Articles | Volume 15, issue 2
https://doi.org/10.5194/essd-15-869-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-869-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 based on integrating geostationary and polar-orbiting satellite data
Aolin Jia
Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
Department of Geography, The University of Hong Kong, Hong Kong SAR 999077, China
Dongdong Wang
Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
Lei Ma
Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
Zhihao Wang
Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
Shuo Xu
Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
Related authors
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Hui Liang, Shunlin Liang, Bo Jiang, Tao He, Feng Tian, Jianglei Xu, Wenyuan Li, Fengjiao Zhang, and Husheng Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-136, https://doi.org/10.5194/essd-2025-136, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
This paper describes 1 km daily mean land surface sensible heat flux (H) and land surface – air temperature difference (Tsa) datasets on the global scale during 2000–2020. The datasets were developed using a data-driven approach and rigorously validated against in situ observations and existing H and Tsa datasets, demonstrating both high accuracy and exceptional spatial resolution.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553, https://doi.org/10.5194/essd-2024-553, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Soil moisture (SM) plays a vital role in climate, agriculture, and hydrology, yet reliable long-term seamless global datasets remain scarce. To fill this gap, we developed a four-decade seamless global daily 5 km SM product using multi-source datasets and deep learning techniques. This product has long-term coverage, spatial and temporal integrity, and high accuracy, making it a valuable tool for applications like SM trend analysis, drought monitoring, and assessing vegetation responses.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Xinyan Liu, Tao He, Shunlin Liang, Ruibo Li, Xiongxin Xiao, Rui Ma, and Yichuan Ma
Earth Syst. Sci. Data, 15, 3641–3671, https://doi.org/10.5194/essd-15-3641-2023, https://doi.org/10.5194/essd-15-3641-2023, 2023
Short summary
Short summary
We proposed a data fusion strategy that combines the complementary features of multiple-satellite cloud fraction (CF) datasets and generated a continuous monthly 1° daytime cloud fraction product covering the entire Arctic during the sunlit months in 2000–2020. This study has positive significance for reducing the uncertainties for the assessment of surface radiation fluxes and improving the accuracy of research related to climate change and energy budgets, both regionally and globally.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data, 15, 2055–2079, https://doi.org/10.5194/essd-15-2055-2023, https://doi.org/10.5194/essd-15-2055-2023, 2023
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Ruohan Li, Dongdong Wang, Weile Wang, and Ramakrishna Nemani
Earth Syst. Sci. Data, 15, 1419–1436, https://doi.org/10.5194/essd-15-1419-2023, https://doi.org/10.5194/essd-15-1419-2023, 2023
Short summary
Short summary
There has been an increasing need for high-spatiotemporal-resolution surface downward shortwave radiation (DSR) and photosynthetically active radiation (PAR) data for ecological, hydrological, carbon, and solar photovoltaic research. This study produced a new 1 km hourly product of land surface DSR and PAR from the enhanced GeoNEX new-generation geostationary data. Our validation indicated that the GeoNEX DSR and PAR product has a higher accuracy than other existing products.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Lei Ma, George Hurtt, Lesley Ott, Ritvik Sahajpal, Justin Fisk, Rachel Lamb, Hao Tang, Steve Flanagan, Louise Chini, Abhishek Chatterjee, and Joseph Sullivan
Geosci. Model Dev., 15, 1971–1994, https://doi.org/10.5194/gmd-15-1971-2022, https://doi.org/10.5194/gmd-15-1971-2022, 2022
Short summary
Short summary
We present a global version of the Ecosystem Demography (ED) model which can track vegetation 3-D structure and scale up ecological processes from individual vegetation to ecosystem scale. Model evaluation against multiple benchmarking datasets demonstrated the model’s capability to simulate global vegetation dynamics across a range of temporal and spatial scales. With this version, ED has the potential to be linked with remote sensing observations to address key scientific questions.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Xiaona Chen, Shunlin Liang, Lian He, Yaping Yang, and Cong Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-279, https://doi.org/10.5194/essd-2021-279, 2021
Preprint withdrawn
Short summary
Short summary
The present study developed a 39 year consistent 8-day 0.05 degree gap-free SCE dataset over the NH for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite based on the NOAA AVHRR-SR CDR and several contributory datasets. Compared with published SCE datasets, GLASS SCE has several advantages in snow cover studies, including long time series, finer spatial resolution (especially for years before 2000), and complete spatial coverage.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Louise Chini, George Hurtt, Ritvik Sahajpal, Steve Frolking, Kees Klein Goldewijk, Stephen Sitch, Raphael Ganzenmüller, Lei Ma, Lesley Ott, Julia Pongratz, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 4175–4189, https://doi.org/10.5194/essd-13-4175-2021, https://doi.org/10.5194/essd-13-4175-2021, 2021
Short summary
Short summary
Carbon emissions from land-use change are a large and uncertain component of the global carbon cycle. The Land-Use Harmonization 2 (LUH2) dataset was developed as an input to carbon and climate simulations and has been updated annually for the Global Carbon Budget (GCB) assessments. Here we discuss the methodology for producing these annual LUH2 updates and describe the 2019 version which used new cropland and grazing land data inputs for the globally important region of Brazil.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-53, https://doi.org/10.5194/essd-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
The Köppen-Geiger climate classification has been widely applied in climate change and ecology studies to characterize climatic conditions. We present a new 1-km global dataset of Köppen-Geiger climate classification and bioclimatic variables for historical and future climates. The new climate maps offer higher classification accuracy, correspond well with distributions of vegetation and topographic features, and demonstrate the ability to identify recent and future changes in climate zones.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Cited articles
Anderson, M. C., Kustas, W. P., Norman, J. M., Hain, C. R., Mecikalski, J. R., Schultz, L., González-Dugo, M. P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F.: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery, Hydrol. Earth Syst. Sci., 15, 223–239, https://doi.org/10.5194/hess-15-223-2011, 2011.
Anderson, M. C., Zolin, C. A., Sentelhas, P. C., Hain, C. R., Semmens, K.,
Yilmaz, M. T., Gao, F., Otkin, J. A., and Tetrault, R.: The Evaporative
Stress Index as an indicator of agricultural drought in Brazil: An
assessment based on crop yield impacts, Remote Sens. Environ., 174,
82–99, 2016.
André, C., Ottlé, C., Royer, A., and Maignan, F.: Land surface
temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS
data, Remote Sens. Environ., 162, 1–10, 2015.
Augustine, J. A., DeLuisi, J. J., and Long, C. N.: SURFRAD – A national
surface radiation budget network for atmospheric research, B.
Am. Meteorol. Soc., 81, 2341–2357, https://doi.org/10.1175/1520-0477(2000)081<2341:Sansrb>2.3.Co;2, 2000.
Bhardwaj, A., Singh, S., Sam, L., Bhardwaj, A., Martín-Torres, F. J.,
Singh, A., and Kumar, R.: MODIS-based estimates of strong snow surface
temperature anomaly related to high altitude earthquakes of 2015, Remote Sens. Environ., 188, 1–8, 2017.
Boukabara, S.-A., Garrett, K., Chen, W., Iturbide-Sanchez, F., Grassotti,
C., Kongoli, C., Chen, R., Liu, Q., Yan, B., and Weng, F.: MiRS: An
all-weather 1DVAR satellite data assimilation and retrieval system, IEEE
T. Geosci. Remote, 49, 3249–3272, 2011.
Chang, Y., Xiao, J., Li, X., Frolking, S., Zhou, D., Schneider, A., Weng,
Q., Yu, P., Wang, X., and Li, X.: Exploring diurnal cycles of surface urban
heat island intensity in Boston with land surface temperature data derived
from GOES-R geostationary satellites, Sci. Total Environ., 763, 144224, https://doi.org/10.1016/j.scitotenv.2020.144224, 2021.
Chen, X., Su, Z., Ma, Y., Cleverly, J., and Liddell, M.: An accurate
estimate of monthly mean land surface temperatures from MODIS clear-sky
retrievals, J. Hydrometeorol., 18, 2827–2847, 2017.
Coccia, G., Siemann, A. L., Pan, M., and Wood, E. F.: Creating consistent
datasets by combining remotely-sensed data and land surface model estimates
through Bayesian uncertainty post-processing: The case of Land Surface
Temperature from HIRS, Remote Sens. Environ., 170, 290–305, https://doi.org/10.1016/j.rse.2015.09.010, 2015.
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D.,
Nguyen, C., Wielicki, B. A., Young, D. F., and Sun, M.: Geostationary
enhanced temporal interpolation for CERES flux products, J.
Atmos. Ocean. Tech., 30, 1072–1090, 2013.
Doelling, D. R., Sun, M., Nordeen, M. L., Haney, C. O., Keyes, D. F., and
Mlynczak, P. E.: Advances in geostationary-derived longwave fluxes for the
CERES synoptic (SYN1deg) product, J. Atmos. Ocean.
Tech., 33, 503–521, 2016.
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018.
Duan, S.-B., Li, Z.-L., Wang, N., Wu, H., and Tang, B.-H.: Evaluation of six
land-surface diurnal temperature cycle models using clear-sky in situ and
satellite data, Remote Sens. Environ., 124, 15–25, 2012.
Duan, S. B., Li, Z. L., and Leng, P.: A framework for the retrieval of
all-weather land surface temperature at a high spatial resolution from
polar-orbiting thermal infrared and passive microwave data, Remote Sens. Environ., 195, 107–117, https://doi.org/10.1016/j.rse.2017.04.008, 2017.
Dumitrescu, A., Brabec, M., and Cheval, S.: Statistical Gap-Filling of
SEVIRI Land Surface Temperature, Remote Sens., 12, 1423,
https://doi.org/10.3390/rs12091423, 2020.
Ermida, S. L., Trigo, I. F., DaCamara, C. C., Jimenez, C., and Prigent, C.:
Quantifying the clear-sky bias of satellite land surface temperature using
microwave-based estimates, J. Geophys. Res.-Atmos.,
124, 844–857, 2019.
Fensholt, R., Anyamba, A., Huber, S., Proud, S. R., Tucker, C. J., Small,
J., Pak, E., Rasmussen, M. O., Sandholt, I., and Shisanya, C.: Analysing the
advantages of high temporal resolution geostationary MSG SEVIRI data
compared to Polar Operational Environmental Satellite data for land surface
monitoring in Africa, Int. J. Appl. Earth Obs., 13, 721–729, 2011.
Freitas, S. C., Trigo, I. F., Bioucas-Dias, J. M., and Gottsche, F.-M.:
Quantifying the uncertainty of land surface temperature retrievals from
SEVIRI/Meteosat, IEEE T. Geosci. Remote, 48,
523–534, 2009.
Freitas, S. C., Trigo, I. F., Macedo, J., Barroso, C., Silva, R., and
Perdigão, R.: Land surface temperature from multiple geostationary
satellites, Int. J. Remote Sens., 34, 3051–3068, 2013.
Fu, Q., Liou, K., Cribb, M., Charlock, T., and Grossman, A.: Multiple
scattering parameterization in thermal infrared radiative transfer, J. Atmos. Sci., 54, 2799–2812, 1997.
Good, E. J.: An in situ-based analysis of the relationship between land
surface “skin” and screen-level air temperatures, J. Geophys. Res.-Atmos., 121, 8801–8819, 2016.
Good, E. J., Ghent, D. J., Bulgin, C. E., and Remedios, J. J.: A
spatiotemporal analysis of the relationship between near-surface air
temperature and satellite land surface temperatures using 17 years of data
from the ATSR series, J. Geophys. Res.-Atmos., 122,
9185–9210, 2017.
Guillevic, P. C., Bork-Unkelbach, A., Göttsche, F. M., Hulley, G.,
Gastellu-Etchegorry, J.-P., Olesen, F. S., and Privette, J. L.: Directional
viewing effects on satellite land surface temperature products over sparse
vegetation canopies – A multisensor analysis, IEEE Geosci. Remote
Sens. Lett., 10, 1464–1468, 2013.
Hachem, S., Duguay, C. R., and Allard, M.: Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain, The Cryosphere, 6, 51–69, https://doi.org/10.5194/tc-6-51-2012, 2012.
Hansen, J., Sato, M., and Ruedy, R.: Long-term changes of the diurnal
temperature cycle: implications about mechanisms of global climate change,
Atmos. Res., 37, 175–209, 1995.
Hernandez-Barrera, S., Rodriguez-Puebla, C., and Challinor, A.: Effects of
diurnal temperature range and drought on wheat yield in Spain, Theor. Appl. Climatol., 129, 503–519, 2017.
Hong, F., Zhan, W., Göttsche, F.-M., Lai, J., Liu, Z., Hu, L., Fu, P.,
Huang, F., Li, J., and Li, H.: A simple yet robust framework to estimate
accurate daily mean land surface temperature from thermal observations of
tandem polar orbiters, Remote Sens. Environ., 264, 112612, https://doi.org/10.1016/j.rse.2021.112612, 2021.
Hong, F., Zhan, W., Göttsche, F.-M., Liu, Z., Dong, P., Fu, H., Huang, F., and Zhang, X.: A global dataset of spatiotemporally seamless daily mean land surface temperatures: generation, validation, and analysis, Earth Syst. Sci. Data, 14, 3091–3113, https://doi.org/10.5194/essd-14-3091-2022, 2022.
Hrisko, J., Ramamurthy, P., Yu, Y., Yu, P., and Melecio-Vázquez, D.:
Urban air temperature model using GOES-16 LST and a diurnal regressive
neural network algorithm, Remote Sens. Environ., 237, 111495, https://doi.org/10.1016/j.rse.2019.111495, 2020.
Hu, L., Sun, Y., Collins, G., and Fu, P.: Improved estimates of monthly land
surface temperature from MODIS using a diurnal temperature cycle (DTC)
model, ISPRS J. Photogramm. Remote, 168, 131–140,
2020.
Hulley, G.: MYD21 MODIS/Aqua land surface Temperature/3-Band emissivity
5-Min L2 1km V006, NASA EOSDIS L. Process. DAAC, 10, https://doi.org/10.5067/MODIS/MYD21.006, 2015.
Hulley, G. C. and Hook, S. J.: Intercomparison of versions 4, 4.1 and 5 of
the MODIS Land Surface Temperature and Emissivity products and validation
with laboratory measurements of sand samples from the Namib desert, Namibia,
Remote Sens. Environ., 113, 1313–1318, 2009.
Hulley, G., Malakar, N., and Freepartner, R.: Moderate Resolution Imaging
Spectroradiometer (MODIS) land surface temperature and emissivity product
(MxD21) algorithm theoretical basis document collection-6, JPL Publication,
12–17, 2016.
Jia, A., Liang, S., Jiang, B., Zhang, X., and Wang, G.: Comprehensive
assessment of global surface net radiation products and uncertainty
analysis, J. Geophys. Res.-Atmos., 123, 1970–1989,
2018.
Jia, A., Liang, S., Wang, D., Jiang, B., and Zhang, X.: Air pollution slows down surface warming over the Tibetan Plateau, Atmos. Chem. Phys., 20, 881–899, https://doi.org/10.5194/acp-20-881-2020, 2020.
Jia, A., Ma, H., Liang, S., and Wang, D.: Cloudy-sky land surface
temperature from VIIRS and MODIS satellite data using a surface energy
balance-based method, Remote Sens. Environ., 263, 112566, https://doi.org/10.1016/j.rse.2021.112566, 2021.
Jia, A., Liang, S., and Wang, D.: Generating a 2-km, all-sky, hourly land
surface temperature product from Advanced Baseline Imager data, Remote Sens. Environ., 278, 113105, https://doi.org/10.1016/j.rse.2022.113105, 2022a.
Jia, A., Liang, S., Wang, D., Ma, L., Wang, Z., and Xu, S.: Global Hourly,
5-km, All-sky Land Surface Temperature (GHA-LST) (V01), Zenodo [data set],
https://doi.org/10.5281/zenodo.7487284, 2022b.
Jia, A., Liang, S., Wang, D., Ma, L., Wang, Z., and Xu, S.: Global Hourly,
5-km, All-sky Land Surface Temperature (GHA-LST) (V01), http://glass.umd.edu/allsky_LST/GHA-LST (last access: 10 February 2023), 2022c.
Jia, A., Wang, D., Liang, S., Peng, J., and Yu, Y.: Global daily actual and
snow-free blue-sky land surface albedo climatology from 20-year MODIS
products, J. Geophys. Res.-Atmos., 127, e2021JD035987, https://doi.org/10.1029/2021JD035987,
2022d.
Jiang, Y., Fu, P., and Weng, Q.: Downscaling GOES land surface temperature
for assessing heat wave health risks, IEEE Geosci. Remote Sens.
Lett., 12, 1605–1609, 2015.
Jin, M.: Interpolation of surface radiative temperature measured from polar
orbiting satellites to a diurnal cycle: 2. Cloudy-pixel treatment, J. Geophys. Res.-Atmos., 105, 4061–4076, 2000.
Jin, M.: Analysis of land skin temperature using AVHRR observations,
B. Am. Meteorol. Soc., 85, 587–600, 2004.
Jin, M. and Dickinson, R. E.: A generalized algorithm for retrieving cloudy
sky skin temperature from satellite thermal infrared radiances, J. Geophys. Res.-Atmos., 105, 27037–27047, 2000.
Jin, M. and Treadon, R.: Correcting the orbit drift effect on AVHRR land
surface skin temperature measurements, Int. J. Remote
Sens., 24, 4543–4558, 2003.
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P.
A.: Spatial and temporal distribution of clouds observed by MODIS onboard
the Terra and Aqua satellites, IEEE T. Geosci. Remote, 51, 3826–3852, 2013.
Kuang, X. and Jiao, J. J.: Review on climate change on the Tibetan Plateau
during the last half century, J. Geophys. Res.-Atmos., 121, 3979–4007, https://doi.org/10.1002/2015JD024728, 2016.
Lenssen, N. J., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A.,
Ruedy, R., and Zyss, D.: Improvements in the GISTEMP uncertainty model,
J. Geophys. Res.-Atmos., 124, 6307–6326, 2019.
Li, B., Liang, S., Liu, X., Ma, H., Chen, Y., Liang, T., and He, T.:
Estimation of all-sky 1 km land surface temperature over the conterminous
United States, Remote Sens. Environ., 266, 112707, https://doi.org/10.1016/j.rse.2021.112707, 2021.
Li, H., Sun, D., Yu, Y., Wang, H., Liu, Y., Liu, Q., Du, Y., Wang, H., and
Cao, B.: Evaluation of the VIIRS and MODIS LST products in an arid area of
Northwest China, Remote Sens. Environ., 142, 111–121, 2014.
Li, H., Li, R., Yang, Y., Cao, B., Bian, Z., Hu, T., Du, Y., Sun, L., and
Liu, Q.: Temperature-based and radiance-based validation of the collection 6
MYD11 and MYD21 land surface temperature products over barren surfaces in
northwestern China, IEEE T. Geosci. Remote, 59,
1794–1807, 2020.
Li, R., Wang, D., Liang, S., Jia, A., and Wang, Z.: Estimating global
downward shortwave radiation from VIIRS data using a transfer-learning
neural network, Remote Sens. Environ., 274, 112999, https://doi.org/10.1016/j.rse.2022.112999, 2022.
Li, X., Cheng, G., Liu, S., Xiao, Q., Ma, M., Jin, R., Che, T., Liu, Q.,
Wang, W., and Qi, Y.: Heihe watershed allied telemetry experimental research
(HiWATER): Scientific objectives and experimental design, B. Am. Meteorol. Soc., 94, 1145–1160, 2013.
Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., and
Sobrino, J. A.: Satellite-derived land surface temperature: Current status
and perspectives, Remote Sens. Environ., 131, 14–37, https://doi.org/10.1016/j.rse.2012.12.008, 2013.
Li, Z.-L., Wu, H., Duan, S.-B., Zhao, W., Ren, H., Liu, X., Leng, P.,
Tang, R., Ye, X., Zhu, J., Sun, Y., Si, S., Liu, M., Li, J., Zhang,
X., Shang, G., Tang, B.-H., Yan, G., and Zhou, C.: Satellite Remote
Sensing of Global Land Surface Temperature: Definition, Methods, Products,
and Applications, Rev. Geophys., 61, e2022RG000777, https://doi.org/10.1029/2022RG000777, 2022.
Liang, S., Wang, D., He, T., and Yu, Y.: Remote sensing of earth's energy
budget: synthesis and review, Int. J. Digit. Earth, 12, 1–44, https://doi.org/10.1080/17538947.2019.1597189, 2019.
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan,
W., Zhang, X., and Zhao, X.: The global land surface satellite (GLASS)
product suite, B. Am. Meteorol. Soc., 102,
E323–E337, https://doi.org/10.1175/BAMS-D-18-0341.1, 2021.
Liu, Y., Hiyama, T., and Yamaguchi, Y.: Scaling of land surface temperature
using satellite data: A case examination on ASTER and MODIS products over a
heterogeneous terrain area, Remote Sens. Environ., 105, 115–128,
2006.
Liu, Z., Zhan, W., Lai, J., Bechtel, B., Lee, X., Hong, F., Li, L., Huang,
F., and Li, J.: Taxonomy of seasonal and diurnal clear-sky climatology of
surface urban heat island dynamics across global cities, ISPRS J. Photogramm. Remote, 187, 14–33, 2022.
Liu, Z. H., Wu, P. H., Duan, S. B., Zhan, W. F., Ma, X. S., and Wu, Y. L.:
Spatiotemporal Reconstruction of Land Surface Temperature Derived From
FengYun Geostationary Satellite Data, IEEE J. Sel. Top.
Appl. Earth Obs., 10, 4531–4543, https://doi.org/10.1109/Jstars.2017.2716376, 2017.
Loeb, N. G., Doelling, D. R., Wang, H. L., Su, W. Y., Nguyen, C., Corbett,
J. G., Liang, L. S., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the
Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31,
895–918, https://doi.org/10.1175/Jcli-D-17-0208.1, 2018.
Long, D., Yan, L., Bai, L., Zhang, C., Li, X., Lei, H., Yang, H., Tian, F.,
Zeng, C., and Meng, X.: Generation of MODIS-like land surface temperatures
under all-weather conditions based on a data fusion approach, Remote Sens. Environ., 246, 111863, https://doi.org/10.1016/j.rse.2020.111863, 2020.
Lu, L., Venus, V., Skidmore, A., Wang, T., and Luo, G.: Estimating
land-surface temperature under clouds using MSG/SEVIRI observations,
Int. J. Appl. Earth Obs., 13,
265-276, 2011.
Ma, J., Zhou, J., Göttsche, F.-M., Liang, S., Wang, S., and Li, M.: A global long-term (1981–2000) land surface temperature product for NOAA AVHRR, Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, 2020.
Ma, J., Zhou, J., Liu, S., Göttsche, F.-M., Zhang, X., Wang, S., and Li,
M.: Continuous evaluation of the spatial representativeness of land surface
temperature validation sites, Remote Sens. Environ., 265, 112669, https://doi.org/10.1016/j.rse.2021.112669,
2021.
Ma, J., Shen, H., Wu, P., Wu, J., Gao, M., and Meng, C.: Generating gapless
land surface temperature with a high spatio-temporal resolution by fusing
multi-source satellite-observed and model-simulated data, Remote Sens. Environ., 278, 113083, https://doi.org/10.1016/j.rse.2022.113083, 2022.
Martins, J., Trigo, I. F., Ghilain, N., Jimenez, C., Göttsche, F.-M.,
Ermida, S. L., Olesen, F.-S., Gellens-Meulenberghs, F., and Arboleda, A.: An
All-Weather Land Surface Temperature Product Based on MSG/SEVIRI
Observations, Remote Sensing, 11, 3044, https://doi.org/10.3390/rs11243044, 2019.
Marullo, S., Santoleri, R., Ciani, D., Le Borgne, P., Pere, S., Pinardi, N.,
Tonani, M., and Nardone, G.: Combining model and geostationary satellite
data to reconstruct hourly SST field over the Mediterranean Sea, Remote Sens. Environ., 146, 11–23, https://doi.org/10.1016/j.rse.2013.11.001, 2014.
Melvin, A. M., Larsen, P., Boehlert, B., Neumann, J. E., Chinowsky, P.,
Espinet, X., Martinich, J., Baumann, M. S., Rennels, L., and Bothner, A.:
Climate change damages to Alaska public infrastructure and the economics of
proactive adaptation, P. Natl. Acad. Sci. USA, 114,
E122–E131, 2017.
Meng, X., Lyu, S., Zhang, T., Zhao, L., Li, Z., Han, B., Li, S., Ma, D.,
Chen, H., Ao, Y., Luo, S., Shen, Y., Guo, J., and Wen, L.: Simulated cold
bias being improved by using MODIS time-varying albedo in the Tibetan
Plateau in WRF model, Environ, Res, Lett,, 13, 044028, https://doi.org/10.1088/1748-9326/aab44a, 2018.
Metz, M., Andreo, V., and Neteler, M.: A new fully gap-free time series of
land surface temperature from MODIS LST data, Remote Sens., 9, 1333, https://doi.org/10.3390/rs9121333, 2017.
Metz, M., Rocchini, D., and Neteler, M.: Surface temperatures at the
continental scale: tracking changes with remote sensing at unprecedented
detail, Remote Sens., 6, 3822–3840, 2014.
Minnis, P., Sun-Mack, S., Chen, Y., Chang, F.-L., Yost, C. R., Smith, W. L.,
Heck, P. W., Arduini, R. F., Bedka, S. T., and Yi, Y.: CERES MODIS cloud
product retrievals for edition 4 – Part I: Algorithm changes, IEEE
T. Geosci. Remote, 59, 2744–2780, 2020.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Mudele, O., Bayer, F. M., Zanandrez, L. F., Eiras, A. E., and Gamba, P.:
Modeling the Temporal Population Distribution of Ae. aegypti Mosquito Using
Big Earth Observation Data, Ieee Access, 8, 14182–14194, 2020.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Mutiibwa, D., Strachan, S., and Albright, T.: Land surface temperature and
surface air temperature in complex terrain, IEEE J. Sel. Top. Appl. Earth Obs., 8, 4762–4774, 2015.
Nogueira, M., Boussetta, S., Balsamo, G., Albergel, C., Trigo, I. F.,
Johannsen, F., Miralles, D. G., and Dutra, E.: Upgrading Land-Cover and
Vegetation Seasonality in the ECMWF Coupled System: Verification With
FLUXNET Sites, METEOSAT Satellite Land Surface Temperatures, and ERA5
Atmospheric Reanalysis, J. Geophys. Res.-Atmos., 126,
e2020JD034163, https://doi.org/10.1029/2020JD034163, 2021.
Novick, K. A., Biederman, J., Desai, A., Litvak, M., Moore, D. J., Scott,
R., and Torn, M.: The AmeriFlux network: A coalition of the willing,
Agric. Forest Meteorol., 249, 444–456, 2018.
Orth, R., Dutra, E., Trigo, I. F., and Balsamo, G.: Advancing land surface model development with satellite-based Earth observations, Hydrol. Earth Syst. Sci., 21, 2483–2495, https://doi.org/10.5194/hess-21-2483-2017, 2017.
Osborn, T. J. and Jones, P. D.: The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth, Earth Syst. Sci. Data, 6, 61–68, https://doi.org/10.5194/essd-6-61-2014, 2014.
Ouyang, B., Che, T., DAI, L.-y., and WANG, Z.-y.: Estimating Mean Daily
Surface Temperature over the Tibetan Plateau Based on MODIS LST Products, J. Glaciol. Geocryol., 2, 296–303, 2012.
Peng, S.-S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z., Myneni, R.
B., Yin, Y., and Zeng, H.: Afforestation in China cools local land surface
temperature, P. Natl. Acad. Sci. USA, 111,
2915–2919, 2014.
Piao, S., Tan, J., Chen, A., Fu, Y. H., Ciais, P., Liu, Q., Janssens, I. A.,
Vicca, S., Zeng, Z., and Jeong, S.-J.: Leaf onset in the northern hemisphere
triggered by daytime temperature, Nat. Commun., 6, 1–8, 2015.
Piles, M., Petropoulos, G. P., Sánchez, N., González-Zamora, Á.,
and Ireland, G.: Towards improved spatio-temporal resolution soil moisture
retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations,
Remote Sens. Environ., 180, 403–417, 2016.
Pinker, R. T., Ma, Y., Chen, W., Hulley, G., Borbas, E., Islam, T., Hain,
C., Cawse-Nicholson, K., Hook, S., and Basara, J.: Towards a unified and
coherent land surface temperature earth system data record from
geostationary satellites, Remote Sens., 11, 1399, https://doi.org/10.3390/rs11121399, 2019.
Quintano, C., Fernández-Manso, A., Calvo, L., Marcos, E., and Valbuena,
L.: Land surface temperature as potential indicator of burn severity in
forest Mediterranean ecosystems, Int. J. Appl. Earth
Obs., 36, 1–12, 2015.
Rains, D., Trigo, I., Dutra, E., Ermida, S., Ghent, D., Hulsman, P., Gómez-Dans, J., and Miralles, D. G.: High-resolution all-sky land surface temperature and net radiation over Europe, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-302, in review, 2022.
Remer, L. A., Tanre, D., Kaufman, Y. J., Levy, R., and Mattoo, S.: Algorithm
for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 5–Product
ID: MOD04/MYD04, NASA, http://MODIS-atmos.gsfc.nasa.gov/_docs/MOD04-MYD04_ATBD_C005.pdf (last access: 10 February 2023), 2006.
Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., and Bosilovich, M.: The
global land data assimilation system, B. Am. Meteorol. Soc., 85, 381–394, 2004.
Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S., Rosenfeld, A., Wurtele,
J., Curry, J., Wickhams, C., and Mosher, S.: Berkeley Earth Temperature
Averaging Process, Geoinfor. Geostat.-An Overview, 1, 20–100, 2013.
Rutan, D. A., Kato, S., Doelling, D. R., Rose, F. G., Nguyen, L. T.,
Caldwell, T. E., and Loeb, N. G.: CERES synoptic product: Methodology and
validation of surface radiant flux, J. Atmos. Ocean.
Tech., 32, 1121–1143, 2015.
Shiff, S., Helman, D., and Lensky, I. M.: Worldwide continuous gap-filled
MODIS land surface temperature dataset, Sci. Data, 8, 1–10, 2021.
Sohrabinia, M., Zawar-Reza, P., and Rack, W.: Spatio-temporal analysis of
the relationship between LST from MODIS and air temperature in New Zealand,
Theor. Appl. Climatol., 119, 567–583, 2015.
Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R., and Jensen, K. H.:
Combining the triangle method with thermal inertia to estimate regional
evapotranspiration – Applied to MSG-SEVIRI data in the Senegal River basin,
Remote Sens. Environ., 112, 1242–1255, 2008.
Sun, D., Pinker, R. T., and Kafatos, M.: Diurnal temperature range over the
United States: A satellite view, Geophys. Res. Lett., 33, 5, https://doi.org/10.1029/2005GL024780, 2006.
Wan, Z.: New refinements and validation of the MODIS land-surface
temperature/emissivity products, Remote Sens. Environ., 112, 59–74,
2008.
Wang, K. and Dickinson, R. E.: Global atmospheric downward longwave
radiation at the surface from ground-based observations, satellite
retrievals, and reanalyses, Rev. Geophys., 51, 150–185, 2013.
Wang, T., Shi, J., Ma, Y., Letu, H., and Li, X.: All-sky longwave downward
radiation from satellite measurements: General parameterizations based on
LST, column water vapor and cloud top temperature, ISPRS J. Photogramm. Remote, 161, 52–60, https://doi.org/10.1016/j.isprsjprs.2020.01.011, 2020.
Wang, Y.-R., Hessen, D. O., Samset, B. H., and Stordal, F.: Evaluating
global and regional land warming trends in the past decades with both MODIS
and ERA5-Land land surface temperature data, Remote Sens. Environ.,
280, 113181, https://doi.org/10.1016/j.rse.2022.113181, 2022.
Wu, P., Su, Y., Duan, S.-b., Li, X., Yang, H., Zeng, C., Ma, X., Wu, Y., and
Shen, H.: A two-step deep learning framework for mapping gapless all-weather
land surface temperature using thermal infrared and passive microwave data,
Remote Sens. Environ., 277, 113070, https://doi.org/10.1016/j.rse.2022.113070, 2022.
Wu, P. H., Yin, Z. X., Yang, H., Wu, Y. L., and Ma, X. S.: Reconstructing
Geostationary Satellite Land Surface Temperature Imagery Based on a
Multiscale Feature Connected Convolutional Neural Network, Remote Sens.,
11, 300,
https://doi.org/10.3390/rs11030300, 2019.
Xing, Z., Li, Z.-L., Duan, S.-B., Liu, X., Zheng, X., Leng, P., Gao, M.,
Zhang, X., and Shang, G.: Estimation of daily mean land surface temperature
at global scale using pairs of daytime and nighttime MODIS instantaneous
observations, ISPRS J. Photogramm. Remote, 178,
51–67, 2021.
Xu, S. and Cheng, J.: A new land surface temperature fusion strategy based
on cumulative distribution function matching and multiresolution Kalman
filtering, Remote Sens. Environ., 254, 112256, https://doi.org/10.1016/j.rse.2020.112256, 2021.
Yan, Y., Mao, K., Shi, J., Piao, S., Shen, X., Dozier, J., Liu, Y., Ren,
H.-l., and Bao, Q.: Driving forces of land surface temperature anomalous
changes in North America in 2002–2018, Sci. Rep.-UK, 10, 1–13, 2020.
Yao, R., Wang, L., Wang, S., Wang, L., Wei, J., Li, J., and Yu, D.: A
detailed comparison of MYD11 and MYD21 land surface temperature products in
mainland China, Int. J. Digit. Earth, 13, 1391–1407, 2020.
Yu, P., Zhao, T., Shi, J., Ran, Y., Jia, L., Ji, D., and Xue, H.: Global
spatiotemporally continuous MODIS land surface temperature dataset, Sci.
Data, 9, 1–15, 2022.
Yu, Y., Tarpley, D., Privette, J. L., Goldberg, M. D., Raja, M. R. V.,
Vinnikov, K. Y., and Xu, H.: Developing algorithm for operational GOES-R
land surface temperature product, IEEE T. Geosci. Remote, 47, 936–951, 2008.
Zhan, W., Chen, Y., Zhou, J., Wang, J., Liu, W., Voogt, J., Zhu, X., Quan,
J., and Li, J.: Disaggregation of remotely sensed land surface temperature:
Literature survey, taxonomy, issues, and caveats, Remote Sens. Environ., 131, 119–139, 2013.
Zhang, Q., Wang, N., Cheng, J., and Xu, S.: A stepwise downscaling method
for generating high-resolution land surface temperature from AMSR-E data,
IEEE J. Sel. Top. Appl. Earth Ob., 13, 5669–5681, 2020.
Zhang, T., Zhou, Y., Zhu, Z., Li, X., and Asrar, G. R.: A global seamless 1 km resolution daily land surface temperature dataset (2003–2020), Earth Syst. Sci. Data, 14, 651–664, https://doi.org/10.5194/essd-14-651-2022, 2022.
Zhang, X., Liang, S., Wild, M., and Jiang, B.: Analysis of surface incident
shortwave radiation from four satellite products, Remote Sens. Environ., 165, 186–202, 2015.
Zhang, X., Zhou, J., Gottsche, F.-M., Zhan, W., Liu, S., and Cao, R.: A
Method Based on Temporal Component Decomposition for Estimating 1-km
All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared
and Passive Microwave Observations, IEEE T. Geosci. Remote, 57, 4670–4691, https://doi.org/10.1109/tgrs.2019.2892417, 2019.
Zhang, X., Zhou, J., Liang, S., and Wang, D.: A practical reanalysis data
and thermal infrared remote sensing data merging (RTM) method for
reconstruction of a 1-km all-weather land surface temperature, Remote Sens. Environ., 260, 112437, https://doi.org/10.1016/j.rse.2021.112437, 2021.
Zhao, B., Mao, K., Cai, Y., Shi, J., Li, Z., Qin, Z., Meng, X., Shen, X., and Guo, Z.: A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017, Earth Syst. Sci. Data, 12, 2555–2577, https://doi.org/10.5194/essd-12-2555-2020, 2020.
Zhao, P., Xu, X., Chen, F., Guo, X., Zheng, X., Liu, L., Hong, Y., Li, Y.,
La, Z., and Peng, H.: The third atmospheric scientific experiment for
understanding the earth–atmosphere coupled system over the Tibetan Plateau
and its effects, B. Am. Meteorol. Soc., 99,
757–776, 2018.
Zhao, W., Wu, H., Yin, G., and Duan, S.-B.: Normalization of the temporal
effect on the MODIS land surface temperature product using random forest
regression, ISPRS J. Photogramm. Remote, 152,
109–118, 2019.
Zhou, L., Tian, Y., Baidya Roy, S., Thorncroft, C., Bosart, L. F., and Hu,
Y.: Impacts of wind farms on land surface temperature, Nat. Clim.
Change, 2, 539–543, 2012.
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017.
Short summary
Satellites are now producing multiple global land surface temperature (LST) products; however, they suffer from data gaps caused by cloud cover, seriously restricting the applications, and few products provide gap-free global hourly LST. We produced global hourly, 5 km, all-sky LST data from 2011 to 2021 using geostationary and polar-orbiting satellite data. Based on the assessment, it has high accuracy and can be used to estimate evapotranspiration, drought, etc.
Satellites are now producing multiple global land surface temperature (LST) products; however,...
Altmetrics
Final-revised paper
Preprint