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Abstract. Climate change has precipitated recurrent extreme events and emerged as an imposing global chal-
lenge, exerting profound and far-reaching impacts on both the environment and human existence. The Universal
Thermal Climate Index (UTCI), serving as an important approach to human comfort assessment, plays a piv-
otal role in gauging how humans adapt to meteorological conditions and copes with thermal and cold stress.
However, the existing UTCI datasets still grapple with limitations in terms of data availability, hindering their
effective application across diverse domains. We have produced GloUTCI-M, a monthly UTCI dataset boasting
global coverage and an extensive time series spanning March 2000 to October 2022, with a high spatial reso-
lution of 1 km. This dataset is the product of a comprehensive approach leveraging multiple data sources and
advanced machine learning models. Our findings underscored the superior predictive capabilities of CatBoost in
forecasting the UTCI (mean absolute error, MAE = 0.747 °C; root mean square error, RMSE= 0.943 °C; and
coefficient of determination, R2

= 0.994) when compared to machine learning models such as XGBoost and
LightGBM. Utilizing GloUTCI-M, the geographical boundaries of cold stress and thermal stress areas at global
scale were effectively delineated. Spanning 2001–2021, the mean annual global UTCI was recorded at 17.24 °C,
with a pronounced upward trend. Countries like Russia and Brazil emerged as key contributors to the mean an-
nual global UTCI increasing, while countries like China and India exerted a more inhibitory influence on this
trend. Furthermore, in contrast to existing UTCI datasets, GloUTCI-M excelled at portraying UTCI distribution
at finer spatial resolutions, augmenting data accuracy. This dataset can enhance our capacity to evaluate thermal
stress experienced by humans, offering substantial prospects across a wide array of applications. GloUTCI-M is
publicly available at https://doi.org/10.5281/zenodo.8310513 (Yang et al., 2023).
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1 Introduction

Global climate change has precipitated recurrent extreme
events, presenting formidable challenges to society and the
environment (Tripathy et al., 2023; Cheng et al., 2023; Peng
et al., 2024). These challenges encompass threats to hu-
man health, degradation of ecosystems, and heightened en-
ergy demands (Deroubaix et al., 2021; Kotcher et al., 2021;
Outhwaite et al., 2022). Temperature, being the preeminent
parameter within meteorological variables, serves as an in-
strument for monitoring climate fluctuations and is impera-
tive for the formulation of policies and the implementation
of appropriate response measures (Yang et al., 2020; Yin
et al., 2023; Peng et al., 2020a). Nevertheless, the genuine
awareness of human and their surroundings, denoted as hu-
man comfort, assumes greater significance in a comprehen-
sive evaluation of the influence of environmental conditions
(Gobo et al., 2022). Human-perceived cold or thermal stress
is intricate, intimately linked to various meteorological vari-
ables. For instance, wind speed can either amplify or miti-
gate perceived body temperature, humidity can modulate the
efficiency of evaporation, and solar radiation can elevate per-
ceived temperature when exposed to sunlight (K. Zhang et
al., 2023; Fahad et al., 2021). Consequently, while a soli-
tary meteorological variable, namely temperature, remains
crucial, an index that amalgamates multiple meteorological
variables is better poised to mirror the authentic human per-
ception of the ambient environment.

Till now, several indices pertaining to human comfort have
been widely adopted, encompassing the heat index, wet-bulb
temperature, and humidity index (Vargas Zeppetello et al.,
2022; Freychet et al., 2020). The Universal Thermal Climate
Index (UTCI), a novel index of human comfort, excels in
portraying human responses to thermal and cold stress more
accurately (Bröde et al., 2012). The UTCI hinges on the
concept of equivalent temperature, defined as the tempera-
ture within a standardized reference environment, furnishes
a more comprehensive and precise portrayal of human per-
ceptions under diverse meteorological circumstances (Bröde
et al., 2012). By integrating a gamut of meteorological vari-
ables, including temperature, humidity, wind speed, and solar
radiation, the UTCI aptly characterizes comfort levels across
varying environments (Park et al., 2014). As an advanced
biometeorological index, the UTCI has objectivity in assess-
ing the impact of the atmospheric milieu on the human or-
ganism (Zare et al., 2018). Currently, the UTCI is extensively
employed in studies concerning short-term repercussions of
atmospheric conditions on humans and urban bioclimatology
and evaluations of the urban heat island effect (Hwang et
al., 2022; Kyaw et al., 2023; S. Zhang et al., 2023). Con-
sequently, the UTCI, with its incorporation of multiple me-
teorological variables and hallmark objectivity and compre-
hensiveness, can characterize the thermal and cold stresses
experienced by humans well.

Several datasets encompassing human comfort indices
have been produced for global or localized domains
(H. Zhang et al., 2023; Dong et al., 2022). However, the
quantity and the quality of UTCI datasets are insufficient,
which hinders in-depth research and the application of the
UTCI. The existing UTCI datasets predominantly exhibit
low spatial resolutions, such as the ERA5-HEAT with a spa-
tial granularity of 0.25° (encompassing the globe) and the
HiTiSEA with a spatial granularity of 0.1° (encompassing
East and South Asia) (Di Napoli et al., 2021; Yan et al.,
2021). These prevailing UTCI datasets are often inadequate
for urban and landscape scale investigations, given that these
studies necessitate data of higher spatial resolution to accu-
rately capture intra-urban meteorological variations and hu-
man perceptions (Peng et al., 2021; Yang et al., 2021; Cao
et al., 2022). Therefore, the development of a UTCI dataset
that is globally accessible, has a long time series, and has a
high spatial resolution is imperative. This initiative will ad-
dress the existing void in UTCI data availability and enhance
the precision and practicability of the UTCI for urban and
landscape-scale investigations.

To facilitate the widespread future applications of UTCI
data, we have produced GloUTCI-M, a monthly UTCI
dataset characterized by global coverage, a long time se-
ries, and high spatial resolution. This work involves estab-
lishing a systematic process for generating and describing
the UTCI dataset and relying on machine learning models
that incorporate multiple covariates as well as exploratory
data analysis. Several key contents include (1) examining the
relationship between the UTCI and various covariates, uti-
lizing multiple machine learning models; (2) employing the
optimal machine learning model to produce a monthly high-
spatial-resolution UTCI dataset that spans the entire globe,
known as GloUTCI-M; (3) analyzing the global spatiotem-
poral characteristics and pattern evolution of the UTCI based
on GloUTCI-M; and (4) comparing GloUTCI-M with exist-
ing UTCI datasets.

2 Data

2.1 Meteorological station data

The global meteorological observations spanning 2000 to
2022 are sourced from the Integrated Surface Database
(ISD). This database provided by the National Oceanic
and Atmospheric Administration (NOAA) (https://www.
ncei.noaa.gov, last access: 16 September 2023) amalgamates
data from over 100 disparate raw data sources spanning the
globe. These sources provide a comprehensive array of mete-
orological variables, including wind speed, temperature, dew
point temperature, station pressures, current weather condi-
tions, and visibility. The ISD database spans the extensive
time frame from 1901 to 2023, and it serves multifarious re-
search purposes, extending to investigations into global cli-
mate change, climate modeling, and various domains within
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environmental science. We utilized the hourly-ISD subset
from the ISD database. The majority of the data from hourly-
ISD are available at a 3 h interval, with a small number of
meteorological stations providing data at a 1 h interval.

To expand the number of available meteorological obser-
vation samples, meteorological stations are not required to
have meteorological observation data for all periods from
2000 to 2022. We enforced rigorous quality control measures
for these meteorological station observations, exclusively re-
taining those with meteorological observation data available
for a minimum of 25 d in each month. Consequently, the
count of selected meteorological observation samples fluc-
tuated annually and even monthly, exhibiting distinct differ-
ences in spatial distribution (Fig. 1). In detail, North America
and Europe had more dense meteorological samples, while
East Asia also had a substantial cluster of meteorological
observation samples meeting our criteria. Conversely, the
Southern Hemisphere, notably Africa and South America,
demonstrated a lower density of meteorological observation
samples that meet the threshold for data quality. Furthermore,
there has been a consistent year-on-year increase in the num-
ber of meteorological observation samples meeting our cri-
teria in recent times. For instance, in October 2000, we had
5402 samples, which surged to 8235 by October 2022. In
total, our selection process yielded more than 2 million sam-
ples, ensuring a robust dataset for further analysis.

2.2 Covariate data

We selected seven key covariates in our analysis, specifically
LST (land surface temperature), NTL (nighttime lights),
LULC (land use–land cover), kNDVI (kernel normalized dif-
ference vegetation index), DEM (digital elevation model),
month, and LAT (latitude). The selection of these covari-
ates was guided by two fundamental principles. Firstly, we
drew from existing research studies to ascertain that the cho-
sen covariates would possess a direct impact on the UTCI or
wield significant influence over the meteorological variables
employed in UTCI calculations (Fahad et al., 2021; Pappen-
berger et al., 2015; Wang et al., 2020; Peng et al., 2020b).
This ensured the relevance of these covariates to our anal-
ysis. Secondly, we took care to select covariates that were
openly accessible and obtainable without cost and that orig-
inate from data sources with extensive global coverage. This
step was essential to guarantee the broad applicability of
our analysis, encompassing diverse regions across the world.
Here are the details of our data sources and the rationale be-
hind their selection.

LST. We acquired daytime LST data from MOD11A2
(Moderate Resolution Imaging Spectroradiometer) (https:
//lpdaac.usgs.gov, last access: 16 September 2023). These
data are accessible at a spatial resolution of 1 km and com-
pile average values over an 8 d interval from corresponding
MOD11A1 LST pixels.

NTL. NTL is indicative of human activities and urbaniza-
tion. We utilized NPP-VIIRS-like NTL data, available at a
spatial resolution of 500 m. This dataset effectively combines
data from two NTL sources (DMSP-OLS and NPP-VIIRS),
extending the temporal range of NTL observations (Chen et
al., 2021). In response to the potential degradation of NTL
data (Bai et al., 2023), a series of pre-processing steps in the
production of NPP-VIIRS-like NTL data and the proposed
cross-sensor calibration can be a great help.

LULC. We sourced LULC data from MODIS_IGBP Land
Cover Dataset, which offers a spatial resolution of 500 m.
This dataset results from supervised classification using
MODIS Terra and Aqua reflectance data and categorizes land
cover into 17 distinct types (Loveland et al., 2000). It pro-
vides annual data from 2001 to 2021. In instances that we
required LULC data for the years 2000 and 2022, we substi-
tuted them with data from 2001 and 2021, respectively.

kNDVI. This novel vegetation index is calculated based
on NDVI, offering advantages in terms of resistance to sat-
uration, bias, and noise (Camps-Valls et al., 2021). It also
demonstrates greater stability at various spatial and tempo-
ral scales. We computed kNDVI using MOD13A2 (https:
//lpdaac.usgs.gov, last access: 16 September 2023).

DEM. We employed the Multi-Error-Removed Improved-
Terrain DEM (MERIT DEM) as the DEM data source. This
global DEM boasts high accuracy and possesses a resolution
of 3 arcsec (approximately 90 m at the Equator) (Hirt, 2018).
The MERIT DEM is generated by mitigating major error
components in existing DEMs, including the NASA SRTM3
DEM and JAXA AW3D DEM.

Our pre-processing of the aforementioned covariate data
involved several steps, including splicing, cropping, resam-
pling, and monthly data synthesis. These steps were under-
taken to achieve uniformity in terms of spatial extent, projec-
tion, and spatial resolution across all covariates. The covari-
ate data were obtained via the Google Earth Engine (GEE),
and resampling techniques were employed to harmonize the
spatial resolution of all covariates. Specifically, we adopted
the mean resampling method for covariates with continuous
values and the nearest-neighbor assignment method for cat-
egorical covariates. This ensured that all covariates had con-
sistent spatial resolution. Furthermore, we categorized the
seven covariates into two groups based on their character-
istics and data availability. One group is dynamically evolv-
ing covariates, such as LST and kNDVI, that exert a signifi-
cant influence on the monthly mean of the UTCI. Therefore,
we calculated their monthly mean values. The other group is
statically evolving covariates, like latitude, month, and DEM,
that impose inherent constraints on the monthly mean of the
UTCI. Considering temporal and spatial constraints inherent
to raw covariate data availability, and to guarantee tempo-
ral and spatial consistency across all covariate data, we ulti-
mately derived monthly covariate data spanning March 2000
to October 2022 within the global latitude range of 50° S to
70° N.
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Figure 1. Global monthly meteorological observation samples from 2000 to 2022: (a) kernel density and (b) quantitative statistics.

2.3 Existing UTCI datasets

We compared GloUTCI-M with two pre-existing UTCI
datasets, namely ERA5-HEAT and HiTiSEA, with the fo-
cus on the accuracy of all three datasets. ERA5-HEAT is a
worldwide historical dataset encompassing bioclimatic vari-
ables, inclusive of the UTCI (Di Napoli et al., 2021). The
computation of ERA5-HEAT relies upon ERA5 reanalysis
datasets, incorporating meteorological variables such as air
temperature, humidity, and wind speed. ERA5-HEAT boasts
a spatial granularity of approximately 28 km (0.25°) and a
temporal resolution extending up to 1 h. It is freely acces-
sible via the Copernicus Climate Data Store (https://cds.
climate.copernicus.eu, last access: 16 September 2023). The
HiTiSEA is a gridded product featuring a spatial resolution
of 0.1° and contains the daily UTCI spanning 3 January 1981
to 31 December 2019 for the East and South Asian regions
(Yan et al., 2021).

3 Methodology

The production process of GloUTCI-M encompasses various
key steps, such as the calculation of the UTCI for meteo-
rological samples, the acquisition of covariate data, and the
identification of the optimal machine learning model (Fig. 2).
We initiated it by utilizing observational data to compute the
daily UTCI for the meteorological samples. Subsequently,

we synthesized the monthly UTCI based on the availability
of daily UTCI data. Following this, we employed three dis-
tinct machine learning models to establish the relationship
between the monthly UTCI and the covariates. Finally, we
validated the accuracy of the training results generated by the
machine learning models. Upon completion of this validation
process, we selected the optimal machine learning model to
produce GloUTCI-M using the covariate raster data. Addi-
tionally, leveraging GloUTCI-M, we employed spatiotempo-
ral analysis models, including mutation point analysis and
trend analysis, to identify the spatial distribution and tempo-
ral fluctuations of the global UTCI.

3.1 Calculation of Universal Thermal Climate Index

The deviation between the UTCI and temperature hinges on
meteorological variables such as air temperature, mean ra-
diant temperature, wind speed, and water vapor pressure,
which can be expressed by the following formula (Bröde et
al., 2012):

UTCI= Ta+Offset(TaTmrtVaPa)= f (TaTmrtVaPa), (1)

where Ta represents air temperature (°C), Tmrt denotes mean
radiation temperature (°C), Va stands for wind speed (m s−1),
and Pa corresponds to water vapor pressure (hPa). Tmrt and
Pa can be derived from data concerning humidity, solar ra-
diation, and solar altitude angle. Solar radiation data were
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Figure 2. Production process of the GloUTCI-M.

sourced from ERA5-Land, and solar altitude angles were cal-
culated based on geographical latitude and longitude coordi-
nates. Based on available data from meteorological stations,
we selected records captured between 11:00 and 14:00 local
time as the daily sample data for UTCI calculations. These
daily calculations were then employed to derive the monthly
UTCI for each meteorological station, utilizing the BioKlima
model (BioKlima ver. 2.6 software) (https://www.igipz.pan.
pl, last access: 16 September 2023).

Human comfort levels can be categorized into 10 distinct
classes according to UTCI values (Bröde et al., 2012): ex-
treme cold stress (<−40 °C), very strong cold stress (−40
to −27 °C), strong cold stress (−27 to −13 °C), moderate
cold stress (−13 to 0 °C), slight cold stress (0–9 °C), no ther-
mal stress (9–26 °C), moderate thermal stress (26–32 °C),
strong thermal stress (32–38 °C), very strong thermal stress
(38–46 °C), and extreme thermal stress (> 46 °C). Therefore,
in this study the UTCI below 0 °C implies the presence of
cold stress, with temperatures exceeding 26 °C indicating the
presence of thermal stress.

3.2 Machine learning models

We applied machine learning models to produce the UTCI
dataset because they were more suitable for handling tabu-
lar data and could provide a good balance between model
performance and computational efficiency. We employed a
random division approach to partitioning the monthly UTCI
and covariate data, encompassing all meteorological samples
worldwide from 2000 to 2022, into a training set (90 %) and
a test set for model evaluation (10 %). These subsets served
as the basis for training and evaluating three prominent ma-
chine learning models: XGBoost, LightGBM, and CatBoost.

3.2.1 XGBoost

Extreme Gradient Boosting (XGBoost) is an integrated ma-
chine learning algorithm centered on decision trees, which
utilizes a gradient ascent framework for classification and re-
gression tasks (Chen and Guestrin, 2016). XGBoost is partic-
ularly effective for tabular data. It excels in capturing com-
plex relationships within the data and provides robust pre-
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dictions. As a tool for massively parallel boosting trees, it
is characterized by its efficiency, flexibility, and portability.
XGBoost employs regularization terms in the loss function
to control model complexity while approximating the loss
function through a second-order Taylor expansion, enhanc-
ing model accuracy. It also utilizes techniques like feature
subsampling, node splitting, and handling missing values to
improve model generalization. XGBoost has wide applica-
tion in machine learning competitions and various domains,
including evapotranspiration estimation, land cover classifi-
cation, air quality prediction, and aboveground biomass es-
timation (El Bilali et al., 2023; Katori et al., 2022; Yang et
al., 2024). Training for this model was conducted using the
Python package xgboost, with hyperparameter tuning per-
formed via grid search, encompassing all feasible combina-
tions of hyperparameters.

3.2.2 LightGBM

Light Gradient Boosting Machine (LightGBM) is a boost-
ing framework that adopts a histogram-based decision tree
algorithm to enhance the computational efficiency of Gra-
dient Boosting Decision Trees (GBDT) (Ke et al., 2017).
It stands out for its faster training speed, reduced memory
consumption, enhanced accuracy, and support for distributed
processing. It uses a histogram-based approach for tree con-
struction, which accelerates the training process and makes
it well-suited for large datasets. Its ability to handle categor-
ical features efficiently is advantageous for diverse feature
set. LightGBM utilizes a leaf-wise tree growth strategy to se-
lect the leaf node with the highest gain at each split, enabling
faster and deeper tree growth and improving model accuracy.
LightGBM has demonstrated its ability to expedite GBDT
model training without compromising accuracy and has been
applied to various prediction tasks involving spatiotemporal
variables (Ahlswede et al., 2023; Aybar et al., 2022). We
trained this model using the Python package lightgbm and
conducted hyperparameter tuning through a grid search, ex-
ploring all potential combinations of hyperparameters.

3.2.3 CatBoost

Categorical Boosting (CatBoost) operates on the symmet-
ric decision tree (oblivious trees) principle, offering few pa-
rameters, support for categorical variables, and high accu-
racy (Prokhorenkova et al., 2018). CatBoost is specifically
designed to handle categorical features without the need for
extensive pre-processing. It computes statistics on categori-
cal features, such as category frequency, and uses hyperpa-
rameters to generate new numerical features. Its categorical
boosting approach contributes to its robust performance. The
algorithm employs a sort boosting technique to tackle noisy
points in the training set, mitigating Gradient Bias and ad-
dressing Prediction Shift issues, which reduces overfitting
and enhances model accuracy and generalization. CatBoost

has wide application in domains like meteorology, hydrol-
ogy, agriculture, and regression and prediction tasks across
various fields (Tasaki et al., 2022; Cravo et al., 2022). We
conducted training for this model using the Python package
catboost and executed hyperparameter tuning through grid
search, systematically exploring all possible combinations of
hyperparameters.

3.3 Model evaluation metrics

To assess the suitability of XGBoost, LightGBM, and Cat-
Boost for predicting the UTCI and determine the optimal
machine learning model for producing the UTCI dataset,
we employed three widely recognized metrics for evaluating
predictive models: the mean absolute error (MAE), the root
mean square error (RMSE), and the coefficient of determina-
tion (R2). Both MAE and RMSE serve as metrics to gauge
the overall accuracy of a model by quantifying the magni-
tude of the error between the predicted values and the ob-
served values. MAE is computed as the average of the abso-
lute differences between the predicted and observed values,
while RMSE represents the square root of the average of the
squared differences between predicted and observed values.
Smaller values for MAE and RMSE indicate a more precise
prediction. R2 measures the extent to which the model fits
the data and ranges between 0 and 1. A value closer to 1 sig-
nifies a superior model fit. The calculations for these three
indicators are as follows:

MAE=
1
n

n∑
i=1

|Pi −Ci | (2)

RMSE=

√√√√1
n

n∑
i=1

(Pi −Ci)2 (3)

R2
= 1−

n∑
i=1

(Ci −Pi)2/

n∑
i=1

(Ci − C̄)2, (4)

where Pi represents the predicted UTCI, Ci denotes the ob-
served UTCI calculated based on data from the meteorolog-
ical samples, C̄ is the average value of all Ci , and n signi-
fies the number of samples. The test dataset was utilized to
compute these evaluation metrics, thereby enabling the as-
sessment of the machine learning model for UTCI prediction
capability.

3.4 Spatiotemporal analysis

To comprehensively understand the spatiotemporal distribu-
tion of the global UTCI, we employ two distinct analytical
methods: the Bayesian model averaging time-series decom-
position algorithm (BEAST) to identify the characteristics of
the global UTCI from the spatial perspective, and the Theil–
Sen median analysis along with the Mann–Kendall (MK)
method to understand the changing trend of the global UTCI
from the temporal perspective.
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BEAST analysis is a Bayesian model averaging algo-
rithm designed for the decomposition of numerical series
data (Zhao et al., 2019). Its primary purpose is to identify
key characteristics such as mutation points and nonlinear
trends within the data. BEAST is advantageous because it
enhances the accuracy of detecting mutation points by pro-
viding prior and posterior probability distributions for these
points. It quantifies the inherent uncertainty associated with
mutation detection by assigning quantitative probabilities.
BEAST has been widely applied in diverse numerical series
data, including financial, public health, economic, and eco-
logical datasets (Mulverhill et al., 2023; Pitarch et al., 2021).
To address the issue of potentially differing or conflicting es-
timation results produced by various models, BEAST em-
ploys Bayesian modeling to assess the relative importance of
individual models; averages the results from multiple mod-
els; and decomposes the observation in the numerical series
into three components, i.e., the trend signal, seasonal signal
(for the time series), and residual signal, with the trend signal
for further mutation points’ identification (Zhao et al., 2019).

The trend analysis carried out by the Theil–Sen slope esti-
mation method and the test of significance of the trend using
the MK method can reflect the effective trend of each pixel in
the time series. This comprehensive method has been widely
used in the trend significance test of long-time-series data in
many fields such as ecology, meteorology and hydrology (He
et al., 2022; Hu et al., 2023). The Theil–Sen slope estima-
tion method is a robust nonparametric statistical technique
used for trend calculation. It is insensitive to measurement
errors and outlier data and thus is effective in handling miss-
ing value noise. This method computes slopes between pairs
of data points in the time series and calculates the median
of these slopes to determine the overall trend (Zheng et al.,
2021).

β =median
(
Xj −Xi

j − i

)
∀j > i, (5)

where Xj and Xi represent observed data points in the time
series, and β indicates the overall trend. If β is greater than 0,
it suggests an increasing trend, while β less than 0 indicates
a decreasing trend.

The MK method is a nonparametric test that does not re-
quire the measurements to follow a normal distribution. It is
robust against missing values and outliers and is used to test
the significance of the time-series trend as a supplement to
the Theil–Sen slope estimation method. The test statistic is
calculated based on the relationship between data values in
the time series Xi (i = 1, 2, 3, . . . , n) (Peng et al., 2023).

Z =


S

√
Var(S)

(S > 0)
0 (S = 0)
S+1
√

Var(S)
(S < 0)

(6)

Var(S)=
n(n− 1)(2n+ 5)

18
, (7)

where Z is the standardized test statistic, S is the relation-
ship between the size of Xi and Xj among all pairs of values
(Xj ,Xi , j > i) in the time series, and n is the number of data
in the time series. When the absolute value of Z exceeds cer-
tain critical values (1.65, 1.96, and 2.58), it indicates that the
trend is statistically significant at confidence levels of 90 %,
95 %, and 99 %, respectively. The 95 % confidence level is
commonly employed in this study.

4 Results

4.1 Model performance

To identify the optimal machine learning model for achiev-
ing heightened accuracy in the global monthly UTCI dataset,
we employed the test dataset to assess the performance of
XGBoost, LightGBM, and CatBoost. Our evaluation process
consisted of two key steps. Firstly, we juxtaposed the pre-
dicted UTCI generated by each model against the observed
UTCI from meteorological station samples and then calcu-
lated accuracy metrics such as MAE, RMSE, andR2 (Fig. 3).
Secondly, we computed the mean of the absolute residuals
(MAR) between the predicted UTCI and the observed UTCI
at globally available meteorological stations (Fig. 4). This al-
lowed us to discern global variations in the performance of
the three models.

The concordance between the predicted UTCI and the ob-
served UTCI was notably strong for all three models, as
evidenced by data points predominantly clustering around
the 1 : 1 line. The positional deviation between the regres-
sion line and the 1 : 1 line for lower UTCI values signi-
fies varying degrees of overestimation in the UTCI predic-
tions of the three models. Notably, LightGBM exhibited
a relatively larger positional deviation between the regres-
sion line and the 1 : 1 line (Fig. 3b), followed by XGBoost
(Fig. 3a), with CatBoost demonstrating the smallest devia-
tion (Fig. 3c). Regarding MAE, both XGBoost and Light-
GBM exhibited values close to 0.9 °C, with a slightly smaller
MAE for XGBoost. In stark contrast, CatBoost boasted a
substantially lower MAE of 0.747 °C, clearly surpassing the
performance of XGBoost and LightGBM. The RMSE among
the three models exhibited significant disparities but maintain
the same order as the MAEs, with CatBoost outperforming
XGBoost and LightGBM. It was noteworthy that both XG-
Boost and LightGBM surpassed an RMSE of 1.1 °C, whereas
CatBoost excelled with an RMSE of under 1 °C. Further-
more, all three models exhibited high values for the R2. XG-
Boost and LightGBM closely approximated with an R2 of
0.991, while CatBoost excelled with the highestR2, reaching
0.994. Consequently, the performance of CatBoost surpassed
that of XGBoost and LightGBM in terms of MAE, RMSE,
and R2.

Utilizing the MAR between the predicted UTCI and the
observed UTCI from all available global meteorological
stations (9083 stations), we employed spatial interpolation
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Figure 3. Comparison of the predicted UTCI derived from machine learning models with the observed UTCI obtained from meteorological
station samples: (a) XGBoost, (b) LightGBM, and (c) CatBoost.

Figure 4. Spatially interpolated distribution and statistics of MAR between the predicted UTCI and the observed UTCI for global meteoro-
logical stations: (a) XGBoost, (b) LightGBM, and (c) CatBoost.
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Figure 5. Global distribution of the monthly and annual UTCI in 2021.

to discern global performance disparities among XGBoost
(Fig. 4a), LightGBM (Fig. 4b), and CatBoost (Fig. 4c). The
global distribution of the MAR for the three models exhibited
a consistent pattern. Regions densely populated with meteo-
rological stations, such as the United States and Europe, dis-
played smaller MAR, while regions with fewer meteorolog-
ical stations, such as Africa and northern Asia, manifested
larger MAR. Notably, the MARs of XGBoost and Light-
GBM exhibited substantial spatial enlargement compared to
that of CatBoost. Specifically, MARs exceeding 1.2 °C ex-
tended over significant expanses, including western Africa,
the Siberian region of Russia, and northern Canada. In these
regions, CatBoost’s MAR remained relatively modest, with
only sporadic areas where MAR exceeded 1.2 °C. In other
global regions, CatBoost consistently maintained a signifi-
cantly lower MAR in comparison to XGBoost and Light-
GBM. The mean MAR for XGBoost and LightGBM was

similar, standing at 0.86 and 0.89 °C, respectively, but both
were notably higher than CatBoost’s mean MAR of 0.49 °C.
Additionally, the count of stations registering MAR exceed-
ing 1.2 °C reached 956 for XGBoost and 1102 for Light-
GBM, constituting more than 10 % of the meteorological sta-
tions (10.5 % and 12.1 %, respectively). In contrast, CatBoost
displayed only 96 meteorological stations with MAR exceed-
ing 1.2 °C, accounting for a mere 1.1 % of the total meteoro-
logical stations. Consequently, CatBoost also demonstrated
superior performance over XGBoost and LightGBM con-
cerning the spatial and numerical distribution of MAR.

4.2 Spatial distribution of the UTCI

Based on the assessment of the three models, CatBoost
emerged as the optimal choice for estimating the global
monthly UTCI. Consequently, we employed CatBoost to
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Figure 6. Global distribution and statistics of cold and thermal stress areas globally in 2021: (a1) winter months, (b1) summer months,
(a2) latitudinal series of winter months, (b2) latitudinal series of summer months, (a3) type of pixel on the latitude series of winter months,
and (b3) type of pixel on the latitude series of summer months.

produce the global monthly 1 km Universal Thermal Climate
Index dataset spanning 2000 to 2022, known as GloUTCI-
M. Utilizing the monthly UTCI data for 2021, along with
its annual counterpart, we conducted an analysis to discern
the spatial distribution pattern of the global UTCI (Fig. 5).
Moreover, we extracted cold stress and thermal stress pixels
for each winter month (referring to the nomenclature of the
Northern Hemisphere, i.e., December, January, and Febru-
ary) and each summer month (referring to the nomenclature
of the Northern Hemisphere, i.e., June, July, and August) in
2021, respectively. This enabled us to delineate the world-
wide distribution of cold and thermal stress areas (Fig. 6).

The distribution pattern of the global monthly UTCI re-
vealed notable differences between the Northern Hemisphere

and the Southern Hemisphere, as well as seasonal variations.
In the Northern Hemisphere, there were prominent latitudi-
nal variations, with the UTCI generally decreasing from the
Equator towards higher latitudes across all months. The trend
of the UTCI in the Southern Hemisphere exhibited less sig-
nificant changes with increasing latitude. Furthermore, the
disparity in the UTCI between the two hemispheres became
more pronounced during the winter months, particularly in
terms of latitude-related differences. Conversely, this differ-
ence diminished during the summer months. The global dis-
tribution of the monthly UTCI also exhibited reasonable vari-
ations in accordance with the changing seasons. During the
summer months (Fig. 5f–h), there was a substantial con-
centration of high UTCI pixels (> 40 °C), while low UTCI
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pixels (<−20 °C) were less prevalent in both the North-
ern Hemisphere and Southern Hemisphere. In contrast, the
Northern Hemisphere experienced a notable abundance of
low UTCI pixels in the winter months (Fig. 5a, b, and l).
Furthermore, we computed the mean UTCI at each longi-
tude and latitude based on annual UTCI data and represented
them in a line plot (Fig. 5m). This plot highlighted two re-
gions with the relatively high UTCI in northern South Amer-
ica and northern Africa. In the latitudinal perspective, regions
with the relatively high UTCI were also evident in southern
Asia and Australia.

The global distribution of cold stress areas (UTCI < 0 °C)
and thermal stress areas (UTCI > 26 °C) during the winter
months, as determined by the mean UTCI exhibited signif-
icant latitudinal heterogeneity (Fig. 6a1). The concentration
of cold stress areas was particularly notable in the northern
regions of North America and the Asian–European conti-
nent. Conversely, no-stress areas encompassed regions such
as the United States, the Mediterranean, and China. Thermal
stress areas were widely dispersed, encompassing the ma-
jority of the Southern Hemisphere and the region between
the Equator and the Tropic of Cancer. By employing BEAST
analysis, we identified mutation points in the quantity of
cold and thermal stress pixels along the latitudinal sequence
(Fig. 6a2). Notably, the spatial range from 54 to 34° N ex-
perienced a substantial reduction in cold stress pixels, while
thermal stress pixels showed a rapid increase between 33 and
23° N, with another increase between 13 and 32° S. Further-
more, the number of occurrences of cold and thermal stress
pixels at each latitude during the three winter months was ex-
amined separately (Fig. 6a3). It was observed that cold stress
pixels in the region above 50° N remained relatively stable
throughout the three winter months, whereas there were sig-
nificant monthly fluctuations in the region between 30 and
50° N. Conversely, the thermal stress pixel displayed signifi-
cant monthly fluctuations in the region from 15° S to 10° N.

During the summer months, the global thermal stress area,
exhibited widespread distribution, while the cold stress area
was more sporadic (Fig. 6b1). The majority of the regions
around the Equator fell within the thermal stress area. Con-
versely, other regions (such as the northern part of North
America; most of Europe; and the southern part of South
America, Africa, and Australia) were characterized by high
concentration of no-stress areas. Given the limited presence
of cold stress areas, we focused on plotting the number of
thermal stress pixel occurrences along the latitudinal series
and employed BEAST analysis to pinpoint mutation points
(Fig. 6b2). The interval from 57 to 33° N experienced a sig-
nificant increase in the number of thermal stress pixel, and
this number remained consistently high within the 33° N–
23° S interval (with fluctuations within the 14° N–23° S in-
terval). However, a sharp decrease in the number of thermal
stress pixels was observed in the 23–33° S interval. Further-
more, there were substantial monthly fluctuations in the num-
ber of thermal stress pixel occurrences across latitudes during

the three summer months (Fig. 6b3). This phenomenon was
particularly pronounced in the 30° N–30° S interval, where a
large number of pixels experienced thermal stress in only one
or two of the summer months.

4.3 Temporal trends of the UTCI

Utilizing GloUTCI-M, we examined the time-series evolu-
tion of the global UTCI. Initially, we compiled the monthly
global UTCI from 2000 to 2022, along with the mean annual
UTCI from 2001 to 2021. Subsequently, we constructed indi-
vidual scatter plots to gain insight into the fluctuations in the
global UTCI (Fig. 7). Furthermore, we extracted the mean
annual UTCI for global pixels and employed the Theil–Sen
slope estimation method and the MK method to identify the
trend of the global UTCI (Fig. 8).

Between the years from 2000 to 2022, there was a note-
worthy increase in the mean global UTCI during the summer
months (June–September) with statistical significance (p <
0.05). In contrast, the trend in the mean global UTCI dur-
ing winter was mostly non-significant (p > 0.05). Addition-
ally, the trend in the mean annual global UTCI demonstrated
a substantial elevation (R2

= 0.66, p < 0.05) (Fig. 7m). To
gain a deeper understanding of how each month’s UTCI con-
tributed to or suppressed the mean annual global UTCI from
2001 to 2021, we produced waterfall plots (Fig. 7n). This
plot allowed us to discern the positive or negative impact
of each month’s UTCI by comparing the difference between
the annual UTCI and the UTCI for that specific month. The
mean annual global UTCI for the period 2001–2021 was
17.24 °C. Out of the 12 months, 7 months (April–October)
made a positive contribution towards achieving the mean an-
nual global UTCI. Among these, July held the most substan-
tial contribution (+9.86 °C), followed by August (+8.97 °C)
and June (+8.92 °C). Conversely, the remaining 5 months
(January–March, November, and December) fell below the
mean annual global UTCI. Among these, January exerted the
most significant inhibitory effect (−11.96 °C), while Decem-
ber and February also displayed notable inhibitory effects
(−11.05 and −9.33 °C, respectively).

The annual UTCI trends for global pixels were predomi-
nantly characterized by a significantly increasing trend and
a non-significant trend, with few pixels exhibiting signif-
icantly decreasing trend (Fig. 8a). Regions displaying an
increasing UTCI trend included the western United States
(Fig. 8b1), the eastern part of Brazil (Fig. 8b2), western Eu-
rope (Fig. 8b3), Southeast Asia (Fig. 8b4), and the eastern
part of China (Fig. 8b5). Regions with a decreasing UTCI
trend were primarily situated in southern Mexico (Fig. 8c1),
northern South America (Fig. 8c2), central Africa (Fig. 8c3),
western India (Fig. 8c4), and southwestern China (Fig. 8c5).
Additionally, we separately counted the top 10 countries with
the highest pixel number of UTCI trends showing increas-
ing or decreasing patterns. Regions such as Russia in Asia
and Europe, Brazil in South America, and Libya in Africa
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Figure 7. Global monthly and annual UTCI changes from 2000 to 2022: (a–l) monthly UTCI changes, (m) annual UTCI changes, and
(n) difference between each monthly UTCI and the annual UTCI.

had over 1 000 000 pixels exhibiting an increasing UTCI
trend, which served as hotspots driving the increase in the
mean annual global UTCI (Fig. 8d1). Both China and India
had more than 500 000 pixels displaying a decreasing UTCI
trend, playing a significant role in mitigating the elevation of
the mean annual global UTCI (Fig. 8d2).

5 Discussion

5.1 Comparison with existing UTCI dataset

Given the availability of existing UTCI datasets, we un-
dertook a comparative analysis of the spatial distributions
of ERA5-HEAT, HiTiSEA, and GloUTCI-M across various
scales, including the intercontinental, city cluster, and city
scales. We extracted UTCI data from the ERA5-HEAT be-

tween 11:00 and 14:00 local time to calculate the monthly
UTCI for the year 2019. Simultaneously, we extracted the
maximum daily UTCI from the HiTiSEA to derive the
monthly UTCI for the same year. Moreover, we compared
the data quality of the three types of datasets by plotting
Taylor diagrams and using RMSE and R2. Specifically, us-
ing the year 2019 as a case study, we selected meteorolog-
ical stations situated in East and South Asia as representa-
tive samples. We then calculated the disparities between the
monthly UTCI obtained from the three datasets and those
derived from meteorological observation data for summer
(June, July, and August), winter (December, January, and
February), and all 12 months throughout the year.

ERA5-HEAT, HiTiSEA, and GloUTCI-M manifested
analogous UTCI spatial pattern at the intercontinental
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Figure 8. Significant trends in the annual UTCI for global pixels: (a) spatial distribution, (b1–b5) typical areas with increasing trend in
the annual UTCI, (c1–c5) typical areas with decreasing trend in the annual UTCI, (d1) top 10 countries with the highest number of pixels
showing an increasing trend in the annual UTCI, and (d2) top 10 countries with the highest number of pixels showing a decreasing trend in
the annual UTCI.

scale (Fig. 9). Nevertheless, at the city cluster and city
scales, GloUTCI-M exhibited marked advantages. Specifi-
cally, GloUTCI-M excelled in delineating intricate variations
in the UTCI within urban areas. Furthermore, we conducted
a comprehensive assessment by comparing the disparities
between these three datasets and the observed UTCI col-
lected from meteorological stations. This evaluation, repre-
sented by Taylor diagrams, elucidated the disparities in accu-
racy among the trio. When examining winter and year-round
samples, all three datasets demonstrated a robust correlation
with the observed UTCI. Notably, GloUTCI-M yielded the
smallest RMSE, with HiTiSEA and ERA5-HEAT following

closely (Fig. 9d and f). In the case of summer month samples,
the R2 between GloUTCI-M and the observed UTCI consis-
tently exceeded 0.95, whereas the R2 values between ERA5-
HEAT and HiTiSEA and the observed UTCI lingered be-
low 0.8. Furthermore, the RMSE between ERA5-HEAT and
HiTiSEA in comparison to the observed UTCI significantly
surpassed that of GloUTCI-M (Fig. 9e). Hence, in contrast
to ERA5-HEAT and HiTiSEA, GloUTCI-M excelled in por-
traying UTCI distribution at smaller spatial scales with supe-
rior data accuracy, marked by diminished RMSE.
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Figure 9. Comparison of spatial distribution and data accuracy among ERA5-HEAT, HiTiSEA and GloUTCI-M: (a) ERA5-HEAT at differ-
ent spatial scales, (b) HiTiSEA at different spatial scales, (c) GloUTCI-M at different spatial scales, (d) comparison of three UTCI datasets
with the observed UTCI for winter months, (e) comparison of three UTCI datasets with the observed UTCI for summer months, and (f) com-
parison of three UTCI datasets with the annual observed UTCI.

5.2 Global distribution of month availability

The existence of voids in the raster dataset of covariates,
attributed to factors such as cloud cover and spatiotempo-
ral discontinuities, resulted in lacking spatiotemporal seam-
lessness of the GloUTCI-M product. To elucidate the global
spatiotemporal availability of GloUTCI-M, we conducted
a comprehensive assessment of pixel availability across
272 months. Spanning from March 2000 to October 2022,
GloUTCI-M had a maximum missing pixel rate of 2.5 % for

the monthly UTCI data. However, it is noteworthy that the
majority of months within this time frame exhibited a miss-
ing pixel rate of less than 1 %. Furthermore, when scrutiniz-
ing individual months, July and August consistently emerged
with higher rates of missing pixel across all years than other
months (Fig. 10a).

GloUTCI-M boasted robust month availability across the
majority of global regions (Fig. 10b). Nevertheless, there
were three regions characterized by densely low month avail-
ability. These regions included the northern part of South
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Figure 10. Month availability of pixels for GloUTCI-M data: (a) global missing pixel rate for each month, (b) spatial distribution of month
availability, (c1–c3) areas of densely missing pixels for monthly data, and (d1–d3) missing pixel rate by month for areas of densely missing
pixels.

America (Fig. 10c1), the western coast of Africa (Fig. 10c2),
and Southeast Asia (Fig. 10c3). Examining the month-
averaged missing pixel rates for these regions, we could ob-
serve values below 10 %. Southeast Asia reported the high-
est missing pixel rate at 9.21 %, followed by the west coast
of Africa at 8.47 %, while northern South America recorded
relatively low rates at 7.28 %. Notably, these regions ex-
hibited varying trends in missing pixel rates by month. For
northern South America, the period from January through
May and December showcased above-average missing pixel
rates, notably exceeding 10 % from February through April
(Fig. 10d1). Conversely, the west coast of Africa experienced
a concentration of missing pixels from June to September,
with August peaking at more than 20 % (Fig. 10d2). South-
east Asia exhibited heightened missing pixel rates from June
through August, all surpassing 15 % (Fig. 10d3).

5.3 Limitations and future works

The production of GloUTCI-M is intrinsically linked to the
quality of the covariate data. Consequently, the existence of
missing pixels within these covariates would result in vary-
ing degrees of monthly UTCI data missing for global pix-
els of GloUTCI-M. To enhance both the accuracy and data
availability of the GloUTCI-M, a viable avenue is to identify
and utilize spatiotemporally seamless remote sensing data for
the covariates. Several covariates, such as LST, LULC, and
kNDVI, utilized in the GloUTCI-M production process were
drawn from the MODIS data. Consequently, GloUTCI-M
exclusively comprises global monthly UTCI data spanning
March 2000 to October 2022, as there is no access to MODIS
data before 2000. A promising strategy for extending the
temporal range of the global monthly UTCI dataset involves
leveraging available covariate data from different time pe-
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riods to produce UTCI datasets corresponding to those spe-
cific time periods. Subsequently, by fusing these datasets, the
expansion of the temporal coverage of the global monthly
UTCI dataset can be realized.

6 Data availability

The GloUTCI-M comprises global monthly UTCI data at
a spatial resolution of 1 km, spanning March 2000 to Oc-
tober 2022. This dataset is openly accessible in GeoTIFF
format via Zenodo: https://doi.org/10.5281/zenodo.8310513
(Yang et al., 2023). The dataset is expressed in degrees Cel-
sius (°C) and is stored as an integer type (Int16). To utilize it
appropriately, one must divide the values by 100.

7 Conclusion

To address the existing gaps in UTCI data availability and
enhance the applicability of the UTCI in various domains,
we have produced a global monthly UTCI dataset, i.e.,
GloUTCI-M, which boasts global coverage, a long time se-
ries spanning March 2000 to October 2022, and a high spa-
tial resolution of 1 km. GloUTCI-M is the result of amalga-
mating multiple data sources (including LST, NTL, LULC,
kNDVI, and DEM) and employing an optimized machine
learning model of CatBoost. Our analysis of the spatial and
temporal evolution of the global UTCI, based on GloUTCI-
M, revealed disparities between the Northern Hemisphere
and the Southern Hemisphere, as well as seasonal fluctua-
tions. Significant latitudinal variations were apparent in the
distribution of global cold and thermal stress areas. Dur-
ing the summer months (June–September), the global mean
UTCI experienced a notable increase, with an even more pro-
nounced elevation observed in the trend of the global mean
annual UTCI. This trend, at the pixel level, was predomi-
nantly characterized by an increasing trend, with few pix-
els displaying a decreasing trend. In the global UTCI trend,
countries like Russia and Brazil emerged as key contribu-
tors to the rising global mean annual UTCI, while coun-
tries such as China and India exerted a greater influence
in mitigating this rise. In addition, when compared to ex-
isting UTCI datasets such as ERA5-HEAT and HiTiSEA,
GloUTCI-M excelled in portraying UTCI distributions at fine
spatial scales and offering superior data accuracy. It is antici-
pated that the GloUTCI-M will serve as a valuable resource,
providing comprehensive and accurate information to sup-
port research and policymaking across various domains, in-
cluding meteorological science, health management, urban
planning, and agriculture. Its utility extends to enhancing hu-
man comfort, reducing weather-related health risks, and fa-
cilitating better adaptation to the challenges posed by climate
change.
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