016, 2016. a
New, M., Hewitson, B., Stephenson, D. B., Tsiga, A., Kruger, A., Manhique, A., Gomez, B., Coelho, C. A., Masisi, D. N., Kululanga, E., Mbambalala, E., Adesina, F., Saleh, H., Kanyanga, J., Adosi, J., Bulane, L., Fortunata, L., Mdoka, M. L., and Lajoie, R.: Evidence of trends in daily climate extremes over southern and west Africa, J. Geophys. Res.-Atmos., 111, D14102, https://doi.org/10.1029/2005JD006289, 2006. a
Ong, C. and Kho, R.: A framework for quantifying the various effects of tree-crop interactions, in: Tree–Crop Interactions: Agroforestry in a Changing Climate, edited by: Ong, C., Black, C., and Wilson, J., CABI, Wallingford, UK, 2 edn., 1–23, https://doi.org/10.1079/9781780645117.0001, 2015. a
Pateiro-Lopez, B. and Rodriguez-Casal, A.: alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane, r package version 2.2, https://CRAN.R-project.org/package=alphahull (last access: 15 October 2020), 2019. a
Pfennigbauer, M. and Ullrich, A.: Improving quality of laser scanning data acquisition through calibrated amplitude and pulse deviation measurement, in: Laser Radar Technology and Applications XV, edited by: Turner, M. D. and Kamerman, G. W., vol. 7684, 76841F, SPIE Defense, Security and Sensing, Orlando, Florida, USA, https://doi.org/10.1117/12.849641, 2010. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 22 August 2024), 2021. a
Raumonen, P., Kaasalainen, M., Ã…kerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., Holopainen, M., Disney, M., and Lewis, P.: Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data, Remote Sensing, 5, 491–520, https://doi.org/10.3390/rs5020491, 2013. a, b
Raumonen, P., Casella, E., Calders, K., Murphy, S., Åkerblom, M., and Kaasalainen, M.: Massive-Scale Tree Modelling from TLS Data, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-3/W4, 189–196, https://doi.org/10.5194/isprsannals-II-3-W4-189-2015, 2015. a
San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., and Mauri, A., eds.: European atlas of forest tree species, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/776635, 2016. a
Schifano, G., Eeden van, O., and Coertze, F.: Geological Map of the Republic of South Africa and the Kingdoms of Lesotho and Swaziland. South-Western Sheet. 1:1 000 000, Trigonometrical Survey Office, Pretoria (South Africa), 1970. a
Sheppard, J. P., Bohn Reckziegel, R., Borrass, L., Chirwa, P. W., Cuaranhua, C. J., Hassler, S. K., Hoffmeister, S., Kestel, F., Maier, R., Mälicke, M., Morhart, C., Ndlovu, N. P., Veste, M., Funk, R., Lang, F., Seifert, T., du Toit, B., and Kahle, H.-P.: Agroforestry: An Appropriate and Sustainable Response to a Changing Climate in Southern Africa?, Sustainability, 12, 6796, https://doi.org/10.3390/su12176796, 2020. a, b, c
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898, https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980. a, b
Veste, M., Littmann, T., Kunneke, A., Du Toit, B., and Seifert, T.: Windbreaks as part of climate-smart landscapes reduce evapotranspiration in vineyards, Western Cape Province, South Africa, Plant, Soil and Environment, 66, 119–127, https://doi.org/10.17221/616/2019-PSE, 2020. a
Veste, M., Sheppard, J. P., Abdulai, I., Ayisi, K. K., Borrass, L., Chirwa, P. W., Funk, R., Kapinga, K., Morhart, C., Mwale, S. E., Ndlovu, N. P., Nyamadzaw, G., Nyoka, B. I., Sebola, P., Seifert, T., Senyolo, M. P., Sileshi, G. W., Syampungani, S., and Kahle, H.-P.: The Need for Sustainable Agricultural Land-Use Systems: Benefits from Integrated Agroforestry Systems, Springer International Publishing, Cham, 587–623, ISBN 978-3-031-10948-5, https://doi.org/10.1007/978-3-031-10948-5_21, 2024. a
Wollschlaeger, D.: shotGroups: Analyze Shot Group Data, r package version 0.8.2 [code], https://doi.org/10.32614/CRAN.package.shotGroups, 2022. a
Zerihun, M. F.: Agroforestry Practices in Livelihood Improvement in the Eastern Cape Province of South Africa, Sustainability, 13, 8477, https://doi.org/10.3390/su13158477, 2021. a
Ziervogel, G., New, M., Archer van Garderen, E., Midgley, G., Taylor, A., Hamann, R., Stuart-Hill, S., Myers, J., and Warburton, M.: Climate change impacts and adaptation in South Africa, WIREs Climate Change, 5, 605–620, https://doi.org/10.1002/wcc.295, 2014. a
Short summary
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a sustainable land use option which protects natural resources and biodiversity. Introducing trees into agricultural systems can positively affect water resources, soil characteristics, biomass and microclimate. We studied an AFS in South Africa in a multidisciplinary approach to assess the different influences and present the resulting dataset consisting of water, soil, tree and meteorological variables.
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a...
Altmetrics
Final-revised paper
Preprint