Articles | Volume 15, issue 5
https://doi.org/10.5194/essd-15-1911-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1911-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An adapted hourly Himawari-8 fire product for China: principle, methodology and verification
Jie Chen
Key Laboratory of Radiometric Calibration and Validation for
Environmental Satellites, National Satellite Meteorological Center (National
Center for Space Weather), China Meteorological Administration and
Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing
100081, China
Qiancheng Lv
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Shuang Wu
Heilongjiang Eco-Meteorology Center, Harbin, Heilongjiang 150030,
China
Yelu Zeng
College of Land Science and Technology, China Agricultural University,
Beijing 100083, China
Manchun Li
School of Geography and Ocean Science, Nanjing University, Nanjing
210023, China
Ziyue Chen
CORRESPONDING AUTHOR
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Enze Zhou
Electric Power Research Institute, Guangdong Power Grid, Guangzhou,
Guangdong 510000, China
Wei Zheng
Key Laboratory of Radiometric Calibration and Validation for
Environmental Satellites, National Satellite Meteorological Center (National
Center for Space Weather), China Meteorological Administration and
Innovation Center for FengYun Meteorological Satellite (FYSIC), Beijing
100081, China
Cheng Liu
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Xiao Chen
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Jing Yang
College of Global Change and Earth System Science, Beijing Normal
University, Beijing 100091, China
Bingbo Gao
CORRESPONDING AUTHOR
College of Land Science and Technology, China Agricultural University,
Beijing 100083, China
Related authors
Yang Liu, Jie Chen, Yusheng Shi, Wei Zheng, Tianchan Shan, and Gang Wang
Earth Syst. Sci. Data, 16, 3495–3515, https://doi.org/10.5194/essd-16-3495-2024, https://doi.org/10.5194/essd-16-3495-2024, 2024
Short summary
Short summary
Open biomass burning has a significant impact on regional and global air quality. To enhance the quantification of global emissions from open biomass burning, we have developed the Global Emissions Inventory from Open Biomass Burning (GEIOBB) dataset, which provides a global daily-scale database at 1 km resolution of multiple pollutant emissions. This database aids global-scale environmental analysis of biomass burning.
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022, https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
Short summary
The potential degradation of mainstream global fire products leads to large uncertainty in the effective monitoring of wildfires and their influence. To fill this gap, we produced a Fengyun-3D (FY-3D) global active fire product with a similar spatial and temporal resolution to MODIS fire products, aiming to serve as continuity and a replacement for MODIS fire products. The FY-3D fire product is an ideal tool for global fire monitoring and can be preferably employed for fire monitoring in China.
Bowen Niu, Quanlong Feng, Bingwen Qiu, Shuai Su, Xinmin Zhang, Rongji Cui, Xinhong Zhang, Fanli Sun, Wenhui Yan, Siyuan Zhao, Hanyu Shi, Cong Ou, Xiaolu Yan, Jianhua Gong, Gaofei Yin, Jianxi Huang, Jiantao Liu, Bingbo Gao, Xiaochuang Yao, Jianyu Yang, and Dehai Zhu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-538, https://doi.org/10.5194/essd-2024-538, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We have proposed a novel framework to generate the firstly publicly released 10-m global PCGs map in 2020 derived from Sentinel-2. Results show that the global PCGs area is approximately 14,259.85 km² in 2020, mainly distributed between 30° N and 40° N. China, not only has the largest area of PCGs in Asia but also ranks first worldwide, with a PCGs area of 8,224.90 km², making up 57.67 % of the global and 83.29 % of the Asia. The overall accuracy of our Global-PCG-10 is satisfactory of 92.08 %.
Kaiqi Du, Guilong Xiao, Jianxi Huang, Xiaoyan Kang, Xuecao Li, Yelu Zeng, Quandi Niu, Haixiang Guan, and Jianjian Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-432, https://doi.org/10.5194/essd-2024-432, 2025
Manuscript not accepted for further review
Short summary
Short summary
In this manuscript, we developed a 500-m spatial resolution monthly SIF dataset for the China region (CNSIF) from 2003 to 2022 based on high-resolution apparent reflectance and thermal infrared data. The comparison of CNSIF with tower-based SIF observations, tower-based GPP observations, MODIS GPP products, and other SIF datasets has validated CNSIF's ability to capture photosynthetic activity across different vegetation types and its potential for estimating carbon fluxes.
Yang Liu, Jie Chen, Yusheng Shi, Wei Zheng, Tianchan Shan, and Gang Wang
Earth Syst. Sci. Data, 16, 3495–3515, https://doi.org/10.5194/essd-16-3495-2024, https://doi.org/10.5194/essd-16-3495-2024, 2024
Short summary
Short summary
Open biomass burning has a significant impact on regional and global air quality. To enhance the quantification of global emissions from open biomass burning, we have developed the Global Emissions Inventory from Open Biomass Burning (GEIOBB) dataset, which provides a global daily-scale database at 1 km resolution of multiple pollutant emissions. This database aids global-scale environmental analysis of biomass burning.
Miaoqing Xu, Jing Yang, Manchun Li, Xiao Chen, Qiancheng Lv, Qi Yao, Bingbo Gao, and Ziyue Chen
Atmos. Chem. Phys., 23, 14065–14076, https://doi.org/10.5194/acp-23-14065-2023, https://doi.org/10.5194/acp-23-14065-2023, 2023
Short summary
Short summary
Although the temporal-scale effects on PM2.5–meteorology associations have been discussed, no quantitative evidence has proved this before. Based on rare 3 h meteorology data, we revealed that the dominant meteorological factor for PM2.5 concentrations across China extracted at the 3 h and 24 h scales presented large variations. This research suggests that data sources of different temporal scales should be comprehensively considered for better attribution and prevention of airborne pollution.
Jie Chen, Qi Yao, Ziyue Chen, Manchun Li, Zhaozhan Hao, Cheng Liu, Wei Zheng, Miaoqing Xu, Xiao Chen, Jing Yang, Qiancheng Lv, and Bingbo Gao
Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022, https://doi.org/10.5194/essd-14-3489-2022, 2022
Short summary
Short summary
The potential degradation of mainstream global fire products leads to large uncertainty in the effective monitoring of wildfires and their influence. To fill this gap, we produced a Fengyun-3D (FY-3D) global active fire product with a similar spatial and temporal resolution to MODIS fire products, aiming to serve as continuity and a replacement for MODIS fire products. The FY-3D fire product is an ideal tool for global fire monitoring and can be preferably employed for fire monitoring in China.
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021, https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
Short summary
We employed ground observations of ozone and satellite products of HCHO and NO2 to investigate spatiotemporal variations of ozone formation regimes across China. Two different models were employed for determining the crucial thresholds that separate three ozone formation regimes, including NOx-limited, VOC-limited, and transitional regimes. The close output from two different models provides a reliable reference for better understanding ozone formation regimes.
Cited articles
Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J., Clarke, H., Dowdy,
A. J., Sharples, J. J., Nolan, R. H., Zhang, T., and Wooster, M. J.: Connections
of climate change and variability to large and extreme forest fires in
southeast Australia, Commun. Earth Environ., 2, 1–17,
https://doi.org/10.1038/s43247-020-00065-8, 2021.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in global burned area,
Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017.
Andersen, A. N., Cook, G. D., Corbett, L. K., Douglas, M. M., Eager, R. W.,
Russell-Smith, J., Setterfield, S. A., Williams, R. J., and Woinarski, J. C.: Fire
frequency and biodiversity conservation in Australian tropical savannas:
implications from the Kapalga fire experiment, Austral Ecol., 30, 155–167,
https://doi.org/10.1111/j.1442-9993.2005.01441.x, 2005.
Angassa, A. and Oba, G.: Herder perceptions on impacts of range enclosures,
crop farming, fire ban and bush encroachment on the rangelands of Borana,
Southern Ethiopia, Human Ecol., 36, 201–215,
https://doi.org/10.1007/s10745-007-9156-z, 2008.
Arino, O., Casadio, S., and Serpe, D.: Global night-time fire season timing
and fire count trends using the ATSR instrument series, Remote Sens., 116,
226–238, https://doi.org/10.1016/j.rse.2011.05.025, 2012.
Balch, J. K., Bradley, B. A., D'Antonio, C. M., and Gómez-Dans, J.:
Introduced annual grass increases regional fire activity across the arid
western USA (1980–2009), Glob. Chang. Biol., 19, 173–183,
https://doi.org/10.1111/gcb.12046, 2013.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai,
Y., Miyakawa, T., Murata, H., and Ohno, T.: An introduction to
Himawari-8/9 – Japan's new-generation geostationary meteorological
satellites, J. Meteorol. Soc. Japan, Ser. II, 94, 151–183,
https://doi.org/10.2151/jmsj.2016-009, 2016.
Cascio, W. E.: Wildland fire smoke and human health, Sci. Total Environ.,
624, 586–595, https://doi.org/10.1016/j.scitotenv.2017.12.086, 2018.
Chen, J., Lv, Q., Wu, S., Zeng, Y., Li, M., Chen, Z., Zhou, E., Zheng, W.,
Chen, X., Yang, J., and Gao, B.: NSMC-Himawari-8 fire product for China,
figshare [data set], https://doi.org/10.6084/m9.figshare.21550248, 2022a.
Chen, J., Yao, Q., Chen, Z., Li, M., Hao, Z., Liu, C., Zheng, W., Xu, M., Chen, X., Yang, J., Lv, Q., and Gao, B.: The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation, Earth Syst. Sci. Data, 14, 3489–3508, https://doi.org/10.5194/essd-14-3489-2022, 2022b.
Chen, J., Zheng, W., Wu, S., Liu, C., and Yan, H.: Fire Monitoring Algorithm
and Its Application on the Geo-Kompsat-2A Geostationary Meteorological
Satellite, Remote Sens., 14, 2655, https://doi.org/10.3390/rs14112655,
2022c.
Csiszar, I. A., Morisette, J. T., and Giglio, L.: Validation of active fire
detection from moderate-resolution satellite sensors: the MODIS example in
northern Eurasia, IEEE T. Geosci. Remote, 44, 1757–1764,
https://doi.org/10.1109/TGRS.2006.875941, 2006.
Cui, X., Alam, M. A., Perry, G. L., Paterson, A. M., Wyse, S. V., and
Curran, T. J.: Green firebreaks as a management tool for wildfires: Lessons
from China, J. Environ. Manage., 233, 329–336,
https://doi.org/10.1016/j.jenvman.2018.12.043, 2019.
Driscoll, D. A., Lindenmayer, D. B., Bennett, A. F., Bode, M., Bradstock, R. A.,
Cary, G. J., Clarke, M. F., Dexter, N., Fensham, R., and Friend, G.: Fire
management for biodiversity conservation: key research questions and our
capacity to answer them, Biol. Conserv., 143, 1928–1939,
https://doi.org/10.1016/j.biocon.2010.05.026, 2010.
Earl, N. and Simmonds, I.: Spatial and temporal variability and trends in
2001–2016 global fire activity, J. Geophys. Res.-Atmos., 123, 2524–2536,
https://doi.org/10.1002/2017JD027749, 2018.
ESA: A Global Plant Functional Types (PFT) dataset (v2.0.8) 2019–2020, ESA [data set], http://maps.elie.ucl.ac.be/CCI/viewer/download.php, last access: 5 May 2023.
Freeborn, P. H., Wooster, M. J., and Roberts, G.: Addressing the
spatiotemporal sampling design of MODIS to provide estimates of the fire
radiative energy emitted from Africa, Remote Sens. Environ., 115, 475–489,
https://doi.org/10.1016/j.rse.2010.09.017, 2011.
Fuller, D. O. and Fulk, M.: Comparison of noaa-avhrr and DMSP-OLS for
operational fire monitoring in kalimantan, Indonesia. Int. J. Remote Sens.,
21, 181–187, https://doi.org/10.1080/014311600211073, 2000.
Giglio, L., Csiszar, I., Justice, C. O.: Global distribution and seasonality
of active fires as observed with the Terra and Aqua Moderate Resolution
Imaging Spectroradiometer (MODIS) sensors, J. Geophys. Res.-Biogeo., 111,
G02016, https://doi.org/10.1029/2005JG000142, 2006.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.:
The Collection 6 MODIS burned area mapping algorithm and product, Remote
Sens. Environ., 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018.
Hall, J. V., Zhang, R., Schroeder, W., Huang, C., and Giglio, L.: Validation
of GOES-16 ABI and MSG SEVIRI active fire products. Int. J. Appl. Earth
Obs. Geoinf., 83, 101928, https://doi.org/10.1016/j.jag.2019.101928, 2019.
Herold, M. and Roberts, D.: Spectral characteristics of asphalt road aging and
deterioration: implications for remote-sensing applications, Appl.
Optics, 44, 4327–4334, https://doi.org/10.1364/AO.44.004327, 2005.
Huang, X., Li, M., Li, J., and Song, Y.: A high-resolution emission
inventory of crop burning in fields in China based on MODIS Thermal
Anomalies/Fire products, Atmos. Environ., 50, 9–15,
https://doi.org/10.1016/j.atmosenv.2012.01.017, 2012.
Huff, A. K., Kondragunta, S., Zhang, H., and Hoff, R. M.: Monitoring the
impacts of wildfires on forest ecosystems and public health in the exo-urban
environment using high-resolution satellite aerosol products from the
visible infrared imaging radiometer suite (VIIRS), Environ. Health
Insights., 9s2, EHI.S19590, https://doi.org/10.4137/ehi.s19590, 2015.
Ichoku, C., Kahn, R., and Chin, M.: Satellite contributions to the
quantitative characterization of biomass burning for climate modeling,
Atmos. Res., 111, 1–28, https://doi.org/10.1016/j.atmosres.2012.03.007,
2012.
Jang, E., Kang, Y., Im, J., Lee, D. W., Yoon, J., and Kim, S. K.: Detection
and monitoring of forest fires using Himawari-8 geostationary satellite data
in South Korea, Remote Sens., 11, 271,
https://doi.org/10.3390/rs11030271, 2019.
Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M.,
DeFries, R. S., Kinney, P., Bowman, D. M., and Brauer, M.: Estimated global
mortality attributable to smoke from landscape fires, Environ. Health
Perspect., 120, 695–701, https://doi.org/10.1289/ehp.1104422, 2012.
Justice, C., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D.,
Descloitres, J., Alleaume, S., Petitcolin, F., and Kaufman, Y.: The MODIS
fire products, Remote Sens. Environ., 83, 244–262,
https://doi.org/10.1016/S0034-4257(02)00076-7, 2002.
Kuenzer, C. and Dech, S.: Theoretical background of thermal infrared remote
sensing, in: Thermal infrared remote sensing, Springer, Dordrecht, 1–26,
https://doi.org/10.1007/978-94-007-6639-6_1, 2013.
Li, F., Zhang, X., Roy, D. P., and Kondragunta, S.: Estimation of
biomass-burning emissions by fusing the fire radiative power retrievals from
polar-orbiting and geostationary satellites across the conterminous United
States, Atmos. Environ., 211, 274–287,
https://doi.org/10.1016/j.atmosenv.2019.05.017, 2019.
Li, J., Bo, Y., and Xie, S.: Estimating emissions from crop residue open
burning in China based on statistics and MODIS fire products, J. Environ.
Sci.-China, 44, 158–170, https://doi.org/10.1016/j.jes.2015.08.024, 2016.
Liu, J. C., Pereira, G., Uhl, S. A., Bravo, M. A., and Bell, M. L.: A
systematic review of the physical health impacts from non-occupational
exposure to wildfire smoke, Environ. Res., 136, 120–132,
https://doi.org/10.1016/j.envres.2014.10.015, 2015.
Liu, T., Marlier, M. E., DeFries, R. S., Westervelt, D. M., Xia, K. R., Fiore,
A. M., Mickley, L. J., Cusworth, D. H., and Milly, G.: Seasonal impact of
regional outdoor biomass burning on air pollution in three Indian cities:
Delhi, Bengaluru, and Pune, Atmos. Environ., 172, 83–92,
https://doi.org/10.1016/j.atmosenv.2017.10.024, 2018.
Liu, X., He, B., Quan, X., Yebra, M., Qiu, S., Yin, C., Liao, Z., and Zhang,
H.: Near real-time extracting wildfire spread rate from Himawari-8 satellite
data, Remote Sens., 10, 1654, https://doi.org/10.3390/rs10101654, 2018.
Liu, Z., Yang, J., Chang, Y., Weisberg, P. J., and He, H. S.: Spatial
patterns and drivers of fire occurrence and its future trend under climate
change in a boreal forest of Northeast China, Glob. Chang. Biol., 18,
2041–2056, https://doi.org/10.1111/j.1365-2486.2012.02649.x, 2012.
Marlier, M. E., DeFries, R. S., Kim, P. S., Koplitz, S. N., Jacob, D. J.,
Mickley, L. J., and Myers, S. S.: Fire emissions and regional air quality
impacts from fires in oil palm, timber, and logging concessions in
Indonesia, Environ. Res. Lett., 10, 085005,
https://doi.org/10.1088/1748-9326/10/8/085005, 2015.
Na, L., Zhang, J., Bao, Y., Bao, Y., Na, R., Tong, S., and Si, A.:
Himawari-8 satellite based dynamic monitoring of grassland fire in
China-Mongolia border regions, Sensors, 18, 276,
https://doi.org/10.3390/s18010276, 2018.
Niu, R. and Zhai, P.: Study on forest fire danger over Northern China during
the recent 50 years, Clim. Change, 111, 723–736,
https://doi.org/10.1007/s10584-011-0198-2, 2012.
NOAA: NOAA-20 Visible Infrared Imaging Radiometer Suite (VIIRS) 2019–2021, NOAA [data set], https://ncc.nesdis.noaa.gov/NOAA-20/NOAA20VIIRS.php, last access: 5 May 2023.
Panjaitan, R. B., Sumartono, S., Sarwono, S., and Saleh, C.: The role of
central government and local government and the moderating effect of good
governance on forest fire policy in Indonesia, Benchmarking: An
International Journal, 26, 147–159,
https://doi.org/10.1108/BIJ-12-2017-0336, 2019.
Quinn, T. J. and Martin, J. E.: A radiometric determination of the
Stefan-Boltzmann constant and thermodynamic temperatures between −40 ∘C and +100 ∘C, Philos. T. Roy. Soc. Lond. A, 316, 85–189,
https://doi.org/10.1098/rsta.1985.0058, 1985.
Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., and
Elliott, C. T.: Critical review of health impacts of wildfire smoke
exposure, Environ. Health Perspect., 124, 1334–1343,
https://doi.org/10.1289/ehp.1409277, 2016.
Röder, A., Hill, J., Duguy, B., Alloza, J. A., and Vallejo, R.: Using
long time series of Landsat data to monitor fire events and post-fire
dynamics and identify driving factors. A case study in the Ayora region
(eastern Spain), Remote Sens. Environ., 112, 259–273,
https://doi.org/10.1016/j.rse.2007.05.001, 2008.
Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J., and
Lebair, W. J.: A closer look at the ABI on the GOES-R series, B. Am.
Meteorol. Soc., 98, 681–698, https://doi.org/10.1175/bams-d-15-00230.1,
2017.
Schroeder, W., Csiszar, I., and Morisette, J.: Quantifying the impact of
cloud obscuration on remote sensing of active fires in the Brazilian Amazon,
Remote Sens. Environ., 112, 456–470,
https://doi.org/10.1016/j.rse.2007.05.004, 2008.
Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The New VIIRS 375
m active fire detection data product: Algorithm description and initial
assessment, Remote Sens. Environ., 143, 85–96,
https://doi.org/10.1016/j.rse.2013.12.008, 2014.
Sharma, A., Wang, J., and Lennartson, E. M.: Intercomparison of MODIS and VIIRS
fire products in Khanty-Mansiysk Russia: Implications for characterizing gas
flaring from space, Atmosphere, 8, 95,
https://doi.org/10.3390/atmos8060095, 2017.
Song, R., Wang, T., Han, J., Xu, B., Ma, D., Zhang, M., Li, S., Zhuang, B.,
Li, M., and Xie, M.: Spatial and temporal variation of air pollutant
emissions from forest fires in China, Atmos. Environ., 281, 119156,
https://doi.org/10.1016/j.atmosenv.2022.119156, 2022.
Tiedemann, A. R., Klemmedson, J. O., and Bull, E. L.: Solution of forest health
problems with prescribed fire: are forest productivity and wildlife at risk,
For. Ecol. Manag., 127, 1–18, https://doi.org/10.1016/S0378-1127(99)00114-0,
2000.
Wang, J., Bhattacharjee, P. S., Tallapragada, V., Lu, C.-H., Kondragunta, S., da Silva, A., Zhang, X., Chen, S.-P., Wei, S.-W., Darmenov, A. S., McQueen, J., Lee, P., Koner, P., and Harris, A.: The implementation of NEMS GFS Aerosol Component (NGAC) Version 2.0 for global multispecies forecasting at NOAA/NCEP – Part 1: Model descriptions, Geosci. Model Dev., 11, 2315–2332, https://doi.org/10.5194/gmd-11-2315-2018, 2018.
Wang, X., Min, M., Wang, F., Guo, J., Li, B., and Tang, S.: Intercomparisons
of cloud mask products among Fengyun-4A, Himawari-8, and MODIS, IEEE
T. Geosci. Remote, 57, 8827–8839,
https://doi.org/10.1109/TGRS.2019.2923247, 2019.
Wickramasinghe, C. H., Jones, S., Reinke, K., and Wallace, L.: Development
of a multi-spatial resolution approach to the surveillance of active fire
lines using Himawari-8, Remote Sens., 8, 932, https://doi.org/10.3390/rs8110932, 2016.
Wu, Z., He, H. S., Yang, J., Liu, Z., and Liang, Y.: Relative effects of
climatic and local factors on fire occurrence in boreal forest landscapes of
northeastern China, Sci. Total Environ., 493, 472–480,
https://doi.org/10.1016/j.scitotenv.2014.06.011, 2014.
Xu, G. and Zhong, X.: Real-time wildfire detection and tracking in
Australia using geostationary satellite: Himawari-8, Remote Sens. Lett.,
8, 1052–1061, https://doi.org/10.1080/2150704X.2017.1350303, 2017.
Xu, W., Wooster, M. J., Kaneko, T., He, J., Zhang, T., and Fisher, D.: Major
advances in geostationary fire radiative power (FRP) retrieval over Asia and
Australia stemming from use of Himarawi-8 AHI, Remote Sens. Environ., 193,
138–149, https://doi.org/10.1016/j.rse.2017.02.024, 2017.
Yang, Z., Zhang, P., Gu, S., Hu, X., Tang, S., Yang, L., Xu, N., Zhen, Z.,
Wang, L., and Wu, Q.: Capability of Fengyun-3D satellite in earth system
observation, J. Meteorol. Res., 33, 1113–1130,
https://doi.org/10.1007/s13351-019-9063-4, 2019.
Yang, Z.-Y., Ishii, S., Yokoyama, T., Dao, T.D., Sun, M.-G., Pankin, P.S.,
Timofeev, I.V., Nagao, T., and Chen, K.-P.: Narrowband wavelength selective
thermal emitters by confined tamm plasmon polaritons, Acs Photonics, 4,
2212–2219, https://doi.org/10.1021/acsphotonics.7b00408, 2017.
Ying, L., Han, J., Du, Y., and Shen, Z.: Forest fire characteristics in
China: Spatial patterns and determinants with thresholds, For. Ecol. Manag.,
424, 345–354, https://doi.org/10.1016/j.foreco.2018.05.020, 2018.
Yuan, J., Wang, D., and Li, R.: Remote sensing image segmentation by
combining spectral and texture features, IEEE T. Geosci. Remote,
52, 16–24, https://doi.org/10.1109/TGRS.2012.2234755, 2014.
Zackrisson, O.: Influence of forest fires on the North Swedish boreal
forest, Oikos, 29, 22–32, https://doi.org/10.2307/3543289, 2013, 1977.
Zhang, X. and Kondragunta, S.: Temporal and spatial variability in biomass
burned areas across the USA derived from the GOES fire product, Remote Sens.
Environ., 112, 2886–2897, https://doi.org/10.1016/j.rse.2008.02.006,
2008.
Short summary
The Himawari-8 fire product is the mainstream fire product with the highest temporal resolution, yet it presents large uncertainties and is not suitable for reliable real-time fire monitoring in China. To address this issue, we proposed an adaptive hourly NSMC (National Satellite Meteorological Center) Himawari-8 fire product for China; the overall accuracy increased from 54 % (original Himawari product) to 80 %. This product can largely enhance real-time fire monitoring and relevant research.
The Himawari-8 fire product is the mainstream fire product with the highest temporal resolution,...
Altmetrics
Final-revised paper
Preprint