Articles | Volume 16, issue 5
https://doi.org/10.5194/essd-16-2407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-2407-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GloUTCI-M: a global monthly 1 km Universal Thermal Climate Index dataset from 2000 to 2022
Zhiwei Yang
Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Jian Peng
CORRESPONDING AUTHOR
Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Yanxu Liu
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
Song Jiang
Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61820, USA
Xueyan Cheng
Faculty of Environment and Natural Resources, University of Freiburg, 79106 Freiburg im Breisgau, Germany
Xuebang Liu
Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Jianquan Dong
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
Tiantian Hua
Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Xiaoyu Yu
Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Related authors
No articles found.
Chengcheng Hou, Yan Li, Shan Sang, Xu Zhao, Yanxu Liu, Yinglu Liu, and Fang Zhao
Earth Syst. Sci. Data, 16, 2449–2464, https://doi.org/10.5194/essd-16-2449-2024, https://doi.org/10.5194/essd-16-2449-2024, 2024
Short summary
Short summary
To fill the gap in the gridded industrial water withdrawal (IWW) data in China, we developed the China Industrial Water Withdrawal (CIWW) dataset, which provides monthly IWWs from 1965 to 2020 at a spatial resolution of 0.1°/0.25° and auxiliary data including subsectoral IWW and industrial output value in 2008. This dataset can help understand the human water use dynamics and support studies in hydrology, geography, sustainability sciences, and water resource management and allocation in China.
Jianquan Dong, Stefan Brönnimann, Tao Hu, Yanxu Liu, and Jian Peng
Earth Syst. Sci. Data, 14, 5651–5664, https://doi.org/10.5194/essd-14-5651-2022, https://doi.org/10.5194/essd-14-5651-2022, 2022
Short summary
Short summary
We produced a new dataset of global station-based daily maximum wet-bulb temperature (GSDM-WBT) through the calculation of wet-bulb temperature, data quality control, infilling missing values, and homogenization. The GSDM-WBT covers the complete daily series of 1834 stations from 1981 to 2020. The GSDM-WBT dataset handles stations with many missing values and possible inhomogeneities, which could better support the studies on global and regional humid heat events.
Ting Hua, Wenwu Zhao, Yanxu Liu, and Yue Liu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-122, https://doi.org/10.5194/nhess-2019-122, 2019
Manuscript not accepted for further review
Short summary
Short summary
We used the RUSLE model and geographical detector method to evaluate and identify the dominant factors and variability in the Yellow River basin. We found that in the period of low rainfall and vegetation coverage, the interaction of rainfall and slope can enhance their impact on the distribution of soil erosion, while the combination of vegetation and slope was the dominant interacting factor in other periods, and the dominant driving factors of soil erosion variability were rainfall.
Wenwu Zhao, Hui Wei, Lizhi Jia, Stefani Daryanto, Xiao Zhang, and Yanxu Liu
Solid Earth, 9, 1507–1516, https://doi.org/10.5194/se-9-1507-2018, https://doi.org/10.5194/se-9-1507-2018, 2018
Short summary
Short summary
Soil erodibility (K) is one of the key factors of soil erosion. Selecting the optimal estimation method of soil erodibility is critical to estimate the amount of soil erosion, and provide the base for sustainable land management. This research took the Loess Plateau of China as a case study, estimated soil erodibility factor with different methods, selected the best texture-based method to estimate K, and aimed to understand the indirect environmental factors of soil erodibility.
Related subject area
Domain: ESSD – Global | Subject: Meteorology
Earth Virtualization Engines (EVE)
A global gridded dataset for cloud vertical structure from combined CloudSat and CALIPSO observations
Global datasets of hourly carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations
Global high-resolution drought indices for 1981–2022
ET-WB: water-balance-based estimations of terrestrial evaporation over global land and major global basins
GSDM-WBT: global station-based daily maximum wet-bulb temperature data for 1981–2020
The PANDA automatic weather station network between the coast and Dome A, East Antarctica
STAR NDSI collection: a cloud-free MODIS NDSI dataset (2001–2020) for China
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Leah Bertrand, Jennifer E. Kay, John Haynes, and Gijs de Boer
Earth Syst. Sci. Data, 16, 1301–1316, https://doi.org/10.5194/essd-16-1301-2024, https://doi.org/10.5194/essd-16-1301-2024, 2024
Short summary
Short summary
The vertical structure of clouds has a major impact on global energy flows, air circulation, and the hydrologic cycle. Two satellite instruments, CloudSat radar and CALIPSO lidar, have taken complementary measurements of cloud vertical structure for over a decade. Here, we present the 3S-GEOPROF-COMB product, a globally gridded satellite data product combining CloudSat and CALIPSO observations of cloud vertical structure.
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024, https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
Short summary
We produced a long-term global two-leaf gross primary productivity (GPP) and evapotranspiration (ET) dataset at the hourly time step by integrating a diagnostic process-based model with dynamic parameterizations. The new dataset provides us with a unique opportunity to study carbon and water fluxes at sub-daily time scales and advance our understanding of ecosystem functions in response to transient environmental changes.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data, 15, 4571–4597, https://doi.org/10.5194/essd-15-4571-2023, https://doi.org/10.5194/essd-15-4571-2023, 2023
Short summary
Short summary
To overcome the shortcomings associated with limited spatiotemporal coverage, input data quality, and model simplifications in prevailing evaporation (ET) estimates, we developed an ensemble of 4669 unique terrestrial ET subsets using an independent mass balance approach. Long-term mean annual ET is within 500–600 mm yr−1 with a unimodal seasonal cycle and several piecewise trends during 2002–2021. The uncertainty-constrained results underpin the notion of increasing ET in a warming climate.
Jianquan Dong, Stefan Brönnimann, Tao Hu, Yanxu Liu, and Jian Peng
Earth Syst. Sci. Data, 14, 5651–5664, https://doi.org/10.5194/essd-14-5651-2022, https://doi.org/10.5194/essd-14-5651-2022, 2022
Short summary
Short summary
We produced a new dataset of global station-based daily maximum wet-bulb temperature (GSDM-WBT) through the calculation of wet-bulb temperature, data quality control, infilling missing values, and homogenization. The GSDM-WBT covers the complete daily series of 1834 stations from 1981 to 2020. The GSDM-WBT dataset handles stations with many missing values and possible inhomogeneities, which could better support the studies on global and regional humid heat events.
Minghu Ding, Xiaowei Zou, Qizhen Sun, Diyi Yang, Wenqian Zhang, Lingen Bian, Changgui Lu, Ian Allison, Petra Heil, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5019–5035, https://doi.org/10.5194/essd-14-5019-2022, https://doi.org/10.5194/essd-14-5019-2022, 2022
Short summary
Short summary
The PANDA automatic weather station (AWS) network consists of 11 stations deployed along a transect from the coast (Zhongshan Station) to the summit of the East Antarctic Ice Sheet (Dome A). It covers the different climatic and topographic units of East Antarctica. All stations record hourly air temperature, relative humidity, air pressure, wind speed and direction at two or three heights. The PANDA AWS dataset commences from 1989 and is planned to be publicly available into the future.
Yinghong Jing, Xinghua Li, and Huanfeng Shen
Earth Syst. Sci. Data, 14, 3137–3156, https://doi.org/10.5194/essd-14-3137-2022, https://doi.org/10.5194/essd-14-3137-2022, 2022
Short summary
Short summary
Snow variation is a vital factor in global climate change. Satellite-based approaches are effective for large-scale environmental monitoring. Nevertheless, the high cloud fraction seriously impedes the remote-sensed investigation. Therefore, a recent 20-year cloud-free snow cover collection in China is generated for the first time. This collection can serve as a basic dataset for hydrological and climatic modeling to explore various critical environmental issues.
Cited articles
Ahlswede, S., Schulz, C., Gava, C., Helber, P., Bischke, B., Förster, M., Arias, F., Hees, J., Demir, B., and Kleinschmit, B.: TreeSatAI Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing, Earth Syst. Sci. Data, 15, 681–695, https://doi.org/10.5194/essd-15-681-2023, 2023.
Aybar, C., Ysuhuaylas, L., Loja, J., Gonzales, K., Herrera, F., Bautista, L., Yali, R., Flores, A., Diaz, L., Cuenca, N., Espinoza, W., Prudencio, F., Llactayo, V., Montero, D., Sudmanns, M., Tiede, D., Mateo-García, G., and Gómez-Chova, L.: CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2, Sci. Data, 9, 782, https://doi.org/10.1038/s41597-022-01878-2, 2022.
Bai, X., Li, X., Miao, J., and Shen, H.: Making the Earth Clear at Night: A High-Resolution Nighttime Light Image Deblooming Network, IEEE T. Geosci. Remote, 61, 1–13, https://doi.org/10.1109/TGRS.2023.3320192, 2023.
Bröde, P., Fiala, D., Błażejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., Tinz, B., and Havenith, G.: Deriving the operational procedure for the Universal Thermal Climate Index (UTCI), Int. J. Biometeorol., 56, 481–494, https://doi.org/10.1007/s00484-011-0454-1, 2012.
Camps-Valls, G., Campos-Taberner, M., Moreno-Martínez, Á., Walther, S., Duveiller, G., Cescatti, A., Mahecha, M. D., Muñoz-Marí, J., García-Haro, F. J., Guanter, L., Jung, M., Gamon, J. A., Reichstein, M., and Running, S. W.: A unified vegetation index for quantifying the terrestrial biosphere, Sci. Adv., 7, eabc7447, https://doi.org/10.1126/sciadv.abc7447, 2021.
Cao, Z., Guo, G., Xu, Y., Wu, Z., and Zhou, W.: Detecting the sinks and sources of transportation energy consumption and its forces driving at multiple spatiotemporal scales using trajectory data, Appl.Geogr., 148, 102807, https://doi.org/10.1016/j.apgeog.2022.102807, 2022.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Chen, Z., Yu, B., Yang, C., Zhou, Y., Yao, S., Qian, X., Wang, C., Wu, B., and Wu, J.: An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration, Earth Syst. Sci. Data, 13, 889–906, https://doi.org/10.5194/essd-13-889-2021, 2021.
Cheng, Y., Yu, Z., Xu, C., Manoli, G., Ren, X., Zhang, J., Liu, Y., Yin, R., Zhao, B., and Vejre, H.: Climatic and Economic Background Determine the Disparities in Urbanites' Expressed Happiness during the Summer Heat, Environ. Sci. Technol., 57, 10951–10961, https://doi.org/10.1021/acs.est.3c01765, 2023.
Cravo, A. M., de Azevedo, G. B., Moraes Bilacchi Azarias, C., Barne, L. C., Bueno, F. D., de Camargo, R. Y., Morita, V. C., Sirius, E. V. P., Recio, R. S., Silvestrin, M., and de Azevedo Neto, R. M.: Time experience during social distancing: A longitudinal study during the first months of COVID-19 pandemic in Brazil, Sci. Adv., 8, eabj7205, https://doi.org/10.1126/sciadv.abj7205, 2022.
Deroubaix, A., Labuhn, I., Camredon, M., Gaubert, B., Monerie, P.-A., Popp, M., Ramarohetra, J., Ruprich-Robert, Y., Silvers, L. G., and Siour, G.: Large uncertainties in trends of energy demand for heating and cooling under climate change, Nat Commun, 12, 5197, https://doi.org/10.1038/s41467-021-25504-8, 2021.
Di Napoli, C., Barnard, C., Prudhomme, C., Cloke, H. L., and Pappenberger, F.: ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis, Geosci. Data J., 8, 2–10, https://doi.org/10.1002/gdj3.102, 2021.
Dong, J., Brönnimann, S., Hu, T., Liu, Y., and Peng, J.: GSDM-WBT: global station-based daily maximum wet-bulb temperature data for 1981–2020, Earth Syst. Sci. Data, 14, 5651–5664, https://doi.org/10.5194/essd-14-5651-2022, 2022.
El Bilali, A., Abdeslam, T., Ayoub, N., Lamane, H., Ezzaouini, M. A., and Elbeltagi, A.: An interpretable machine learning approach based on DNN, SVR, Extra Tree, and XGBoost models for predicting daily pan evaporation, J. Environ. Manage., 327, 116890, https://doi.org/10.1016/j.jenvman.2022.116890, 2023.
Fahad, M. G. R., Karimi, M., Nazari, R., and Sabrin, S.: Developing a geospatial framework for coupled large scale thermal comfort and air quality indices using high resolution gridded meteorological and station based observations, Sustain. Cities Soc., 74, 103204, https://doi.org/10.1016/j.scs.2021.103204, 2021.
Freychet, N., Tett, S. F. B., Yan, Z., and Li, Z.: Underestimated Change of Wet-Bulb Temperatures Over East and South China, Geophys. Res. Lett., 47, e2019GL086140, https://doi.org/10.1029/2019GL086140, 2020.
Gobo, J. P. A., Wollmann, C. A., Celuppi, M. C., Galvani, E., Faria, M. R., Mendes, D., de Oliveira-Júnior, J. F., dos Santos Malheiros, T., Riffel, E. S., and Gonçalves, F. L. T.: The bioclimate present and future in the state of SÃO PAULO/BRAZIL: space-time analysis of human thermal comfort, Sustain. Cities Soc., 78, 103611, https://doi.org/10.1016/j.scs.2021.103611, 2022.
He, Q., Wang, M., Liu, K., Li, K., and Jiang, Z.: GPRChinaTemp1km: a high-resolution monthly air temperature data set for China (1951–2020) based on machine learning, Earth Syst. Sci. Data, 14, 3273–3292, https://doi.org/10.5194/essd-14-3273-2022, 2022.
Hirt, C.: Artefact detection in global digital elevation models (DEMs): The Maximum Slope Approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs, Remote Sens. Environ., 207, 27–41, https://doi.org/10.1016/j.rse.2017.12.037, 2018.
Hu, T., Dong, J., Hu, Y., Qiu, S., Yang, Z., Zhao, Y., Cheng, X., and Peng, J.: Stage response of vegetation dynamics to urbanization in megacities: A case study of Changsha City, China, Sci. Total Environ., 858, 159659, https://doi.org/10.1016/j.scitotenv.2022.159659, 2023.
Hwang, R.-L., Weng, Y.-T., and Huang, K.-T.: Considering transient UTCI and thermal discomfort footprint simultaneously to develop dynamic thermal comfort models for pedestrians in a hot-and-humid climate, Build. Environ., 222, 109410, https://doi.org/10.1016/j.buildenv.2022.109410, 2022.
Katori, M., Shi, S., Ode, K. L., Tomita, Y., and Ueda, H. R.: The 103,200-arm acceleration dataset in the UK Biobank revealed a landscape of human sleep phenotypes, P. Natl. Acad. Sci. USA, 119, e2116729119, https://doi.org/10.1073/pnas.2116729119, 2022.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.: LightGBM: A Highly Efficient Gradient Boosting Decision Tree, in: Advances in Neural Information Processing Systems, 30, 2017.
Kotcher, J., Maibach, E., Miller, J., Campbell, E., Alqodmani, L., Maiero, M., and Wyns, A.: Views of health professionals on climate change and health: a multinational survey study, The Lancet Planetary Health, 5, e316–e323, https://doi.org/10.1016/S2542-5196(21)00053-X, 2021.
Kyaw, A. K., Hamed, M. M., and Shahid, S.: Spatiotemporal changes in Universal Thermal Climate Index over South Asia, Atmos. Res., 292, 106838, https://doi.org/10.1016/j.atmosres.2023.106838, 2023.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L., and Merchant, J. W.: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21, 1303–1330, https://doi.org/10.1080/014311600210191, 2000.
Mulverhill, C., Coops, N. C., and Achim, A.: Continuous monitoring and sub-annual change detection in high-latitude forests using Harmonized Landsat Sentinel-2 data, ISPRS J. Photogramm. Remote, 197, 309–319, https://doi.org/10.1016/j.isprsjprs.2023.02.002, 2023.
Outhwaite, C. L., McCann, P., and Newbold, T.: Agriculture and climate change are reshaping insect biodiversity worldwide, Nature, 605, 97–102, https://doi.org/10.1038/s41586-022-04644-x, 2022.
Pappenberger, F., Jendritzky, G., Staiger, H., Dutra, E., Di Giuseppe, F., Richardson, D. S., and Cloke, H. L.: Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI), Int. J. Biometeorol., 59, 311–323, https://doi.org/10.1007/s00484-014-0843-3, 2015.
Park, S., Tuller, S. E., and Jo, M.: Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments, Landscape and Urban Planning, 125, 146–155, https://doi.org/10.1016/j.landurbplan.2014.02.014, 2014.
Peng, J., Hu, Y., Dong, J., Liu, Q., and Liu, Y.: Quantifying spatial morphology and connectivity of urban heat islands in a megacity: A radius approach, Sci. Total Environ., 714, 136792, https://doi.org/10.1016/j.scitotenv.2020.136792, 2020a.
Peng, J., Qiao, R., Liu, Y., Blaschke, T., Li, S., Wu, J., Xu, Z., and Liu, Q.: A wavelet coherence approach to prioritizing influencing factors of land surface temperature and associated research scales, Remote Sens. Environ., 246, 111866, https://doi.org/10.1016/j.rse.2020.111866, 2020b.
Peng, J., Dan, Y., Qiao, R., Liu, Y., Dong, J., and Wu, J.: How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives, Remote Sens. Environ., 252, 112135, https://doi.org/10.1016/j.rse.2020.112135, 2021.
Peng, J., Hu, T., Qiu, S., Hu, Y., Dong, J., and Lin, Y.: Balancing the Effects of Forest Conservation and Restoration on South China Karst Greening, Earth's Future, 11, e2023EF003487, https://doi.org/10.1029/2023EF003487, 2023.
Peng, J., Qiao, R., Wang, Q., Yu, S., Dong, J., and Yang, Z.: Diversified evolutionary patterns of surface urban heat island in new expansion areas of 31 Chinese cities, npj Urban Sustain, 4, 1–11, https://doi.org/10.1038/s42949-024-00152-1, 2024.
Pitarch, J., Bellacicco, M., Marullo, S., and van der Woerd, H. J.: Global maps of Forel–Ule index, hue angle and Secchi disk depth derived from 21 years of monthly ESA Ocean Colour Climate Change Initiative data, Earth Syst. Sci. Data, 13, 481–490, https://doi.org/10.5194/essd-13-481-2021, 2021.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A.: CatBoost: unbiased boosting with categorical features, in: Advances in Neural Information Processing Systems, 31, 2018.
Tasaki, S., Xu, J., Avey, D. R., Johnson, L., Petyuk, V. A., Dawe, R. J., Bennett, D. A., Wang, Y., and Gaiteri, C.: Inferring protein expression changes from mRNA in Alzheimer's dementia using deep neural networks, Nat. Commun., 13, 655, https://doi.org/10.1038/s41467-022-28280-1, 2022.
Tripathy, K. P., Mukherjee, S., Mishra, A. K., Mann, M. E., and Williams, A. P.: Climate change will accelerate the high-end risk of compound drought and heatwave events, P. Natl. Acad. Sci. USA, 120, e2219825120, https://doi.org/10.1073/pnas.2219825120, 2023.
Vargas Zeppetello, L. R., Raftery, A. E., and Battisti, D. S.: Probabilistic projections of increased heat stress driven by climate change, Commun. Earth Environ., 3, 1–7, https://doi.org/10.1038/s43247-022-00524-4, 2022.
Wang, C., Zhan, W., Liu, Z., Li, J., Li, L., Fu, P., Huang, F., Lai, J., Chen, J., Hong, F., and Jiang, S.: Satellite-based mapping of the Universal Thermal Climate Index over the Yangtze River Delta urban agglomeration, J. Clean. Prod., 277, 123830, https://doi.org/10.1016/j.jclepro.2020.123830, 2020.
Yan, Y., Xu, Y., and Yue, S.: A high-spatial-resolution dataset of human thermal stress indices over South and East Asia, Sci. Data, 8, 229, https://doi.org/10.1038/s41597-021-01010-w, 2021.
Yang, Z., Chen, Y., Zheng, Z., Huang, Q., and Wu, Z.: Application of building geometry indexes to assess the correlation between buildings and air temperature, Build. Environ., 167, 106477, https://doi.org/10.1016/j.buildenv.2019.106477, 2020.
Yang, Z., Chen, Y., Guo, G., Zheng, Z., and Wu, Z.: Characteristics of land surface temperature clusters: Case study of the central urban area of Guangzhou, Sustain. Cities Soc., 73, 103140, https://doi.org/10.1016/j.scs.2021.103140, 2021.
Yang, Z., Peng, J., and Liu, Y.: GloUTCI-M: A Global Monthly 1 km Universal Thermal Climate Index Dataset from 2000 to 2022, Zenodo [data set], https://doi.org/10.5281/zenodo.8310513, 2023.
Yang, Z., Peng, J., Jiang, S., Yu, X., and Hu, T.: Optimizing building spatial morphology to alleviate human thermal stress, Sustain. Cities Soc., 106, 105386, https://doi.org/10.1016/j.scs.2024.105386, 2024.
Yin, Y., He, L., Wennberg, P. O., and Frankenberg, C.: Unequal exposure to heatwaves in Los Angeles: Impact of uneven green spaces, Sci. Adv., 9, eade8501, https://doi.org/10.1126/sciadv.ade8501, 2023.
Zare, S., Hasheminejad, N., Shirvan, H. E., Hemmatjo, R., Sarebanzadeh, K., and Ahmadi, S.: Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year, Weather Climate Extremes, 19, 49–57, https://doi.org/10.1016/j.wace.2018.01.004, 2018.
Zhang, H., Luo, M., Zhao, Y., Lin, L., Ge, E., Yang, Y., Ning, G., Cong, J., Zeng, Z., Gui, K., Li, J., Chan, T. O., Li, X., Wu, S., Wang, P., and Wang, X.: HiTIC-Monthly: a monthly high spatial resolution (1 km) human thermal index collection over China during 2003–2020, Earth Syst. Sci. Data, 15, 359–381, https://doi.org/10.5194/essd-15-359-2023, 2023.
Zhang, K., Cao, C., Chu, H., Zhao, L., Zhao, J., and Lee, X.: Increased heat risk in wet climate induced by urban humid heat, Nature, 617, 738–742, https://doi.org/10.1038/s41586-023-05911-1, 2023.
Zhang, S., Zhang, X., Niu, D., Fang, Z., Chang, H., and Lin, Z.: Physiological equivalent temperature-based and universal thermal climate index-based adaptive-rational outdoor thermal comfort models, Build. Environ., 228, 109900, https://doi.org/10.1016/j.buildenv.2022.109900, 2023.
Zhao, K., Wulder, M. A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick, B., Zhang, X., and Brown, M.: Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm, Remote Sens. Environ., 232, 111181, https://doi.org/10.1016/j.rse.2019.04.034, 2019.
Zheng, Z., Wu, Z., Chen, Y., Guo, G., Cao, Z., Yang, Z., and Marinello, F.: Africa's protected areas are brightening at night: A long-term light pollution monitor based on nighttime light imagery, Global Environ. Change, 69, 102318, https://doi.org/10.1016/j.gloenvcha.2021.102318, 2021.
Short summary
We produced a monthly Universal Thermal Climate Index dataset (GloUTCI-M) boasting global coverage and an extensive time series spanning March 2000 to October 2022 with a high spatial resolution of 1 km. This dataset is the product of a comprehensive approach leveraging multiple data sources and advanced machine learning models. GloUTCI-M can enhance our capacity to evaluate thermal stress experienced by the human, offering substantial prospects across a wide array of applications.
We produced a monthly Universal Thermal Climate Index dataset (GloUTCI-M) boasting global...
Altmetrics
Final-revised paper
Preprint