Articles | Volume 15, issue 10
https://doi.org/10.5194/essd-15-4689-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4689-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Last Glacial loess in Europe: luminescence database and chronology of deposition
PACEA, UMR 5199 CNRS – Université Bordeaux, Allée Geoffroy Saint Hilaire, 33615 Pessac, France
Sebastian Kreutzer
CORRESPONDING AUTHOR
Institute of Geography, Heidelberg University, Im Neuenheimer Feld 348, 69120 Heidelberg, Germany
Geography & Earth Sciences, Aberystwyth University, Aberystwyth SY23, Wales, United Kingdom
Archéosciences-Bordeaux, UMR 6034, CNRS – Université Bordeaux Montaigne, Maison de l'Archéologie, 33607 Pessac, France
Pascal Bertran
PACEA, UMR 5199 CNRS – Université Bordeaux, Allée Geoffroy Saint Hilaire, 33615 Pessac, France
Inrap, 140 avenue du Maréchal Leclerc, 33130 Bègles, France
Philippe Lanos
Archéosciences-Bordeaux, UMR 6034, CNRS – Université Bordeaux Montaigne, Maison de l'Archéologie, 33607 Pessac, France
Géosciences-Rennes, UMR 6118 CNRS – Université de Rennes 1, 35042 Rennes, France
Philippe Dufresne
Archéosciences-Bordeaux, UMR 6034, CNRS – Université Bordeaux Montaigne, Maison de l'Archéologie, 33607 Pessac, France
Géosciences-Rennes, UMR 6118 CNRS – Université de Rennes 1, 35042 Rennes, France
Christoph Schmidt
Institute of Earth Surface Dynamics – University of Lausanne, Géopolis, 1015 Lausanne, Switzerland
Related authors
No articles found.
Christoph Schmidt, Théo Halter, Paul R. Hanson, Alexey Ulianov, Benita Putlitz, Georgina E. King, and Sebastian Kreutzer
Geochronology, 6, 665–682, https://doi.org/10.5194/gchron-6-665-2024, https://doi.org/10.5194/gchron-6-665-2024, 2024
Short summary
Short summary
We study the use of zircons as dosimeters using modern techniques, highlighting their advantages such as time-invariant dose rates. We explore the correlation between zircon geochemistry and luminescence properties, observe fast zircon optically stimulated luminescence (OSL) bleaching rates, and assess the potential of auto-regeneration. Low OSL sensitivities require combining natural OSL and auto-regenerated thermoluminescence (TL), with the potential to enhance age accuracy and precision.
Sebastian Kreutzer, Loïc Martin, Didier Miallier, and Norbert Mercier
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-31, https://doi.org/10.5194/gchron-2024-31, 2024
Preprint under review for GChron
Short summary
Short summary
Accurate readings on the environmental gamma dose rate are important. Portable gamma-ray detectors, such as NaI or LaBr3-based, are easy to handle and affordable. Limited information on alternatives, like CZT (Cadmium Zinc Telluride) detectors is available. We tested CZT detectors and found them suitable for in-field deployment. We used simulations and field tests to evaluate the optimal energy threshold for direct dose rate readings, making the CZT system a reliable alternative.
Mariana Sontag-González, Raju Kumar, Jean-Luc Schwenninger, Juergen Thieme, Sebastian Kreutzer, and Marine Frouin
Geochronology, 6, 77–88, https://doi.org/10.5194/gchron-6-77-2024, https://doi.org/10.5194/gchron-6-77-2024, 2024
Short summary
Short summary
This is a preliminary study using a synchrotron light source to generate elemental maps, incorporating oxidation states, with a spatial resolution of <1 µm for individual grains within the K-feldspar density fraction. The elemental fingerprint characterizing grains with a signal suitable for infrared radiofluorescence dating reveals high levels of K, Pb, and Ba coupled with low levels of Fe and Ca. In contrast, grains exhibiting higher proportions of Fe and Ca produce an odd signal shape.
Nora Pfaffner, Annette Kadereit, Volker Karius, Thomas Kolb, Sebastian Kreutzer, and Daniela Sauer
E&G Quaternary Sci. J., 73, 1–22, https://doi.org/10.5194/egqsj-73-1-2024, https://doi.org/10.5194/egqsj-73-1-2024, 2024
Short summary
Short summary
We present results of the Baix loess–palaeosol sequence, SE France. Reconstructed intense soil formation under warm, moist conditions before and into the last ice age and less intense soil formations in warm (temporarily moist) phases during the generally cold, dry ice age were validated with laboratory and dating techniques. This is particularly relevant as Baix is located in the temperate–Mediterranean climate transition zone, a sensitive zone that is susceptible to future climate changes.
Sebastian Kreutzer, Steve Grehl, Michael Höhne, Oliver Simmank, Kay Dornich, Grzegorz Adamiec, Christoph Burow, Helen M. Roberts, and Geoff A. T. Duller
Geochronology, 5, 271–284, https://doi.org/10.5194/gchron-5-271-2023, https://doi.org/10.5194/gchron-5-271-2023, 2023
Short summary
Short summary
The concept of open data has become the modern science meme. Funding bodies and publishers support open data. However, the open data mandate frequently encounters technical obstacles, such as a lack of a suitable data format for data sharing and long-term data preservation. Such issues are often community-specific and demand community-tailored solutions. We propose a new human-readable data format for data exchange and long-term preservation of luminescence data called XLUM.
Michael Dietze, Sebastian Kreutzer, Margret C. Fuchs, and Sascha Meszner
Geochronology, 4, 323–338, https://doi.org/10.5194/gchron-4-323-2022, https://doi.org/10.5194/gchron-4-323-2022, 2022
Short summary
Short summary
The R package sandbox is a collection of functions that allow the creation, sampling and analysis of fully virtual sediment sections, like having a virtual twin of real-world deposits. This article introduces the concept, features, and workflows required to use sandbox. It shows how a real-world sediment section can be mapped into the model and subsequently addresses a series of theoretical and practical questions, exploiting the flexibility of the model framework.
Norbert Mercier, Jean-Michel Galharret, Chantal Tribolo, Sebastian Kreutzer, and Anne Philippe
Geochronology, 4, 297–310, https://doi.org/10.5194/gchron-4-297-2022, https://doi.org/10.5194/gchron-4-297-2022, 2022
Short summary
Short summary
Dosimetric dating methods based on the analysis of luminescence signals emitted by granular minerals extracted from sedimentary deposits now play an important role in the study of the Quaternary. Here we propose a new approach in which the age of the deposit is calculated by combining the equivalent dose and dose-rate distributions. The underlying Bayesian mathematical model and its implementation via an R code are provided, together with the results obtained for a finite set of configurations.
Kim H. Stadelmaier, Patrick Ludwig, Pascal Bertran, Pierre Antoine, Xiaoxu Shi, Gerrit Lohmann, and Joaquim G. Pinto
Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021, https://doi.org/10.5194/cp-17-2559-2021, 2021
Short summary
Short summary
We use regional climate simulations for the Last Glacial Maximum to reconstruct permafrost and to identify areas of thermal contraction cracking of the ground in western Europe. We find ground cracking, a precondition for the development of permafrost proxies, south of the probable permafrost border, implying that permafrost was not the limiting factor for proxy development. A good agreement with permafrost and climate proxy data is achieved when easterly winds are modelled more frequently.
Barbara Mauz, Loïc Martin, Michael Discher, Chantal Tribolo, Sebastian Kreutzer, Chiara Bahl, Andreas Lang, and Nobert Mercier
Geochronology, 3, 371–381, https://doi.org/10.5194/gchron-3-371-2021, https://doi.org/10.5194/gchron-3-371-2021, 2021
Short summary
Short summary
Luminescence dating requires irradiating the sample in the laboratory. Here, we address some concerns about the reliability of the calibration procedure that have been published recently. We found that the interplay between geometrical parameters such as grain size and aliquot size impacts the calibration value more than previously thought. The results of our study are robust and allow us to recommend an improved calibration procedure in order to enhance the reliability of the calibration value.
Dirk Mittelstraß and Sebastian Kreutzer
Geochronology, 3, 299–319, https://doi.org/10.5194/gchron-3-299-2021, https://doi.org/10.5194/gchron-3-299-2021, 2021
Short summary
Short summary
Our contribution enhances the infrared radiofluorescence dating technique, used to determine the last sunlight exposure of potassium feldspars in a range of about 600 to 600 000 years backwards. We recorded radiofluorescence images of fine sands and processed them with tailored open-source software to obtain ages from single grains. Finally, we tested our new method successfully on two natural sediment samples. Studies in Earth science will benefit from improved age accuracy and new insights.
Guillaume Guérin, Christelle Lahaye, Maryam Heydari, Martin Autzen, Jan-Pieter Buylaert, Pierre Guibert, Mayank Jain, Sebastian Kreutzer, Brice Lebrun, Andrew S. Murray, Kristina J. Thomsen, Petra Urbanova, and Anne Philippe
Geochronology, 3, 229–245, https://doi.org/10.5194/gchron-3-229-2021, https://doi.org/10.5194/gchron-3-229-2021, 2021
Short summary
Short summary
This paper demonstrates how to model optically stimulated luminescence (OSL) and radiocarbon ages in a Bayesian framework, using a dedicated software tool called BayLum. We show the effect of stratigraphic constraints, of modelling the covariance of ages when the same equipment is used for a series of OSL samples, and of including independent ages on a chronological inference. The improvement in chronological resolution is significant.
Dominik Faust, Sebastian Kreutzer, Yesmine Trigui, Maximilian Pachtmann, Georg Mettig, Moncef Bouaziz, Jose Manuel Recio Espejo, Fernando Diaz del Olmo, Christoph Schmidt, Tobias Lauer, Zeljko Rezek, Alexander Fülling, and Sascha Meszner
E&G Quaternary Sci. J., 69, 55–58, https://doi.org/10.5194/egqsj-69-55-2020, https://doi.org/10.5194/egqsj-69-55-2020, 2020
Annette Kadereit, Sebastian Kreutzer, Christoph Schmidt, and Regina DeWitt
Geochronology Discuss., https://doi.org/10.5194/gchron-2020-3, https://doi.org/10.5194/gchron-2020-3, 2020
Preprint withdrawn
Related subject area
Domain: ESSD – Land | Subject: Palaeooceanography, palaeoclimatology
Seeing the wood for the trees: active human–environmental interactions in arid northwestern China
SISALv3: a global speleothem stable isotope and trace element database
Paleo±Dust: quantifying uncertainty in paleo-dust deposition across archive types
A modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau
The World Atlas of Last Interglacial Shorelines (version 1.0)
A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years
Artemisia pollen dataset for exploring the potential ecological indicators in deep time
Hui Shen, Robert N. Spengler, Xinying Zhou, Alison Betts, Peter Weiming Jia, Keliang Zhao, and Xiaoqiang Li
Earth Syst. Sci. Data, 16, 2483–2499, https://doi.org/10.5194/essd-16-2483-2024, https://doi.org/10.5194/essd-16-2483-2024, 2024
Short summary
Short summary
Understanding how early farmers adapted to their environments is important regarding how we respond to the changing climate. Here, we present wood charcoal records from northwestern China to explore human–environmental interactions. Our data suggest that people started managing chestnut trees around 4600 BP and cultivating fruit trees and transporting conifers from 3500 BP. From 2500 BP, people established horticultural systems, showing that they actively adapted to the environment.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Nicolás J. Cosentino, Gabriela Torre, Fabrice Lambert, Samuel Albani, François De Vleeschouwer, and Aloys J.-M. Bory
Earth Syst. Sci. Data, 16, 941–959, https://doi.org/10.5194/essd-16-941-2024, https://doi.org/10.5194/essd-16-941-2024, 2024
Short summary
Short summary
One of the main uncertainties related to future climate change has to do with how aerosols interact with climate. Dust is the most abundant aerosol in the atmosphere by mass. In order to better understand the links between dust and climate, we can turn to geological archives of ancient dust. Paleo±Dust is a compilation of measured values of the paleo-dust deposition rate. We can use this compilation to guide climate models so that they better represent dust–climate interactions.
Qingfeng Ma, Liping Zhu, Jianting Ju, Junbo Wang, Yong Wang, Lei Huang, and Torsten Haberzettl
Earth Syst. Sci. Data, 16, 311–320, https://doi.org/10.5194/essd-16-311-2024, https://doi.org/10.5194/essd-16-311-2024, 2024
Short summary
Short summary
Modern pollen datasets are essential for pollen-based quantitative paleoclimate reconstructions. Here we present a modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau. This dataset can be used not only for quantitative precipitation reconstructions on the central and western Tibetan Plateau, but can also be combined with other pollen datasets to improve the reliability of quantitative climate reconstructions across the entire Tibetan Plateau.
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
Yang Liu, Jingyun Zheng, Zhixin Hao, and Quansheng Ge
Earth Syst. Sci. Data, 14, 5717–5735, https://doi.org/10.5194/essd-14-5717-2022, https://doi.org/10.5194/essd-14-5717-2022, 2022
Short summary
Short summary
Proxy-based precipitation reconstruction is essential to study the inter-annual to decadal variability and underlying mechanisms beyond the instrumental period that is critical for climate modeling, prediction and attribution. We present a set of standard precipitation index reconstructions for the whole year and wet seasons over the whole of Asia since 1700, with the spatial resolution of 2.5°, based on 2912 annually resolved proxy series mainly derived from tree rings and historical documents.
Li-Li Lu, Bo-Han Jiao, Feng Qin, Gan Xie, Kai-Qing Lu, Jin-Feng Li, Bin Sun, Min Li, David K. Ferguson, Tian-Gang Gao, Yi-Feng Yao, and Yu-Fei Wang
Earth Syst. Sci. Data, 14, 3961–3995, https://doi.org/10.5194/essd-14-3961-2022, https://doi.org/10.5194/essd-14-3961-2022, 2022
Short summary
Short summary
Artemisia is one of the dominant plant elements in the arid and semi-arid regions. We attempt to decipher the underlying causes of the long-standing disagreement on the correlation between Artemisia pollen and aridity by using the dataset to recognize the different ecological implications of Artemisia pollen types. Our findings improve the resolution of palaeoenvironmental assessment and change the traditional concept of Artemisia being restricted to arid and semi-arid environments.
Cited articles
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S., Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved dust representation in the Community Atmosphere Model, J. Adv. Model. Earth Sy., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014.
Albani, S., Mahowald, N. M., Winckler, G., Anderson, R. F., Bradtmiller, L. I., Delmonte, B., François, R., Goman, M., Heavens, N. G., Hesse, P. P., Hovan, S. A., Kang, S. G., Kohfeld, K. E., Lu, H., Maggi, V., Mason, J. A., Mayewski, P. A., McGee, D., Miao, X., Otto-Bliesner, B. L., Perry, A. T., Pourmand, A., Roberts, H. M., Rosenbloom, N., Stevens, T., and Sun, J.: Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives, Clim. Past, 11, 869–903, https://doi.org/10.5194/cp-11-869-2015, 2015.
Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E., and Larson, G. J.: How glaciers entrain and transport basal sediment: Physical constraints, Quaternary Sci. Rev., 16, 1017–1038, https://doi.org/10.1016/S0277-3791(97)00034-6, 1997.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, https://doi.org/10.7289/V5C8276M, 2009.
Antoine, P., Rousseau, D.-D., Zöller, L., Lang, A., Munaut, A.-V., Hatté, C., and Fontugne, M.: High-resolution record of the last Interglacial–glacial cycle in the Nussloch loess–palaeosol sequences, Upper Rhine Area, Germany, Quaternary Int., 76–77, 211–229, https://doi.org/10.1016/S1040-6182(00)00104-X, 2001.
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatté, C., Lang, A., Tissoux, H., and Zöller, L.: Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany, Quaternary Sci. Rev., 28, 2955–2973, https://doi.org/10.1016/j.quascirev.2009.08.001, 2009.
Arnalds, O., Dagsson-Waldhauserova, P., and Olafsson, H.: The Icelandic volcanic aeolian environment: Processes and impacts – A review, Aeolian Res., 20, 176–195, https://doi.org/10.1016/j.aeolia.2016.01.004, 2016.
Avram, A., Constantin, D., Veres, D., Kelemen, S., Obreht, I., Hambach, U., Marković, S. B., and Timar-Gabor, A.: Testing polymineral post-IR IRSL and quartz SAR-OSL protocols on Middle to Late Pleistocene loess at Batajnica, Serbia, Boreas, 49, 615–633, https://doi.org/10.1111/bor.12442, 2020.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The configuration of Northern Hemisphere ice sheets through the Quaternary, Nat. Commun., 10, 3713, https://doi.org/10.1038/s41467-019-11601-2, 2019.
Bateman, M. D.: Handbook of luminescence dating, edited by: Bateman, M. D., Whittles Publishing, Dunbeath, 400 pp., 2019.
Baykal, Y., Stevens, T., Engström-Johansson, A., Skurzyński, J., Zhang, H., He, J., Lu, H., Adamiec, G., Költringer, C., and Jary, Z.: Detrital zircon U–Pb age analysis of last glacial loess sources and proglacial sediment dynamics in the Northern European Plain, Quaternary Sci. Rev., 274, 107265, https://doi.org/10.1016/j.quascirev.2021.107265, 2021.
Baykal, Y., Stevens, T., Bateman, M. D., Pfaff, K., Sechi, D., Banak, A., Šuica, S., Zhang, H., and Nie, J.: Eurasian Ice Sheet derived meltwater pulses and their role in driving atmospheric dust activity: Late Quaternary loess sources in SE England, Quaternary Sci. Rev., 296, 107804, https://doi.org/10.1016/j.quascirev.2022.107804, 2022.
Becker, L. W. M., Sejrup, H. P., Hjelstuen, B. O., Haflidason, H., and Dokken, T. M.: Ocean-ice sheet interaction along the SE Nordic Seas margin from 35 to 15 ka BP, Marine Geology, 402, 99–117, https://doi.org/10.1016/j.margeo.2017.09.003, 2018.
Beghin, P., Charbit, S., Dumas, C., Kageyama, M., and Ritz, C.: How might the North American ice sheet influence the northwestern Eurasian climate?, Clim. Past, 11, 1467–1490, https://doi.org/10.5194/cp-11-1467-2015, 2015.
Bertran, P., Bosq, M., Borderie, Q., Coussot, C., Coutard, S., Deschodt, L., Franc, O., Gardère, P., Liard, M., and Wuscher, P.: Revised map of European aeolian deposits derived from soil texture data, Quaternary Sci. Rev., 266, 107085, https://doi.org/10.1016/j.quascirev.2021.107085, 2021.
Bokhorst, M. P., Vandenberghe, J., Sümegi, P., Łanczont, M., Gerasimenko, N. P., Matviishina, Z. N., Marković, S. B., and Frechen, M.: Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records, Quaternary Int., 234, 62–74, https://doi.org/10.1016/j.quaint.2010.07.018, 2011.
Bosq, M., Bertran, P., Degeai, J.-P., Kreutzer, S., Queffelec, A., Moine, O., and Morin, E.: Last Glacial aeolian landforms and deposits in the Rhône Valley (SE France): Spatial distribution and grain-size characterization, Geomorphology, 318, 250–269, https://doi.org/10.1016/j.geomorph.2018.06.010, 2018.
Bosq, M., Bertran, P., Degeai, J.-P., Queffelec, A., and Moine, O.: Geochemical signature of sources, recycling and weathering in the Last Glacial loess from the Rhône Valley (southeast France) and comparison with other European regions, Aeolian Res., 42, 100561, https://doi.org/10.1016/j.aeolia.2019.100561, 2020a.
Bosq, M., Kreutzer, S., Bertran, P., Degeai, J.-P., Dugas, P., Kadereit, A., Lanos, P., Moine, O., Pfaffner, N., Queffelec, A., and Sauer, D.: Chronostratigraphy of two Late Pleistocene loess-palaeosol sequences in the Rhône Valley (southeast France), Quaternary Sci. Rev., 245, 106473, https://doi.org/10.1016/j.quascirev.2020.106473, 2020b.
Bosq, M., Kreutzer, S., Bertran, P., Lanos, P., Dufresne, P., and Schmidt, C.: ChronLoess Database (v1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.7728616, 2023.
Bøtter-Jensen, L., Duller, G. A. T., Murray, A. S., and Banerjee, D.: Blue Light Emitting Diodes for Optical Stimulation of Quartz in Retrospective Dosimetry and Dating, Radiation Protection Dosimetry, 84, 335–340, https://doi.org/10.1093/oxfordjournals.rpd.a032750, 1999.
Braakhekke, J., Ivy-Ochs, S., Monegato, G., Gianotti, F., Martin, S., Casale, S., and Christl, M.: Timing and flow pattern of the Orta Glacier (European Alps) during the Last Glacial Maximum, Boreas, 49, 315–332, https://doi.org/10.1111/bor.12427, 2020.
Bronk Ramsey, C. B.: Methods for Summarizing Radiocarbon Datasets, Radiocarbon, 59, 1809–1833, https://doi.org/10.1017/RDC.2017.108, 2017.
Buggle, B., Glaser, B., Zöller, L., Hambach, U., Marković, S., Glaser, I., and Gerasimenko, N.: Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine), Quaternary Sci. Rev., 27, 1058–1075, https://doi.org/10.1016/j.quascirev.2008.01.018, 2008.
Bullard, J. E.: Contemporary glacigenic inputs to the dust cycle, Earth Surf. Process. Landf., 38, 71–89, https://doi.org/10.1002/esp.3315, 2013.
Bullard, J. E. and Mockford, T.: Seasonal and decadal variability of dust observations in the Kangerlussuaq area, west Greenland, Arct. Antarct. Alp. Res., 50, S100011, https://doi.org/10.1080/15230430.2017.1415854, 2018.
Buylaert, J. P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., and Sohbati, R.: A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments, Boreas, 41, 435–451, https://doi.org/10.1111/j.1502-3885.2012.00248.x, 2012.
Buylaert, J.-P., Újvári, G., Murray, A. S., Smedley, R. K., and Kook, M.: On the relationship between K concentration, grain size and dose in feldspar, Radiat. Meas., 120, 181–187, https://doi.org/10.1016/j.radmeas.2018.06.003, 2018.
Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Jordan, C., and Sejrup, H. P.: Pattern and timing of retreat of the last British-Irish Ice Sheet, Quaternary Sci. Rev., 44, 112–146, https://doi.org/10.1016/j.quascirev.2010.07.019, 2012.
Clark, C. D., Ely, J. C., Hindmarsh, R. C. A., Bradley, S., Ignéczi, A., Fabel, D., Ó Cofaigh, C., Chiverrell, R. C., Scourse, J., Benetti, S., Bradwell, T., Evans, D. J. A., Roberts, D. H., Burke, M., Callard, S. L., Medialdea, A., Saher, M., Small, D., Smedley, R. K., Gasson, E., Gregoire, L., Gandy, N., Hughes, A. L. C., Ballantyne, C., Bateman, M. D., Bigg, G. R., Doole, J., Dove, D., Duller, G. A. T., Jenkins, G. T. H., Livingstone, S. L., McCarron, S., Moreton, S., Pollard, D., Praeg, D., Sejrup, H. P., Van Landeghem, K. J. J., and Wilson, P.: Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction, Boreas, 51, 699–758, https://doi.org/10.1111/bor.12594, 2022.
Clopper, C. J. and Pearson, E. S.: The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial, Biometrika, 26, 404–413, https://doi.org/10.2307/2331986, 1934.
Codilean, A. T., Munack, H., Cohen, T. J., Saktura, W. M., Gray, A., and Mudd, S. M.: OCTOPUS: an open cosmogenic isotope and luminescence database, Earth Syst. Sci. Data, 10, 2123–2139, https://doi.org/10.5194/essd-10-2123-2018, 2018.
Codilean, A. T., Munack, H., Saktura, W. M., Cohen, T. J., Jacobs, Z., Ulm, S., Hesse, P. P., Heyman, J., Peters, K. J., Williams, A. N., Saktura, R. B. K., Rui, X., Chishiro-Dennelly, K., and Panta, A.: OCTOPUS database (v.2), Earth Syst. Sci. Data, 14, 3695–3713, https://doi.org/10.5194/essd-14-3695-2022, 2022.
Constantin, D., Cameniţă, A., Panaiotu, C., Necula, C., Codrea, V., and Timar-Gabor, A.: Fine and coarse-quartz SAR-OSL dating of Last Glacial loess in Southern Romania, Quaternary Int., 357, 33–43, https://doi.org/10.1016/j.quaint.2014.07.052, 2015.
Contreras, D. A. and Meadows, J.: Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach, J. Archaeol. Sci., 52, 591–608, https://doi.org/10.1016/j.jas.2014.05.030, 2014.
Del Gobbo, C., Colucci, R. R., Monegato, G., Žebre, M., and Giorgi, F.: Atmosphere–cryosphere interactions during the last phase of the Last Glacial Maximum (21 ka) in the European Alps, Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, 2023.
de Winter, I. L., Storms, J. E. A., and Overeem, I.: Numerical modeling of glacial sediment production and transport during deglaciation, Geomorphology, 167–168, 102–114, https://doi.org/10.1016/j.geomorph.2012.05.023, 2012.
Dietrich, S. and Seelos, K.: The reconstruction of easterly wind directions for the Eifel region (Central Europe) during the period 40.3–12.9 ka BP, Clim. Past, 6, 145–154, https://doi.org/10.5194/cp-6-145-2010, 2010.
Dijkmans, J. W. A. and Törnqvist, T. E.: Modern Periglacial Eolian Deposits and Landforms in the Sondre Stromfjord Area, West Greenland and Their Palaeoenvironmental Implications, Museum Tusculanum Press, 44 pp., 1991.
DKE/K 967: DIN/TS 44808-1:2022-03, Chronometrische Datierung mittels Lumineszenz in Geowissenschaften und Archäologie - Teil 1: Berichterstattung von Äquivalentdosen und Altersbestimmung, Beuth Verlag GmbH, https://doi.org/10.31030/3319499, 2022.
Duller, G. A. T.: Luminescence Dating: guidelines on using luminescence dating in archaeology, English Heritage, Swindon, 43 pp., 2008.
Duller, G. A. T., Bøtter-Jensen, L., Kohsiek, P., and Murray, A. S.: A High-Sensitivity Optically Stimulated Luminescence Scanning System for Measurement of Single Sand-Sized Grains, Radiat. Prot. Dosim., 84, 325–330, https://doi.org/10.1093/oxfordjournals.rpd.a032748, 1999a.
Duller, G. A. T., Bøtter-Jensen, L., Murray, A. S., and Truscott, A. J.: Single grain laser luminescence (SGLL) measurements using a novel automated reader, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 155, 506–514, https://doi.org/10.1016/S0168-583X(99)00488-7, 1999b.
Duprat-Oualid, F., Rius, D., Bégeot, C., Magny, M., Millet, L., Wulf, S., and Appelt, O.: Vegetation response to abrupt climate changes in Western Europe from 45 to 14.7k cal a BP: the Bergsee lacustrine record (Black Forest, Germany), J. Quaternary Sci., 32, 1008–1021, https://doi.org/10.1002/jqs.2972, 2017.
Durcan, J. A., King, G. E., and Duller, G. A. T.: DRAC: Dose Rate and Age Calculator for trapped charge dating, Quaternary Geochronol., 28, 54–61, https://doi.org/10.1016/j.quageo.2015.03.012, 2015.
Ehlers, J. and Gibbard, P. L.: Quaternary Glaciations – Extent and Chronology: Part I: Europe, Elsevier, Amsterdam, 489 pp., 2004.
Evans, D. J. A., Roberts, D. H., Bateman, M. D., Clark, C. D., Medialdea, A., Callard, L., Grimoldi, E., Chiverrell, R. C., Ely, J., Dove, D., Ó Cofaigh, C., Saher, M., Bradwell, T., Moreton, S. G., Fabel, D., and Bradley, S. L.: Retreat dynamics of the eastern sector of the British–Irish Ice Sheet during the last glaciation, J. Quaternary Sci., 36, 723–751, https://doi.org/10.1002/jqs.3275, 2021.
Fenn, K., Durcan, J. A., Thomas, D. S. G., Millar, I. L., and Marković, S. B.: Re-analysis of late Quaternary dust mass accumulation rates in Serbia using new luminescence chronology for loess–palaeosol sequence at Surduk, Boreas, 49, 634–652, https://doi.org/10.1111/bor.12445, 2020.
Fenn, K., Thomas, D. S. G., Durcan, J. A., Millar, I. L., Veres, D., Piermattei, A., and Lane, C. S.: A tale of two signals: Global and local influences on the Late Pleistocene loess sequences in Bulgarian Lower Danube, Quaternary Sci. Rev., 274, 107264, https://doi.org/10.1016/j.quascirev.2021.107264, 2021.
Fletcher, W. J., Sánchez Goñi, M. F., Allen, J. R. M., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., Müller, U. C., Naughton, F., Novenko, E., Roucoux, K., and Tzedakis, P. C.: Millennial-scale variability during the last glacial in vegetation records from Europe, Quaternary Sci. Rev., 29, 2839–2864, https://doi.org/10.1016/j.quascirev.2009.11.015, 2010.
Frechen, M., Oches, E. A., and Kohfeld, K. E.: Loess in Europe – mass accumulation rates during the Last Glacial Period, Quaternary Sci. Rev., 22, 1835–1857, https://doi.org/10.1016/S0277-3791(03)00183-5, 2003.
Fuchs, M., Kreutzer, S., Rousseau, D.-D., Antoine, P., Hatté, C., Lagroix, F., Moine, O., Gauthier, C., Svoboda, J., and Lisá, L.: The loess sequence of Dolní Věstonice, Czech Republic: A new OSL-based chronology of the Last Climatic Cycle, Boreas, 42, 664–677, https://doi.org/10.1111/j.1502-3885.2012.00299.x, 2013.
Gaar, D., Graf, H. R., and Preusser, F.: New chronological constraints on the timing of Late Pleistocene glacier advances in northern Switzerland, E&G Quaternary Sci. J., 68, 53–73, https://doi.org/10.5194/egqsj-68-53-2019, 2019.
Gilks, W. R., Richardson, S., and Spiegelhalter, D.: Markov Chain Monte Carlo in Practice, Chapman&Hall., Chapman & Hall/CRC, London, 505 pp., 1995.
Green, P. J. and Silverman, B. W.: Nonparametric Regression and Generalized Linear Models: A roughness penalty approach, Chapman & Hall/CRC, London, 198 pp., 1993.
Gribenski, N., Valla, P. G., Preusser, F., Roattino, T., Crouzet, C., and Buoncristiani, J.-F.: Out-of-phase Late Pleistocene glacial maxima in the Western Alps reflect past changes in North Atlantic atmospheric circulation, Geology, 49, 1096–1101, https://doi.org/10.1130/G48688.1, 2021.
Guérin, G., Antoine, P., Schmidt, E., Goval, E., Hérisson, D., Jamet, G., Reyss, J.-L., Shao, Q., Philippe, A., Vibet, M.-A., and Bahain, J.-J.: Chronology of the Upper Pleistocene loess sequence of Havrincourt (France) and associated Palaeolithic occupations: A Bayesian approach from pedostratigraphy, OSL, radiocarbon, TL and ESR/U-series data, Quaternary Geochronol., 42, 15–30, https://doi.org/10.1016/j.quageo.2017.07.001, 2017.
Hallet, B., Hunter, L., and Bogen, J.: Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications, Global Planet. Change, 12, 213–235, https://doi.org/10.1016/0921-8181(95)00021-6, 1996.
Hallet, H.: A Theoretical Model of Glacial Abrasion, J. Glaciol., 23, 39–50, https://doi.org/10.3189/S0022143000029725, 1979.
Hjelstuen, B. O., Sejrup, H. P., Valvik, E., and Becker, L. W. M.: Evidence of an ice-dammed lake outburst in the North Sea during the last deglaciation, Marine Geol., 402, 118–130, https://doi.org/10.1016/j.margeo.2017.11.021, 2018.
Hugenholtz, C. H. and Wolfe, S. A.: Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains, Geomorphology, 121, 274–282, https://doi.org/10.1016/j.geomorph.2010.04.024, 2010.
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., and Svendsen, J. I.: The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1, Boreas, 45, 1–45, https://doi.org/10.1111/bor.12142, 2016.
Hughes, P. D. and Gibbard, P. L.: A stratigraphical basis for the Last Glacial Maximum (LGM), Quaternary Int., 383, 174–185, https://doi.org/10.1016/j.quaint.2014.06.006, 2015.
Huntley, D. J. and Hancock, R. G. V.: The Rb contents of the K-feldspar grains being measured in optical dating, Ancient TL, 19, 43–46, 2001.
Huntley, D. J., Godfrey-Smith, D. I., and Thewalt, M. L. W.: Optical dating of sediments, Nature, 313, 105–107, https://doi.org/10.1038/313105a0, 1985.
Hütt, G., Jaek, I., and Tchonka, J.: Optical dating: K-Feldspars optical response stimulation spectra, Quaternary Sci. Rev., 7, 381–385, https://doi.org/10.1016/0277-3791(88)90033-9, 1988.
Iverson, N. R.: Laboratory Simulations Of Glacial Abrasion: Comparison With Theory, J. Glaciol., 36, 304–314, https://doi.org/10.3189/002214390793701264, 1990.
Iverson, N. R., Hanson, B., Hooke, R. LeB., and Jansson, P.: Flow Mechanism of Glaciers on Soft Beds, Science, 267, 80–81, https://doi.org/10.1126/science.267.5194.80, 1995.
Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch, M., Kubik, P. W., and Schlüchter, C.: Chronology of the last glacial cycle in the European Alps, J. Quaternary Sci., 23, 559–573, https://doi.org/10.1002/jqs.1202, 2008.
Ivy-Ochs, S., Lucchesi, S., Baggio, P., Fioraso, G., Gianotti, F., Monegato, G., Graf, A. A., Akçar, N., Christl, M., Carraro, F., Forno, M. G., and Schlüchter, C.: New geomorphological and chronological constraints for glacial deposits in the Rivoli-Avigliana end-moraine system and the lower Susa Valley (Western Alps, NW Italy), J. Quaternary Sci., 33, 550–562, https://doi.org/10.1002/jqs.3034, 2018.
Jansson, P., Rosqvist, G., and Schneider, T.: Glacier Fluctuations, Suspended Sediment Flux and Glacio-Lacustrine Sediments, Geografiska Annaler: Series A, Phys. Geogr., 87, 37–50, https://doi.org/10.1111/j.0435-3676.2005.00243.x, 2005.
Kadereit, A., Kind, C.-J., and Wagner, G. A.: The chronological position of the Lohne Soil in the Nussloch loess section – re-evaluation for a European loess-marker horizon, Quaternary Sci. Rev., 59, 67–86, https://doi.org/10.1016/j.quascirev.2012.10.026, 2013.
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021.
Kamleitner, S., Ivy-Ochs, S., Monegato, G., Gianotti, F., Akçar, N., Vockenhuber, C., Christl, M., and Synal, H.-A.: The Ticino-Toce glacier system (Swiss-Italian Alps) in the framework of the Alpine Last Glacial Maximum, Quaternary Sci. Rev., 279, 107400, https://doi.org/10.1016/j.quascirev.2022.107400, 2022.
Kasse, C.: Cold-Climate Aeolian Sand-Sheet Formation in North-Western Europe (c. 14–12.4 ka); a Response to Permafrost Degradation and Increased Aridity, Permafrost Periglac. Process., 8, 295–311, https://doi.org/10.1002/(SICI)1099-1530(199709)8:3<295::AID-PPP256>3.0.CO;2-0, 1997.
King, G. E., Burow, C., Roberts, H. M., and Pearce, N. J. G.: Age determination using feldspar: Evaluating fading-correction model performance, Radiat. Meas., 119, 58–73, https://doi.org/10.1016/j.radmeas.2018.07.013, 2018.
Klasen, N., Fischer, P., Lehmkuhl, F., and Hilgers, A.: Luminescence dating of loess deposits from the Remagen-Schwalbenberg site, Western Germany, Geochronometria, 42, 67–77, https://doi.org/10.1515/geochr-2015-0008, 2015.
Knight, P. G., Waller, R. I., Patterson, C. J., Jones, A. P., and Robinson, Z. P.: Glacier advance, ice-marginal lakes and routing of meltwater and sediment: Russell Glacier, Greenland, J. Glaciol., 46, 423–426, https://doi.org/10.3189/172756500781833160, 2000.
Kocurek, G. and Lancaster, N.: Aeolian system sediment state: theory and Mojave Desert Kelso dune field example, Sedimentology, 46, 505–515, https://doi.org/10.1046/j.1365-3091.1999.00227.x, 1999.
Kohfeld, K. E. and Harrison, S. P.: Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau, Quaternary Sci. Rev., 22, 1859–1878, https://doi.org/10.1016/S0277-3791(03)00166-5, 2003.
Kreutzer, S., Fuchs, M., Meszner, S., and Faust, D.: OSL chronostratigraphy of a loess-palaeosol sequence in Saxony/Germany using quartz of different grain sizes, Quaternary Geochronol., 10, 102–109, https://doi.org/10.1016/j.quageo.2012.01.004, 2012.
Kreutzer, S., Burow, C., Dietze, M., Fuchs, M. C., Fischer, M., and Schmidt, C.: Software in the context of luminescence dating: status, concepts and suggestions exemplified by the R package “Luminescence”, Ancient TL, 35, 1–11, 2017.
Lambeck, K., Purcell, A., Zhao, J., and Svensson, N.-O.: The Scandinavian ice sheet: from MIS 4 to the end of the last glacial maximum, Boreas, 39, 410–435, https://doi.org/10.1111/j.1502-3885.2010.00140.x, 2010.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014.
Lancaster, N., Wolfe, S., Thomas, D., Bristow, C., Bubenzer, O., Burrough, S., Duller, G., Halfen, A., Hesse, P., Roskin, J., Singhvi, A., Tsoar, H., Tripaldi, A., Yang, X., and Zárate, M.: The INQUA Dunes Atlas chronologic database, Quaternary Int., 410, 3–10, https://doi.org/10.1016/j.quaint.2015.10.044, 2016.
Lanos, P.: Bayesian Inference of Calibration Curves: Application to Archaeomagnetism, in: Tools for Constructing Chronologies: Crossing Disciplinary Boundaries, vol. 177, edited by: Buck, C. E. and Millard, A. R., Springer, London, 43–82, https://doi.org/10.1007/978-1-4471-0231-1_3, 2004.
Lanos, P. and Dufresne, P.: ChronoModel version 2.0 User manual, 48 pp., https://hal.archives-ouvertes.fr/hal-02058018 (last access: 1 December 2022), 2019.
Lanos, P. and Dufresne, P.: Composer le temps en archéologie avec ChronoModel, in: Mesurer le temps de l'Age du Bronze, edited by: Marcigny, C., Lachenal, T., and Milcent, P.-Y., Saint-Germain-en-Laye, Bulletin de l'Association pour la Promotion des Recherches sur l'Âge du Bronze, Digjon, 49–72, ISBN 978-2-9572241-0-4, 2022.
Lanos, P. and Philippe, A.: Event Date Model: A Robust Bayesian Tool for Chronology Building, Communications for Statistical Applications and Methods (CSAM), 158, 131–157, https://doi.org/10.29220/csam.2018.25.2.131, 2017a.
Lanos, P. and Philippe, A.: Hierarchical Bayesian modeling for combining dates in archeological context, Journal de la société française de statistique, 158, 72–88, 2017b.
Lautridou, J.-P., Sommé, J., Heim, J., Puisségur, J.-J., and Rousseau, D.-D.: La stratigraphie des loess et formations fluviatiles d'Achenheim (Alsace): nouvelles données bioclimatiques et corrélations avec les séquences pléistocènes de la France du Nord-Ouest, Quaternaire, 22, 125–132, 1985.
Lehmkuhl, F., Zens, J., Krauß, L., Schulte, P., and Kels, H.: Loess-paleosol sequences at the northern European loess belt in Germany: Distribution, geomorphology and stratigraphy, Quaternary Sci. Rev., 153, 11–30, https://doi.org/10.1016/j.quascirev.2016.10.008, 2016.
Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J., Marković, S. B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J., and Hambach, U.: Loess landscapes of Europe – Mapping, geomorphology, and zonal differentiation, Earth-Sci. Rev., 215, 103496, https://doi.org/10.1016/j.earscirev.2020.103496, 2021.
Löfverström, M., Caballero, R., Nilsson, J., and Kleman, J.: Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle, Clim. Past, 10, 1453–1471, https://doi.org/10.5194/cp-10-1453-2014, 2014.
Lomax, J., Fuchs, M., Preusser, F., and Fiebig, M.: Luminescence based loess chronostratigraphy of the Upper Palaeolithic site Krems-Wachtberg, Austria, Quaternary Int., 351, 88–97, https://doi.org/10.1016/j.quaint.2012.10.037, 2014.
Ludwig, P., Schaffernicht, E. J., Shao, Y., and Pinto, J. G.: Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation, J. Geophys. Res.-Atmos., 121, 2130–2145, https://doi.org/10.1002/2015JD024444, 2016.
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R. L., Frisia, S., Hof, F., and Müller, W.: North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems, Nat. Commun., 6, 6344, https://doi.org/10.1038/ncomms7344, 2015.
Mahan, S. A., Rittenour, T. M., Nelson, M. S., Ataee, N., Brown, N., DeWitt, R., Durcan, J., Evans, M., Feathers, J., Frouin, M., Guérin, G., Heydari, M., Huot, S., Jain, M., Keen-Zebert, A., Li, B., López, G. I., Neudorf, C., Porat, N., Rodrigues, K., Sawakuchi, A. O., Spencer, J. Q. G., and Thomsen, K.: Guide for interpreting and reporting luminescence dating results, GSA Bulletin, 35, 1480–1502, https://doi.org/10.1130/B36404.1, 2022.
Meijs, E. P. M.: Loess stratigraphy in Dutch and Belgian Limburg, E&G Quaternary Sci. J., 51, 115–131, https://doi.org/10.3285/eg.51.1.08, 2002.
Mejdahl, V.: Internal radioactivity in quartz and feldspar grains, Ancient TL, 5, 10–17, 1987.
Meszner, S. and Faust, D.: Paläoböden in den Lössgebieten Ostdeutschlands, in: Handbuch der Bodenkunde, edited by: Blume, H.-P., Stahr, K., Fisher, W., Guggenberger, G., Horn, R., Frede, H.-G., and Felix-Henningsen, P., John Wiley & Sons, Ltd, Weinheim, https://doi.org/10.1002/9783527678495, 1–20, 2014.
Meszner, S., Kreutzer, S., Fuchs, M., and Faust, D.: Late Pleistocene landscape dynamics in Saxony, Germany: Paleoenvironmental reconstruction using loess-paleosol sequences, Quaternary Int., 296, 94–107, https://doi.org/10.1016/j.quaint.2012.12.040, 2013.
Moine, O., Antoine, P., Hatté, C., Landais, A., Mathieu, J., Prud'homme, C., and Rousseau, D.-D.: The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules, P. Natl. Acad. Sci. USA, 114, 6209–6214, https://doi.org/10.1073/pnas.1614751114, 2017.
Moine, O., Antoine, P., Coutard, S., Guérin, G., Hatté, C., Paris, C., and Saulnier-Copard, S.: Intra-interstadial environmental changes in Last Glacial loess revealed by molluscan assemblages from the Upper Palaeolithic site of Amiens-Renancourt 1 (Somme, France), J. Quaternary Sci., 36, 1322–1340, https://doi.org/10.1002/jqs.3312, 2021.
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A.: The Alpine LGM in the boreal ice-sheets game, Sci. Rep., 7, 2078, https://doi.org/10.1038/s41598-017-02148-7, 2017.
Moska, P., Jary, Z., Adamiec, G., and Bluszcz, A.: OSL chronostratigraphy of a loess-palaeosol sequence in Złota using quartz and polymineral fine grains, Radiat. Meas., 81, 23–31, https://doi.org/10.1016/j.radmeas.2015.04.012, 2015.
Moska, P., Adamiec, G., Jary, Z., and Bluszcz, A.: OSL chronostratigraphy for loess deposits from Tyszowce – Poland, Geochronometria, 44, 307–318, https://doi.org/10.1515/geochr-2015-0074, 2017.
Moska, P., Jary, Z., Adamiec, G., and Bluszcz, A.: Chronostratigraphy of a loess-palaeosol sequence in Biały Kościół, Poland using OSL and radiocarbon dating, Quaternary Int., 502, 4–17, https://doi.org/10.1016/j.quaint.2018.05.024, 2019a.
Moska, P., Jary, Z., Adamiec, G., and Bluszcz, A.: High resolution dating of loess profile from Strzyżów (Horodło Plateau-Ridge, Volhynia Upland), Quaternary Int., 502, 18–29, https://doi.org/10.1016/j.quaint.2018.02.016, 2019b.
Murray, A. S. and Wintle, A. G.: Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol, Radiat. Meas., 32, 57–73, https://doi.org/10.1016/s1350-4487(99)00253-x, 2000.
Patton, H., Hubbard, A., Andreassen, K., Winsborrow, M., and Stroeven, A. P.: The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing, Quaternary Sci. Rev., 153, 97–121, https://doi.org/10.1016/j.quascirev.2016.10.009, 2016.
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L., Stroeven, A. P., Shackleton, C., Winsborrow, M., Heyman, J., and Hall, A. M.: Deglaciation of the Eurasian ice sheet complex, Quaternary Sci. Rev., 169, 148–172, https://doi.org/10.1016/j.quascirev.2017.05.019, 2017.
Perić, Z., Lagerbäck Adolphi, E., Stevens, T., Újvári, G., Zeeden, C., Buylaert, J.-P., Marković, S. B., Hambach, U., Fischer, P., Schmidt, C., Schulte, P., Huayu, L., Shuangwen, Y., Lehmkuhl, F., Obreht, I., Veres, D., Thiel, C., Frechen, M., Jain, M., Vött, A., Zöller, L., and Gavrilov, M. B.: Quartz OSL dating of late quaternary Chinese and Serbian loess: A cross Eurasian comparison of dust mass accumulation rates, Quaternary Int., 502, 30–44, https://doi.org/10.1016/j.quaint.2018.01.010, 2019.
Perić, Z. M., Marković, S. B., Avram, A., Timar-Gabor, A., Zeeden, C., Nett, J. J., Fischer, P., Fitzsimmons, K. E., and Gavrilov, M. B.: Initial quartz OSL and dust mass accumulation rate investigation of the Kisiljevo loess sequence in north-eastern Serbia, Quaternary Int., 620, 13–23, https://doi.org/10.1016/j.quaint.2020.10.040, 2022.
Pinto, J. G. and Ludwig, P.: Extratropical cyclones over the North Atlantic and western Europe during the Last Glacial Maximum and implications for proxy interpretation, Clim. Past, 16, 611–626, https://doi.org/10.5194/cp-16-611-2020, 2020.
Porter, P. R., Vatne, G., Ng, F., and Irvine-Fynn, T. D. l.: Ice-Marginal Sediment Delivery to the Surface of a High-Arctic Glacier: Austre Brøggerbreen, Svalbard, Geografiska Annaler: Series A, 92, 437–449, https://doi.org/10.1111/j.1468-0459.2010.00406.x, 2010.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.: Quaternary glaciation history of northern Switzerland, E&G Quaternary Sci. J., 60, 282–305, https://doi.org/10.3285/eg.60.2-3.06, 2011.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., Plicht, J. van der, Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Riihimaki, C. A., MacGregor, K. R., Anderson, R. S., Anderson, S. P., and Loso, M. G.: Sediment evacuation and glacial erosion rates at a small alpine glacier, J. Geophys. Res.-Earth Surf., 110, F03003, https://doi.org/10.1029/2004JF000189, 2005.
Rivoirard, V. and Stoltz, G.: Statistique mathématique en action, Vuibert, Paris, 448 pp., ISBN 2311007203, 2012.
Roberts, D. H., Evans, D. J. A., Callard, S. L., Clark, C. D., Bateman, M. D., Medialdea, A., Dove, D., Cotterill, C. J., Saher, M., Cofaigh, C. Ó., Chiverrell, R. C., Moreton, S. G., Fabel, D., and Bradwell, T.: Ice marginal dynamics of the last British-Irish Ice Sheet in the southern North Sea: Ice limits, timing and the influence of the Dogger Bank, Quaternary Sci. Rev., 198, 181–207, https://doi.org/10.1016/j.quascirev.2018.08.010, 2018.
Rousseau, D.-D., Sima, A., Antoine, P., Hatté, C., Lang, A., and Zöller, L.: Link between European and North Atlantic abrupt climate changes over the last glaciation, Geophys. Res. Lett., 34, L22713, https://doi.org/10.1029/2007GL031716, 2007.
Rousseau, D.-D., Svensson, A., Bigler, M., Sima, A., Steffensen, J. P., and Boers, N.: Eurasian contribution to the last glacial dust cycle: how are loess sequences built?, Clim. Past, 13, 1181–1197, https://doi.org/10.5194/cp-13-1181-2017, 2017.
Rousseau, D.-D., Antoine, P., and Sun, Y.: How dusty was the last glacial maximum over Europe?, Quaternary Sci. Rev., 254, 106775, https://doi.org/10.1016/j.quascirev.2020.106775, 2021.
Ruth, U., Wagenbach, D., Steffensen, J. P., and Bigler, M.: Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period, J. Geophys. Res.-Atmos., 108, 4098, https://doi.org/10.1029/2002JD002376, 2003.
Sanchez Goñi, M. F. and Harrison, S. P.: Millennial-scale climate variability and vegetation changes during the Last Glacial: Concepts and terminology, Quaternary Sci. Rev., 29, 2823–2827, https://doi.org/10.1016/j.quascirev.2009.11.014, 2010.
Schaffernicht, E. J., Ludwig, P., and Shao, Y.: Linkage between dust cycle and loess of the Last Glacial Maximum in Europe, Atmos. Chem. Phys., 20, 4969–4986, https://doi.org/10.5194/acp-20-4969-2020, 2020.
Scheidt, S., Berg, S., Hambach, U., Klasen, N., Pötter, S., Stolz, A., Veres, D., Zeeden, C., Brill, D., Brückner, H., Kusch, S., Laag, C., Lehmkuhl, F., Melles, M., Monnens, F., Oppermann, L., Rethemeyer, J., and Nett, J. J.: Chronological Assessment of the Balta Alba Kurgan Loess-Paleosol Section (Romania) – A Comparative Study on Different Dating Methods for a Robust and Precise Age Model, Front. Earth Sci., 8, 598448, https://doi.org/10.3389/feart.2020.598448, 2021.
Schirmer, W.: Late Pleistocene loess of the Lower Rhine, Quaternary Int., 411, 44–61, https://doi.org/10.1016/j.quaint.2016.01.034, 2016.
Seguinot, J., Ivy-Ochs, S., Jouvet, G., Huss, M., Funk, M., and Preusser, F.: Modelling last glacial cycle ice dynamics in the Alps, The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, 2018.
Sitzia, L., Bertran, P., Sima, A., Chery, P., Queffelec, A., and Rousseau, D.-D.: Dynamics and sources of last glacial aeolian deposition in southwest France derived from dune patterns, grain-size gradients and geochemistry, and reconstruction of efficient wind directions, Quaternary Sci. Rev., 170, 250–268, https://doi.org/10.1016/j.quascirev.2017.06.029, 2017.
Skurzyński, J., Jary, Z., Kenis, P., Kubik, R., Moska, P., Raczyk, J., and Seul, C.: Geochemistry and mineralogy of the Late Pleistocene loess-palaeosol sequence in Złota (near Sandomierz, Poland): Implications for weathering, sedimentary recycling and provenance, Geoderma, 375, 114459, https://doi.org/10.1016/j.geoderma.2020.114459, 2020.
Smalley, I. J. and Leach, J. A.: The origin and distribution of the loess in the Danube basin and associated regions of East-Central Europe – A review, Sediment. Geol., 21, 1–26, https://doi.org/10.1016/0037-0738(78)90031-3, 1978.
Stadelmaier, K. H., Ludwig, P., Bertran, P., Antoine, P., Shi, X., Lohmann, G., and Pinto, J. G.: A new perspective on permafrost boundaries in France during the Last Glacial Maximum, Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021, 2021.
Stevens, T., Marković, S. B., Zech, M., Hambach, U., and Sümegi, P.: Dust deposition and climate in the Carpathian Basin over an independently dated last glacial–interglacial cycle, Quaternary Sci. Rev., 30, 662–681, https://doi.org/10.1016/j.quascirev.2010.12.011, 2011.
Stevens, T., Sechi, D., Bradák, B., Orbe, R., Baykal, Y., Cossu, G., Tziavaras, C., Andreucci, S., and Pascucci, V.: Abrupt last glacial dust fall over southeast England associated with dynamics of the British-Irish ice sheet, Quaternary Sci. Rev., 250, 106641, https://doi.org/10.1016/j.quascirev.2020.106641, 2020.
Sümegi, P., Gulyás, S., Molnár, D., Szilágyi, G., Sümegi, B. P., Törőcsik, T., and Molnár, M.: 14C Dated Chronology of the Thickest and Best Resolved Loess/Paleosol Record of the LGM from SE Hungary Based on Comparing Precision and Accuracy of Age-Depth Models, Radiocarbon, 62, 403–417, https://doi.org/10.1017/RDC.2019.154, 2020.
Summerfield, M. A.: Global Geomorphology, Routledge, London, 560 pp., https://doi.org/10.4324/9781315841182, 2014.
Thomsen, K. J., Murray, A. S., Jain, M., and Bøtter-Jensen, L.: Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts, Radiat. Meas., 43, 1474–1486, https://doi.org/10.1016/j.radmeas.2008.06.002, 2008.
Timar, A., Vandenberghe, D., Panaiotu, E. C., Panaiotu, C. G., Necula, C., Cosma, C., and van den Haute, P.: Optical dating of Romanian loess using fine-grained quartz, Quaternary Geochronol., 5, 143–148, https://doi.org/10.1016/j.quageo.2009.03.003, 2010.
Toucanne, S., Soulet, G., Freslon, N., Jacinto, R. S., Dennielou, B., Zaragosi, S., Eynaud, F., Bourillet, J.-F., and Bayon, G.: Millennial-scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate, Quaternary Sci. Rev., 123, 113–133, https://doi.org/10.1016/j.quascirev.2015.06.010, 2015.
Toucanne, S., Soulet, G., Vázquez Riveiros, N., Boswell, S. M., Dennielou, B., Waelbroeck, C., Bayon, G., Mojtahid, M., Bosq, M., Sabine, M., Zaragosi, S., Bourillet, J.-F., and Mercier, H.: The North Atlantic Glacial Eastern Boundary Current as a Key Driver for Ice-Sheet – AMOC Interactions and Climate Instability, Paleoceanogr. Paleocl., 36, e2020PA004068, https://doi.org/10.1029/2020PA004068, 2021.
Újvári, G., Varga, A., and Balogh-Brunstad, Z.: Origin, weathering, and geochemical composition of loess in southwestern Hungary, Quaternary Res., 69, 421–437, https://doi.org/10.1016/j.yqres.2008.02.001, 2008.
Újvári, G., Kovács, J., Varga, G., Raucsik, B., and Marković, S. B.: Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review, Quaternary Sci. Rev., 29, 3157–3166, https://doi.org/10.1016/j.quascirev.2010.07.005, 2010.
Újvári, G., Molnár, M., and Páll-Gergely, B.: Charcoal and mollusc shell 14C-dating of the Dunaszekcső loess record, Hungary, Quaternary Geochronol., 35, 43–53, https://doi.org/10.1016/j.quageo.2016.05.005, 2016.
Újvári, G., Stevens, T., Molnár, M., Demény, A., Lambert, F., Varga, G., Jull, A. T., Páll-Gergely, B., Buylaert, J.-P., and Kovács, J.: Coupled European and Greenland last glacial dust activity driven by North Atlantic climate, P. Natl. Acad. Sci. USA, 114, E10632–E10638, https://doi.org/10.1073/pnas.1712651114, 2017.
Vermeesch, P.: On the visualisation of detrital age distributions, Chem. Geol., 312–313, 190–194, https://doi.org/10.1016/j.chemgeo.2012.04.021, 2012.
Wacha, L., Mikulčić Pavlaković, S., Frechen, M., and Crnjaković, M.: The Loess Chronology of the Island of Susak, Croatia, E&G Quaternary Sci. J., 60, 153–169, https://doi.org/10.3285/eg.60.1.11, 2011.
Wallinga, J., Murray, A., and Wintle, A.: The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar, Radiat. Meas., 32, 529–533, https://doi.org/10.1016/s1350-4487(00)00091-3, 2000.
Wolf, D., Kolb, T., Alcaraz-Castaño, M., Heinrich, S., Baumgart, P., Calvo, R., Sánchez, J., Ryborz, K., Schäfer, I., Bliedtner, M., Zech, R., Zöller, L., and Faust, D.: Climate deteriorations and Neanderthal demise in interior Iberia, Sci. Rep., 8, 7048, https://doi.org/10.1038/s41598-018-25343-6, 2018.
Zeeberg, J.: The European sand belt in eastern Europe - and comparison of Late Glacial dune orientation with GCM simulation results, Boreas, 27, 127–139, https://doi.org/10.1111/j.1502-3885.1998.tb00873.x, 1998.
Zens, J., Schulte, P., Klasen, N., Krauß, L., Pirson, S., Burow, C., Brill, D., Eckmeier, E., Kels, H., Zeeden, C., Spagna, P., and Lehmkuhl, F.: OSL chronologies of paleoenvironmental dynamics recorded by loess-paleosol sequences from Europe: Case studies from the Rhine-Meuse area and the Neckar Basin, Palaeogeogr. Palaeocl., 509, 105–125, https://doi.org/10.1016/j.palaeo.2017.07.019, 2018.
Zickel, M., Becker, D., Verheul, J., Yener, Y., and Willmes, C.: Paleocoastlines GIS dataset, CRC806-Database [data set], https://doi.org/10.5880/SFB806.20, 2016.
Short summary
During the last glacial period, cold conditions associated with changes in atmospheric circulation resulted in the deposition of widespread loess. It seems that the phases of loess accumulation were not strictly synchronous. To test this hypothesis, the chronology of loess deposition in different regions of Europe was studied by recalculating 1423 luminescence ages in a database. Our study discusses the link between the main loess sedimentation phases and the maximal advance of glaciers.
During the last glacial period, cold conditions associated with changes in atmospheric...
Altmetrics
Final-revised paper
Preprint