Articles | Volume 15, issue 5
https://doi.org/10.5194/essd-15-2055-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2055-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Generation of global 1 km daily soil moisture product from 2000 to 2020 using ensemble learning
Yufang Zhang
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
Department of Geography, The University of Hong Kong, Hong Kong
999077, China
Department of Geography, The University of Hong Kong, Hong Kong
999077, China
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
Qian Wang
State Key Laboratory of Remote Sensing Science, Beijing Normal
University, Beijing 100875, China
Bing Li
Key Research Institute of Yellow River Civilization and Sustainable
Development and Collaborative Innovation Center on Yellow River
Civilization of Henan Province, Henan University, Kaifeng 475001, China
Jianglei Xu
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
Guodong Zhang
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
Xiaobang Liu
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
Changhao Xiong
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan 430079, China
Related authors
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553, https://doi.org/10.5194/essd-2024-553, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Soil moisture (SM) plays a vital role in climate, agriculture, and hydrology, yet reliable long-term seamless global datasets remain scarce. To fill this gap, we developed a four-decade seamless global daily 5 km SM product using multi-source datasets and deep learning techniques. This product has long-term coverage, spatial and temporal integrity, and high accuracy, making it a valuable tool for applications like SM trend analysis, drought monitoring, and assessing vegetation responses.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Xinyan Liu, Tao He, Qingxin Wang, Xiongxin Xiao, Yichuan Ma, Yanyan Wang, Shanjun Luo, Lei Du, and Zhaocong Wu
Earth Syst. Sci. Data, 17, 2405–2435, https://doi.org/10.5194/essd-17-2405-2025, https://doi.org/10.5194/essd-17-2405-2025, 2025
Short summary
Short summary
This study addresses the challenge of how clouds affect the Earth's energy balance, which is vital for understanding climate change. We developed a new method to create long-term cloud radiative kernels to improve the accuracy of measurements of sunlight reaching the surface, which significantly reduces errors. Findings suggest that prior estimates of cloud cooling effects may have been overstated, emphasizing the need for better strategies to manage climate change impacts in the Arctic.
Hui Liang, Shunlin Liang, Bo Jiang, Tao He, Feng Tian, Jianglei Xu, Wenyuan Li, Fengjiao Zhang, and Husheng Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-136, https://doi.org/10.5194/essd-2025-136, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes 1 km daily mean land surface sensible heat flux (H) and land surface – air temperature difference (Tsa) datasets on the global scale during 2000–2020. The datasets were developed using a data-driven approach and rigorously validated against in situ observations and existing H and Tsa datasets, demonstrating both high accuracy and exceptional spatial resolution.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553, https://doi.org/10.5194/essd-2024-553, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Soil moisture (SM) plays a vital role in climate, agriculture, and hydrology, yet reliable long-term seamless global datasets remain scarce. To fill this gap, we developed a four-decade seamless global daily 5 km SM product using multi-source datasets and deep learning techniques. This product has long-term coverage, spatial and temporal integrity, and high accuracy, making it a valuable tool for applications like SM trend analysis, drought monitoring, and assessing vegetation responses.
Bing Li, Shunlin Liang, Han Ma, Guanpeng Dong, Xiaobang Liu, Tao He, and Yufang Zhang
Earth Syst. Sci. Data, 16, 3795–3819, https://doi.org/10.5194/essd-16-3795-2024, https://doi.org/10.5194/essd-16-3795-2024, 2024
Short summary
Short summary
This study describes 1 km all-weather instantaneous and daily mean land surface temperature (LST) datasets on the global scale during 2000–2020. It is the first attempt to synergistically estimate all-weather instantaneous and daily mean LST data on a long global-scale time series. The generated datasets were evaluated by the observations from in situ stations and other LST datasets, and the evaluation indicated that the dataset is sufficiently reliable.
Xinyan Liu, Tao He, Shunlin Liang, Ruibo Li, Xiongxin Xiao, Rui Ma, and Yichuan Ma
Earth Syst. Sci. Data, 15, 3641–3671, https://doi.org/10.5194/essd-15-3641-2023, https://doi.org/10.5194/essd-15-3641-2023, 2023
Short summary
Short summary
We proposed a data fusion strategy that combines the complementary features of multiple-satellite cloud fraction (CF) datasets and generated a continuous monthly 1° daytime cloud fraction product covering the entire Arctic during the sunlit months in 2000–2020. This study has positive significance for reducing the uncertainties for the assessment of surface radiation fluxes and improving the accuracy of research related to climate change and energy budgets, both regionally and globally.
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023, https://doi.org/10.5194/essd-15-869-2023, 2023
Short summary
Short summary
Satellites are now producing multiple global land surface temperature (LST) products; however, they suffer from data gaps caused by cloud cover, seriously restricting the applications, and few products provide gap-free global hourly LST. We produced global hourly, 5 km, all-sky LST data from 2011 to 2021 using geostationary and polar-orbiting satellite data. Based on the assessment, it has high accuracy and can be used to estimate evapotranspiration, drought, etc.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev., 15, 6637–6657, https://doi.org/10.5194/gmd-15-6637-2022, https://doi.org/10.5194/gmd-15-6637-2022, 2022
Short summary
Short summary
Parameter optimization can improve the accuracy of modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters and we also improved the spatial pattern of carbon fluxes.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Xiaona Chen, Shunlin Liang, Lian He, Yaping Yang, and Cong Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-279, https://doi.org/10.5194/essd-2021-279, 2021
Preprint withdrawn
Short summary
Short summary
The present study developed a 39 year consistent 8-day 0.05 degree gap-free SCE dataset over the NH for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite based on the NOAA AVHRR-SR CDR and several contributory datasets. Compared with published SCE datasets, GLASS SCE has several advantages in snow cover studies, including long time series, finer spatial resolution (especially for years before 2000), and complete spatial coverage.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-53, https://doi.org/10.5194/essd-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
The Köppen-Geiger climate classification has been widely applied in climate change and ecology studies to characterize climatic conditions. We present a new 1-km global dataset of Köppen-Geiger climate classification and bioclimatic variables for historical and future climates. The new climate maps offer higher classification accuracy, correspond well with distributions of vegetation and topographic features, and demonstrate the ability to identify recent and future changes in climate zones.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Cited articles
Abbaszadeh, P., Moradkhani, H., and Zhan, X.: Downscaling SMAP radiometer
soil moisture over the CONUS using an ensemble learning method, Water
Resour. Res., 55, 324–344, https://doi.org/10.1029/2018WR023354, 2019.
Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017.
Al-Yaari, A., Wigneron, J.-P., Dorigo, W., Colliander, A., Pellarin, T.,
Hahn, S., Mialon, A., Richaume, P., Fernandez-Moran, R., Fan, L., Kerr, Y.
H., and De Lannoy, G.: Assessment and inter-comparison of recently
developed/reprocessed microwave satellite soil moisture products using ISMN
ground-based measurements, Remote Sens. Environ., 224, 289–303,
https://doi.org/10.1016/j.rse.2019.02.008, 2019.
Anderson, W. B., Zaitchik, B. F., Hain, C. R., Anderson, M. C., Yilmaz, M. T., Mecikalski, J., and Schultz, L.: Towards an integrated soil moisture drought monitor for East Africa, Hydrol. Earth Syst. Sci., 16, 2893–2913, https://doi.org/10.5194/hess-16-2893-2012, 2012.
Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., and
Tuller, M.: Ground, Proximal, and Satellite Remote Sensing of Soil Moisture,
Rev. Geophys., 57, 530–616, https://doi.org/10.1029/2018RG000618, 2019.
Balenzano, A., Mattia, F., Satalino, G., Lovergine, F. P., Palmisano, D.,
and Davidson, M. W. J.: Dataset of Sentinel-1 surface soil moisture time
series at 1 km resolution over Southern Italy, Data Br., 38, 107345,
https://doi.org/10.1016/J.DIB.2021.107345, 2021.
Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp,
H., Figa, J., and Anderson, C.: Initial soil moisture retrievals from the
METOP-A Advanced Scatterometer (ASCAT), Geophys. Res. Lett., 34, L20401,
https://doi.org/10.1029/2007GL031088, 2007.
Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S.,
Stachl, T., Modanesi, S., Massari, C., Ciabatta, L., Brocca, L., and Wagner,
W.: Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing
Assets and Overcoming Obstacles, IEEE T. Geosci. Remote, 57,
520–539, https://doi.org/10.1109/TGRS.2018.2858004, 2019.
Beaudoing, H. and Rodell, M.: GLDAS Noah Land Surface Model L4 3 hourly 0.25
x 0.25 degree V2.1, Goddard Earth Sciences Data and Information Services
Center [data set], https://doi.org/10.5067/E7TYRXPJKWOQ, 2020.
Belgiu, M. and Drãguþ, L.: Random forest in remote sensing: A review
of applications and future directions, ISPRS J. Photogramm., 114, 24–31,
https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016.
Berg, A. and Sheffield, J.: Climate change and drought: the soil moisture
perspective, Current Climate Change Report, 4, 180–191,
https://doi.org/10.1007/s40641-018-0095-0, 2018.
Bindlish, R., Jackson, T., Sun, R., Cosh, M., Yueh, S., and Dinardo, S.:
Combined Passive and Active Microwave Observations of Soil Moisture During
CLASIC, IEEE Geosci. Remote S., 6, 644–648,
https://doi.org/10.1109/LGRS.2009.2028441, 2009.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Brocca, L., Ciabatta, L., Massari, C., Camici, S., and Tarpanelli, A.: Soil
Moisture for Hydrological Applications: Open Questions and New
Opportunities, Water, 9, 140, https://doi.org/10.3390/w9020140, 2017.
Brocca, L., Filippucci, P., Hahn, S., Ciabatta, L., Massari, C., Camici, S., Schüller, L., Bojkov, B., and Wagner, W.: SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT soil moisture observations, Earth Syst. Sci. Data, 11, 1583–1601, https://doi.org/10.5194/essd-11-1583-2019, 2019.
Chan, S. K., Bindlish, R., O'Neill, P. E., Njoku, E., Jackson, T.,
Colliander, A., Chen, F., Burgin, M., Dunbar, S., Piepmeier, J., Yueh, S.,
Entekhabi, D., Cosh, M. H., Caldwell, T., Walker, J., Wu, X., Berg, A.,
Rowlandson, T., Pacheco, A., McNairn, H., Thibeault, M., Martínez, J.,
González, Á., Seyfried, M., Bosch, D., Starks, P., Goodrich, D.,
Prueger, J., Palecki, M., Small, E. E., Zreda, M., Calvet, J., Crow, W. T.,
and Kerr, Y.: Assessment of the SMAP passive soil moisture product, IEEE
T. Geosci. Remote, 54, 4994–5007,
https://doi.org/10.1109/TGRS.2016.2561938, 2016.
Chan, S. K., Bindlish, R., O'Neill, P., Jackson, T., Njoku, E., Dunbar, S.,
Chaubell, J., Piepmeier, J., Yueh, S., Entekhabi, D., Colliander, A., Chen,
F., Cosh, M. H., Caldwell, T., Walker, J., Berg, A., McNairn, H., Thibeault,
M., Martínez-Fernández, J., Uldall, F., Seyfried, M., Bosch, D.,
Starks, P., Holifield Collins, C., Prueger, J., van der Velde, R., Asanuma,
J., Palecki, M., Small, E. E., Zreda, M., Calvet, J., Crow, W. T., and Kerr,
Y.: Development and assessment of the SMAP enhanced passive soil moisture
product, Remote Sens. Environ., 204, 931–941,
https://doi.org/10.1016/j.rse.2017.08.025, 2018.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 785–794,
https://doi.org/10.1145/2939672.2939785, 2016.
Colliander, A., Jackson, T. J., Bindlish, R., Chan, S., Das, N., Kim, S. B.,
Cosh, M. H., Dunbar, R. S., Dang, L., Pashaian, L., Asanuma, J., Aida, K.,
Berg, A., Rowlandson, T., Bosch, D., Caldwell, T., Caylor, K., Goodrich, D.,
al Jassar, H., Lopez-Baeza, E., Martínez-Fernández, J.,
González-Zamora, A., Livingston, S., McNairn, H., Pacheco, A.,
Moghaddam, M., Montzka, C., Notarnicola, C., Niedrist, G., Pellarin, T.,
Prueger, J., Pulliainen, J., Rautiainen, K., Ramos, J., Seyfried, M.,
Starks, P., Su, Z., Zeng, Y., van der Velde, R., Thibeault, M., Dorigo, W.,
Vreugdenhil, M., Walker, J. P., Wu, X., Monerris, A., O'Neill, P. E.,
Entekhabi, D., Njoku, E. G., and Yueh, S.: Validation of SMAP surface soil
moisture products with core validation sites, Remote Sens. Environ., 191,
215–231, https://doi.org/10.1016/j.rse.2017.01.021, 2017.
Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P., Panciera,
R., De Rosnay, P., Ryu, D., and Walker, J. P.: Upscaling sparse ground-based
soil moisture observations for the validation of coarse-resolution satellite
soil moisture products, Rev. Geophys., 50, 1–20,
https://doi.org/10.1029/2011RG000372, 2012.
Crow, W. T., Chen, F., and Colliander, A.: Benchmarking downscaled
satellite-based soil moisture products using sparse, point-scale ground
observations, Remote Sens. Environ., 283, 113300,
https://doi.org/10.1016/j.rse.2022.113300, 2022.
Cui, D., Liang, S., Wang, D., and Liu, Z.: A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables, Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, 2021.
Dai, Y., Shangguan, W., Wei, N., Xin, Q., Yuan, H., Zhang, S., Liu, S., Lu, X., Wang, D., and Yan, F.: A review of the global soil property maps for Earth system models, SOIL, 5, 137–158, https://doi.org/10.5194/soil-5-137-2019, 2019.
Das, N. N., Entekhabi, D., Dunbar, R. S., Chaubell, M. J., Colliander, A.,
Yueh, S., Jagdhuber, T., Chen, F., Crow, W., O'Neill, P. E., Walker, J. P.,
Berg, A., Bosch, D. D., Caldwell, T., Cosh, M. H., Collins, C. H.,
Lopez-Baeza, E., and Thibeault, M.: The SMAP and Copernicus Sentinel 1A/B
microwave active-passive high resolution surface soil moisture product,
Remote Sens. Environ., 233, 111380,
https://doi.org/10.1016/J.RSE.2019.111380, 2019.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D.,
Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y.,
Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C.,
Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and
Lecomte, P.: ESA CCI Soil Moisture for improved Earth system understanding:
State-of-the art and future directions, Remote Sens. Environ., 203,
185–215, https://doi.org/10.1016/J.RSE.2017.07.001, 2017.
Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a decade, Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021.
Dorigo, W. A., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiová, A.,
Sanchis-Dufau, A. D., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M.:
Global Automated Quality Control of In Situ Soil Moisture Data from the
International Soil Moisture Network, Vadose Zone J., 12, vzj2012.0097,
https://doi.org/10.2136/vzj2012.0097, 2013.
Entekhabi, D., Reichle, R. H., Koster, R. D., and Crow, W. T.: Performance
metrics for soil moisture retrievals and application requirements, J.
Hydrometeorol., 11, 832–840, https://doi.org/10.1175/2010JHM1223.1, 2010.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type
Yearly L3 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data
set], https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019.
Friedman, J. H.: Greedy function approximation: a gradient boosting machine,
Ann. Stat., 29, 1189–1232, https://doi.org/10.1214/aos/1013203451, 2001.
Ghulam, A., Qin, Q., Teyip, T., and Li, Z.-L.: Modified perpendicular
drought index (MPDI): a real-time drought monitoring method, ISPRS J.
Photogramm., 62, 150–164,
https://doi.org/10.1016/j.isprsjprs.2007.03.002, 2007.
Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R.: Random Forests
for land cover classification, Pattern Recognit. Lett., 27, 294–300,
https://doi.org/10.1016/j.patrec.2005.08.011, 2006.
Gruber, A., Dorigo, W. A., Zwieback, S., Xaver, A., and Wagner, W.:
Characterizing Coarse-Scale Representativeness of in situ Soil Moisture
Measurements from the International Soil Moisture Network, Vadose Zone J.,
12, vzj2012.0170, https://doi.org/10.2136/vzj2012.0170,
2013.
Gruber, A., Su, C.-H., Zwieback, S., Crow, W., Dorigo, W., and Wagner, W.:
Recent advances in (soil moisture) triple collocation analysis, Int. J.
Appl. Earth Obs., 45, 200–211,
https://doi.org/10.1016/j.jag.2015.09.002, 2016.
Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717–739, https://doi.org/10.5194/essd-11-717-2019, 2019.
Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet,
J.-C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi,
M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C.,
Muñoz-Sabater, J., Peng, J., Reichle, R., Richaume, P., Rüdiger, C.,
Scanlon, T., van der Schalie, R., Wigneron, J.-P., and Wagner, W.:
Validation practices for satellite soil moisture retrievals: What are (the)
errors?, Remote Sens. Environ., 244, 111806,
https://doi.org/10.1016/j.rse.2020.111806, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Holzman, M. E., Rivas, R., and Piccolo, M. C.: Estimating soil moisture and
the relationship with crop yield using surface temperature and vegetation
index, Int. J. Appl. Earth Obs., 28, 181–192,
https://doi.org/10.1016/j.jag.2013.12.006, 2014.
Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M.,
Seneviratne, S. I., and Frankenberg, C.: Soil moisture–atmosphere feedback
dominates land carbon uptake variability, Nature, 592, 65–69,
https://doi.org/10.1038/s41586-021-03325-5, 2021.
Karthikeyan, L. and Mishra, A. K.: Multi-layer high-resolution soil moisture
estimation using machine learning over the United States, Remote Sens.
Environ., 266, 112706, https://doi.org/10.1016/J.RSE.2021.112706, 2021.
Kerr, Y. H., Al-Yaari, A., Rodriguez-Fernandez, N., Parrens, M., Molero, B.,
Leroux, D., Bircher, S., Mahmoodi, A., Mialon, A., Richaume, P., Delwart,
S., Al Bitar, A., Pellarin, T., Bindlish, R., Jackson, T. J., Rüdiger,
C., Waldteufel, P., Mecklenburg, S., and Wigneron, J. P.: Overview of SMOS
performance in terms of global soil moisture monitoring after six years in
operation, Remote Sens. Environ., 180, 40–63,
https://doi.org/10.1016/j.rse.2016.02.042, 2016.
Kim, S., Zhang, R., Pham, H., and Sharma, A.: A Review of Satellite-Derived
Soil Moisture and Its Usage for Flood Estimation, Remote Sens. Earth Syst.
Sci., 2, 225–246, https://doi.org/10.1007/s41976-019-00025-7, 2019.
Li, B., Liang, S., Liu, X., Ma, H., Chen, Y., Liang, T., and He, T.:
Estimation of all-sky 1 km land surface temperature over the conterminous
United States, Remote Sens. Environ., 266, 112707,
https://doi.org/10.1016/J.RSE.2021.112707, 2021.
Li, X., Wigneron, J.-P., Fan, L., Frappart, F., Yueh, S. H., Colliander, A.,
Ebtehaj, A., Gao, L., Fernandez-Moran, R., Liu, X., Wang, M., Ma, H., Moisy,
C., and Ciais, P.: A new SMAP soil moisture and vegetation optical depth
product (SMAP-IB): Algorithm, assessment and inter-comparison, Remote Sens.
Environ., 271, 112921,
https://doi.org/10.1016/j.rse.2022.112921, 2022.
Liang, S. and Wang, J. (Eds.): Chapter 18 – Soil moisture contents, in:
Advanced Remote Sensing, 2nd Edn., Academic Press, 685–711,
https://doi.org/10.1016/B978-0-12-815826-5.00018-0, 2020.
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan,
W., Zhang, X., Zhao, X., and Zhou, J.: The Global Land Surface Satellite
(GLASS) Product Suite, B. Am. Meteorol. Soc., 102, E323–E337,
https://doi.org/10.1175/BAMS-D-18-0341.1, 2021.
Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., and Seneviratne, S.
I.: Soil moisture dominates dryness stress on ecosystem production globally,
Nat. Commun., 11, 4892, https://doi.org/10.1038/s41467-020-18631-1, 2020.
Liu, N. F., Liu, Q., Wang, L. Z., Liang, S. L., Wen, J. G., Qu, Y., and Liu, S. H.: A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data, Hydrol. Earth Syst. Sci., 17, 2121–2129, https://doi.org/10.5194/hess-17-2121-2013, 2013.
Long, D., Bai, L., Yan, L., Zhang, C., Yang, W., Lei, H., Quan, J., Meng,
X., and Shi, C.: Generation of spatially complete and daily continuous
surface soil moisture of high spatial resolution, Remote Sens. Environ.,
233, 111364, https://doi.org/10.1016/j.rse.2019.111364, 2019.
Luo, P., Song, Y., Huang, X., Ma, H., Liu, J., Yao, Y., and Meng, L.:
Identifying determinants of spatio-temporal disparities in soil moisture of
the Northern Hemisphere using a geographically optimal zones-based
heterogeneity model, ISPRS J. Photogramm., 185, 111–128,
https://doi.org/10.1016/j.isprsjprs.2022.01.009, 2022.
Ma, H. and Liang, S.: Development of the GLASS 250-m leaf area index product
(version 6) from MODIS data using the bidirectional LSTM deep learning
model, Remote Sens. Environ., 273, 112985,
https://doi.org/10.1016/J.RSE.2022.112985, 2022.
Ma, H., Zeng, J., Zhang, X., Fu, P., Zheng, D., Wigneron, J.-P., Chen, N.,
and Niyogi, D.: Evaluation of six satellite- and model-based surface soil
temperature datasets using global ground-based observations, Remote Sens.
Environ., 264, 112605,
https://doi.org/10.1016/j.rse.2021.112605, 2021.
McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M., and
Stoffelen, A.: Extended triple collocation: Estimating errors and
correlation coefficients with respect to an unknown target, Geophys. Res.
Lett., 41, 6229–6236, https://doi.org/10.1002/2014GL061322,
2014.
Molero, B., Leroux, D. J., Richaume, P., Kerr, Y. H., Merlin, O., Cosh, M.
H., and Bindlish, R.: Multi-Timescale Analysis of the Spatial
Representativeness of In Situ Soil Moisture Data within Satellite
Footprints, J. Geophys. Res.-Atmos., 123, 3–21,
https://doi.org/10.1002/2017JD027478, 2018.
Muñoz-Sabater, J.: ERA5-Land hourly data from 1981 to present,
Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.e2161bac, 2019.
Muñoz-Sabater, J.: ERA5-Land hourly data from 1950 to 1980, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.e2161bac, 2021.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Naz, B. S., Kollet, S., Franssen, H.-J. H., Montzka, C., and Kurtz, W.: A 3
km spatially and temporally consistent European daily soil moisture
reanalysis from 2000 to 2015, Sci. Data, 7, 111,
https://doi.org/10.1038/s41597-020-0450-6, 2020.
Njoku, E. G., Jackson, T. J., Lakshmi, V., Chan, T. K., and Nghiem, S. V:
Soil moisture retrieval from AMSR-E, IEEE T. Geosci. Remote, 41,
215–229, https://doi.org/10.1109/TGRS.2002.808243, 2003.
O'Neill, P. E., Chan, S., Njoku, E. G., Jackson, T., Bindlish, R., and
Chaubell, J.: SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture,
Version 8, NASA National Snow and Ice Data Center Distributed Active Archive
Center [data set], https://doi.org/10.5067/OMHVSRGFX38O, 2021.
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of
satellite-derived global land surface moisture, J. Geophys. Res.-Earth, 113, F01002, https://doi.org/10.1029/2007JF000769, 2008.
Peng, J., Loew, A., Merlin, O., and Verhoest, N. E. C.: A review of spatial
downscaling of satellite remotely sensed soil moisture, Rev. Geophys., 55,
341–366, https://doi.org/10.1002/2016RG000543, 2017.
Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H.,
Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson, M. W. J., de
Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H.,
Lovergine, F., Mahecha, M. D., Marzahn, P., Mattia, F., Musial, J. P.,
Preuschmann, S., Reichle, R. H., Satalino, G., Silgram, M., van Bodegom, P.
M., Verhoest, N. E. C., Wagner, W., Walker, J. P., Wegmüller, U., and
Loew, A.: A roadmap for high-resolution satellite soil moisture applications
– confronting product characteristics with user requirements, Remote Sens.
Environ., 252, 112162, https://doi.org/10.1016/J.RSE.2020.112162, 2021.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Qu, Y., Liu, Q., Liang, S., Wang, L., Liu, N., and Liu, S.:
Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo
From MODIS Data, IEEE T. Geosci. Remote, 52, 907–919,
https://doi.org/10.1109/TGRS.2013.2245670, 2014.
Rahimzadeh-Bajgiran, P., Berg, A. A., Champagne, C., and Omasa, K.:
Estimation of soil moisture using optical/thermal infrared remote sensing in
the Canadian Prairies, ISPRS J. Photogramm., 83, 94–103,
https://doi.org/10.1016/j.isprsjprs.2013.06.004, 2013.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data
assimilation system, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Senyurek, V., Lei, F., Boyd, D., Kurum, M., Gurbuz, A. C., and Moorhead, R.:
Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in
CONUS, Remote Sens., 12, 1168, https://doi.org/10.3390/rs12071168, 2020.
Sheffield, J., Goteti, G., Wen, F., and Wood, E. F.: A simulated soil
moisture based drought analysis for the United States, J. Geophys. Res.,
109, 1–19, https://doi.org/10.1029/2004JD005182, 2004.
Shi, J., Zhao, T., Cui, Q., and Yao, P.: Airborne and Spaceborne Passive
Microwave Measurements of Soil Moisture, in: Observation and Measurement of
Ecohydrological Processes, edited by: Li, X. and Vereecken, H., Springer
Berlin Heidelberg, Berlin, Heidelberg, 71–105,
https://doi.org/10.1007/978-3-662-48297-1_3, 2019.
Smith, A. B., Walker, J. P., Western, A. W., Young, R. I., Ellett, K. M.,
Pipunic, R. C., Grayson, R. B., Siriwardena, L., Chiew, F. H. S., and
Richter, H.: The Murrumbidgee soil moisture monitoring network data set,
Water Resour. Res., 48, W07701,
https://doi.org/10.1029/2012WR011976, 2012.
Song, J.: Bias corrections for Random Forest in regression using residual
rotation, J. Korean Stat. Soc., 44, 321–326,
https://doi.org/10.1016/j.jkss.2015.01.003, 2015.
Song, P., Zhang, Y., Guo, J., Shi, J., Zhao, T., and Tong, B.: A 1 km daily surface soil moisture dataset of enhanced coverage under all-weather conditions over China in 2003–2019, Earth Syst. Sci. Data, 14, 2613–2637, https://doi.org/10.5194/essd-14-2613-2022, 2022.
Starks, P. J., Fiebrich, C. A., Grimsley, D. L., Garbrecht, J. D., Steiner,
J. L., Guzman, J. A., and Moriasi, D. N.: Upper Washita River Experimental
Watersheds: Meteorologic and Soil Climate Measurement Networks, J. Environ.
Qual., 43, 1239–1249,
https://doi.org/10.2134/jeq2013.08.0312, 2014.
Stoffelen, A.: Toward the true near-surface wind speed: Error modeling and
calibration using triple collocation, J. Geophys. Res.-Oceans, 103,
7755–7766, https://doi.org/10.1029/97JC03180, 1998.
Vergopolan, N., Chaney, N. W., Pan, M., Sheffield, J., Beck, H. E.,
Ferguson, C. R., Torres-Rojas, L., Sadri, S., and Wood, E. F.:
SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the
conterminous US, Sci. Data, 8, 264,
https://doi.org/10.1038/s41597-021-01050-2, 2021.
Wagner, W., Pathe, C., Doubkova, M., Sabel, D., Bartsch, A., Hasenauer, S.,
Blöschl, G., Scipal, K., Martínez-Fernández, J., and Löw,
A.: Temporal Stability of Soil Moisture and Radar Backscatter Observed by
the Advanced Synthetic Aperture Radar (ASAR), Sensors, 8, 1174–1197,
https://doi.org/10.3390/s80201174, 2008.
Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S.,
Figa-Saldaña, J., de Rosnay, P., Jann, A., Schneider, S., Komma, J.,
Kubu, G., Brugger, K., Aubrecht, C., Züger, J., Gangkofner, U.,
Kienberger, S., Brocca, L., Wang, Y., Blöschl, G., Eitzinger, J., and
Steinnocher, K.: The ASCAT Soil Moisture Product: A Review of its
Specifications, Validation Results, and Emerging Applications, Meteorol.
Z., 22, 5–33, https://doi.org/10.1127/0941-2948/2013/0399, 2013.
Wang, Y., Leng, P., Peng, J., Marzahn, P., and Ludwig, R.: Global
assessments of two blended microwave soil moisture products CCI and SMOPS
with in-situ measurements and reanalysis data, Int. J. Appl. Earth Obs., 94, 102234, https://doi.org/10.1016/J.JAG.2020.102234, 2021.
Wigneron, J.-P., Li, X., Frappart, F., Fan, L., Al-Yaari, A., De Lannoy, G.,
Liu, X., Wang, M., Le Masson, E., and Moisy, C.: SMOS-IC data record of soil
moisture and L-VOD: Historical development, applications and perspectives,
Remote Sens. Environ., 254, 112238,
https://doi.org/10.1016/j.rse.2020.112238, 2021.
Xu, X.: Evaluation of SMAP Level 2, 3, and 4 Soil Moisture Datasets over the
Great Lakes Region, Remote Sensing, 12, 3785, https://doi.org/10.3390/rs12223785,
2020.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F.,
Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy
map of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017.
Yang, J., Zhang, P., Lu, N., Yang, Z., Shi, J., and Dong, C.: Improvements
on global meteorological observations from the current Fengyun 3 satellites
and beyond, Int. J. Digit. Earth, 5, 251–265,
https://doi.org/10.1080/17538947.2012.658666, 2012.
Yee, M. S., Walker, J. P., Rüdiger, C., Parinussa, R. M., Koike, T., and
Kerr, Y. H.: A comparison of SMOS and AMSR2 soil moisture using
representative sites of the OzNet monitoring network, Remote Sens. Environ.,
195, 297–312, https://doi.org/10.1016/j.rse.2017.04.019, 2017.
Yuan, Q., Xu, H., Li, T., Shen, H., and Zhang, L.: Estimating surface soil
moisture from satellite observations using a generalized regression neural
network trained on sparse ground-based measurements in the continental U.S,
J. Hydrol., 580, 124351, https://doi.org/10.1016/j.jhydrol.2019.124351,
2020.
Yue, J., Tian, J., Tian, Q., Xu, K., and Xu, N.: Development of soil
moisture indices from differences in water absorption between
shortwave-infrared bands, ISPRS J. Photogramm., 154, 216–230,
https://doi.org/10.1016/j.isprsjprs.2019.06.012, 2019.
Zappa, L., Forkel, M., Xaver, A., and Dorigo, W.: Deriving Field Scale Soil
Moisture from Satellite Observations and Ground Measurements in a Hilly
Agricultural Region, Remote Sensing, 11, 2596, https://doi.org/10.3390/rs11222596,
2019.
Zhang, Q., Yuan, Q., Li, J., Wang, Y., Sun, F., and Zhang, L.: Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019, Earth Syst. Sci. Data, 13, 1385–1401, https://doi.org/10.5194/essd-13-1385-2021, 2021.
Zhang, Y., Liang, S., Ma, H., He, T., Wang, Q., and Li, B.: A global 1 km
surface soil moisture product from 2000 to 2020, Zenodo [data set],
https://doi.org/10.5281/ZENODO.7172664, 2022a.
Zhang, Y., Liang, S., Zhu, Z., Ma, H., and He, T.: Soil moisture content
retrieval from Landsat 8 data using ensemble learning, ISPRS J. Photogramm., 185, 32–47,
https://doi.org/10.1016/j.isprsjprs.2022.01.005, 2022b.
Zhao, T., Shi, J., Entekhabi, D., Jackson, T. J., Hu, L., Peng, Z., Yao, P.,
Li, S., and Kang, C. S.: Retrievals of soil moisture and vegetation optical
depth using a multi-channel collaborative algorithm, Remote Sens. Environ.,
257, 112321, https://doi.org/10.1016/j.rse.2021.112321,
2021.
Zheng, C., Jia, L., and Zhao, T.: A 21-year dataset (2000–2020) of gap-free
global daily surface soil moisture at 1 km grid resolution, Sci. Data, 10,
139, https://doi.org/10.1038/s41597-023-01991-w, 2023.
Zheng, J., Zhao, T., Lü, H., Shi, J., Cosh, M. H., Ji, D., Jiang, L.,
Cui, Q., Lu, H., Yang, K., Wigneron, J.-P., Li, X., Zhu, Y., Hu, L., Peng,
Z., Zeng, Y., Wang, X., and Kang, C. S.: Assessment of 24 soil moisture
datasets using a new in situ network in the Shandian River Basin of China,
Remote Sens. Environ., 271, 112891,
https://doi.org/10.1016/j.rse.2022.112891, 2022.
Zhou, Z.-H.: Ensemble Learning, in: Machine Learning, Springer Singapore,
Singapore, 181–210,
https://doi.org/10.1007/978-981-15-1967-3_8, 2021.
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multisource datasets. Evaluation of this product against dense in situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Soil moisture observations are important for a range of earth system applications. This study...
Altmetrics
Final-revised paper
Preprint