Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1329-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1329-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lake surface temperature retrieved from Landsat satellite series (1984 to 2021) for the North Slave Region
Remote Sensing of Environmental Change (ReSEC) Research group, Department of Geography and Environmental Studies, Wilfrid Laurier University, 75 University Avenue West, Waterloo N2L 3C5, Canada
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
ON, Canada
Homa Kheyrollah Pour
Remote Sensing of Environmental Change (ReSEC) Research group, Department of Geography and Environmental Studies, Wilfrid Laurier University, 75 University Avenue West, Waterloo N2L 3C5, Canada
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
ON, Canada
K. Andrea Scott
Department of Systems Design Engineering, University of Waterloo, 200 University Avenue, West, Waterloo N2L 3G1, Canada
Related authors
No articles found.
Arash Rafat and Homa Kheyrollah Pour
The Cryosphere, 19, 4335–4353, https://doi.org/10.5194/tc-19-4335-2025, https://doi.org/10.5194/tc-19-4335-2025, 2025
Short summary
Short summary
Climate change in Canada’s Northwest Territories (NWT) is making lake ice less predictable, thereby affecting ice road safety for northern communities. In this study, observations of significant changes in ice formation and growth between October and December of 2021–2023 in a small NWT lake are related to changes in local snowfall and air temperatures. Collected data were used to develop simple models that can be applied to ice road planning, construction, and design under future and current climate change.
Mohammad Sina Jahangir, John Quilty, Chaopeng Shen, Andrea Scott, Scott Steinschneider, and Jan Adamowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-846, https://doi.org/10.5194/egusphere-2025-846, 2025
Short summary
Short summary
This study presents a novel hybrid approach to streamflow prediction, significantly improving the efficiency and accuracy of fine-tuning deep learning models for hydrological prediction. Tested across numerous catchments in the U.S. and Europe, this method accelerates the fine-tuning process and improves prediction accuracy in locations beyond the training data. This innovative approach sets the stage for future hydrological models leveraging transfer learning.
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024, https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary
Short summary
The AutoICE challenge encouraged the development of deep learning models to map multiple aspects of sea ice – the amount of sea ice in an area and the age and ice floe size – using multiple sources of satellite and weather data across the Canadian and Greenlandic Arctic. Professionally drawn operational sea ice charts were used as a reference. A total of 179 students and sea ice and AI specialists participated and produced maps in broad agreement with the sea ice charts.
Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Jinman Park, Javier Noa Turnes, Linlin Xu, K. Andrea Scott, and David A. Clausi
The Cryosphere, 18, 1621–1632, https://doi.org/10.5194/tc-18-1621-2024, https://doi.org/10.5194/tc-18-1621-2024, 2024
Short summary
Short summary
This paper introduces an automated sea ice mapping pipeline utilizing a multi-task U-Net architecture. It attained the top score of 86.3 % in the AutoICE challenge. Ablation studies revealed that incorporating brightness temperature data and spatial–temporal information significantly enhanced model accuracy. Accurate sea ice mapping is vital for comprehending the Arctic environment and its global climate effects, underscoring the potential of deep learning.
Alicia F. Pouw, Homa Kheyrollah Pour, and Alex MacLean
The Cryosphere, 17, 2367–2385, https://doi.org/10.5194/tc-17-2367-2023, https://doi.org/10.5194/tc-17-2367-2023, 2023
Short summary
Short summary
Collecting spatial lake snow depth data is essential for improving lake ice models. Lake ice growth is directly affected by snow on the lake. However, snow on lake ice is highly influenced by wind redistribution, making it important but challenging to measure accurately in a fast and efficient way. This study utilizes ground-penetrating radar on lakes in Canada's sub-arctic to capture spatial lake snow depth and shows success within 10 % error when compared to manual snow depth measurements.
Hannah Adams, Jane Ye, Bhaleka D. Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, and Philippe Van Cappellen
Earth Syst. Sci. Data, 14, 5139–5156, https://doi.org/10.5194/essd-14-5139-2022, https://doi.org/10.5194/essd-14-5139-2022, 2022
Short summary
Short summary
Climate warming and land-use changes are altering the environmental factors that control the algal
productivityin lakes. To predict how environmental factors like nutrient concentrations, ice cover, and water temperature will continue to influence lake productivity in this changing climate, we created a dataset of chlorophyll-a concentrations (a compound found in algae), associated water quality parameters, and solar radiation that can be used to for a wide range of research questions.
Nazanin Asadi, Philippe Lamontagne, Matthew King, Martin Richard, and K. Andrea Scott
The Cryosphere, 16, 3753–3773, https://doi.org/10.5194/tc-16-3753-2022, https://doi.org/10.5194/tc-16-3753-2022, 2022
Short summary
Short summary
Machine learning approaches are deployed to provide accurate daily spatial maps of sea ice presence probability based on ERA5 data as input. Predictions are capable of predicting freeze-up/breakup dates within a 7 d period at specific locations of interest to shipping operators and communities. Forecasts of the proposed method during the breakup season have skills comparing to Climate Normal and sea ice concentration forecasts from a leading subseasonal-to-seasonal forecasting system.
Cited articles
Attiah, G., Kheyrollah Pour, H., and Scott, K. A.: North Slave Lake Surface
Temperature Retrieved from Landsat Archives from 1984 to 2021, Borealis [data set],
https://doi.org/10.5683/SP3/J4GMC2, 2022.
Austin, J. A. and Colman, S. M.: Lake Superior summer water temperatures are
increasing more rapidly than regional temperatures: A positive ice-albedo
feedback, Geophys. Res. Lett., 34, L06604,
https://doi.org/10.1029/2006GL029021, 2007.
Chander, G. and Markham, B.: Revised Landsat-5 TM Radiometrie Calibration
Procedures and Postcalibration Dynamic Ranges, IEEE T. Geosci. Remote, 41, 2674–2677, https://doi.org/10.1109/TGRS.2003.818464, 2003.
Chen, Y., Zhao, C., and Ming, Y.: Potential impacts of Arctic warming on
Northern Hemisphere mid-latitude aerosol optical depth, Clim. Dynam., 53, 1637–1651,
https://doi.org/10.1007/s00382-019-04706-3, 2019.
Collingsworth, P. D., Bunnell, D. B., Murray, M. W., Kao, Y. C., Feiner, Z.
S., Claramunt, R. M., Lofgren, B. M., Höök, T. O., and Ludsin, S.
A.: Climate change as a long-term stressor for the fisheries of the
Laurentian Great Lakes of North America, Rev. Fish Biol. Fish., 27,
363–391, https://doi.org/10.1007/s11160-017-9480-3, 2017.
Crosman, E. T. and Horel, J. D.: Remote Sensing of Environment MODIS-derived
surface temperature of the Great Salt Lake, Remote Sens. Environ., 113,
73–81, https://doi.org/10.1016/j.rse.2008.08.013, 2009.
Desai, A. R., Austin, J. A., Bennington, V., and McKinley, G. A.: Stronger
winds over a large lake in response to weakening air-to-lake temperature
gradient, Nat. Geosci., 2, 855–858, https://doi.org/10.1038/ngeo693, 2009.
Eerola, K., Rontu, L., Kourzeneva, E., Pour, H. K., and Duguay, C.: Impact
of partly ice-free Lake Ladoga on temperature and cloudiness in an
anticyclonic winter situation – a case study using a limited area model,
Tellus A, 66, 23929,
https://doi.org/10.3402/tellusa.v66.23929, 2014.
Environment and Climate Change Canada, Université de Montréal: CIMP 161_Legacy arsenic pollution in Yellowknife Bay sediments, 1.0.0, DataStream [data set], https://doi.org/10.25976/gm49-2a19, 2020.
Fichot, C. G., Matsumoto, K., Holt, B., Gierach, M. M., and Tokos, K. S.:
Assessing change in the overturning behavior of the Laurentian Great Lakes
using remotely sensed lake surface water temperatures, Remote Sens.
Environ., 235, 111427, https://doi.org/10.1016/j.rse.2019.111427, 2019.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Huang, Y., Liu, H., Hinkel, K., Yu, B., Beck, R., and Wu, J.: Analysis of
Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ
and Multidate Landsat-8 Data, Water Resour. Res., 53, 9642–9658,
https://doi.org/10.1002/2017WR021335, 2017.
HydroSheds: HydroLAKES, Hydrosheds [data set], https://www.hydrosheds.org/products/hydrolakes, last access: 20 May 2022.
Ihlen, V. and Zanter, K.: Landsat 7 (L7) Data Users Handbook, USGS Landsat
User Serv., 7, 151, https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1927_L7_Data_Users_Handbook-v2.pdf (last access: 6 March 2023), 2019.
Irons, J. R., Dwyer, J. L., and Barsi, J. A.: The next Landsat satellite:
The Landsat Data Continuity Mission, Remote Sens. Environ., 122, 11–21,
https://doi.org/10.1016/j.rse.2011.08.026, 2012.
Jiménez-Muñoz, J. C. and Sobrino, J. A.: A generalized
single-channel method for retrieving land surface temperature from
remote sensing data, J. Geophys. Res, 108, 4688,
https://doi.org/10.1029/2003JD003480, 2003.
Jimenez-Munoz, J. C., Cristobal, J., Sobrino, J. A., Sòria, G.,
Ninyerola, M., and Pons, X.: Revision of the single-channel algorithm for
land surface temperature retrieval from landsat thermal-infrared data, IEEE
T. Geosci. Remote, 47, 339–349,
https://doi.org/10.1109/TGRS.2008.2007125, 2009.
Jimenez-Munoz, J. C., Sobrino, J. A., Skokovic, D., Mattar, C., and
Cristobal, J.: Land surface temperature retrieval methods from landsat-8
thermal infrared sensor data, IEEE Geosci. Remote Sens. Lett., 11,
1840–1843, https://doi.org/10.1109/LGRS.2014.2312032, 2014.
Kheyrollah Pour, H., Duguay, C. R., Solberg, R., and Rudjord, Ø.: Impact
of satellite-based lake surface observations on the initial state of HIRLAM.
Part I: Evaluation of remotelysensed lake surface water temperature
observations, Tellus A, 66, 21534,
https://doi.org/10.3402/tellusa.v66.21534, 2014a.
Kheyrollah Pour, H., Rontu, L., Duguay, C., Eerola, K., and Kourzeneva, E.:
Impact of satellite-based lake surface observations on the initial state of
HIRLAM. Part II: Analysis of lake surface temperature and ice cover, Tellus
A, 66, 21395,
https://doi.org/10.3402/tellusa.v66.21395, 2014b.
Kheyrollah Pour, H., Duguay, C. R., Scott, K. A., and Kang, K. K.:
Improvement of Lake Ice Thickness Retrieval from MODIS Satellite Data Using
a Thermodynamic Model, IEEE T. Geosci. Remote, 55, 5956–5965,
https://doi.org/10.1109/TGRS.2017.2718533, 2017.
Kraemer, B. M., Anneville, O., Chandra, S., Dix, M., Kuusisto, E.,
Livingstone, D. M., Rimmer, A., Schladow, S. G., Silow, E., Sitoki, L. M.,
Tamatamah, R., Vadeboncoeur, Y., and McIntyre, P. B.: Morphometry and average temperature affect lake stratification responses to climate change, Geophys. Res. Lett., 42, 4981–4988,
https://doi.org/10.1002/2015GL064097, 2015.
Livingstone, D. M., Lotter, F., and Kettle, H.: Altitude-dependent
differences in the primary physical response of mountain lakes to climatic
forcing, Limnol. Oceanogr., 50, 1313–1325, 2005.
Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone,
D. M., Arai, T., Assel, R. A., Barry, R. G., Card, V., Kuusisto, E., Granin,
N. G., Prowse, T. D., Stewart, K. M., and Vuglinski, V. S.: Historical
trends in lake and river ice cover in the Northern Hemisphere, Science, 289, 1743–1746, https://doi.org/10.1126/science.289.5485.1743, 2000.
Markham, B., Barsi, J., Kvaran, G., Ong, L., Kaita, E., Biggar, S.,
Czapla-Myers, J., Mishra, N., and Helder, D.: Landsat-8 operational land
imager radiometric calibration and stability, Remote Sensing, 6, 12275–12308,
https://doi.org/10.3390/rs61212275, 2014.
Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., Hollmann, R., Lavergne, T., Laeng, A., de Leeuw, G., Mittaz, J., Poulsen, C., Povey, A. C., Reuter, M., Sathyendranath, S., Sandven, S., Sofieva, V. F., and Wagner, W.: Uncertainty information in climate data records from Earth observation, Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, 2017.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.:
Estimating the volume and age of water stored in global lakes using a
geo-statistical approach, Nat. Commun., 7, 13603,
https://doi.org/10.1038/ncomms13603, 2016.
Le Moigne, P., Colin, J., and Decharme, B.: Impact of lake surface temperatures simulated by the FLake scheme in the CNRM-CM5 climate model, Tellus A, 68, 31274, https://doi.org/10.3402/tellusa.v68.31274, 2016.
Natural Resources Canada: Lakes, Rivers and Glaciers in Canada – CanVec Series – Hydrographic Features, Government of Canada [data set], https://open.canada.ca/data/en/dataset/9d96e8c9-22fe-4ad2-b5e8-94a6991b744b (last access: 28 March 2022), 2019.
O'Reilly, C. M., Rowley, R. J., Schneider, P., Lenters, J. D., Mcintyre, P.
B., and Kraemer, B. M.: Rapid and highly variable warming of lake surface
waters around the globe, Geophys. Res. Lett., 42, 10773–10781, https://doi.org/10.1002/2015GL066235, 2015.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418–422, https://doi.org/10.1038/nature20584, 2016.
Prats, J., Reynaud, N., Rebière, D., Peroux, T., Tormos, T., and Danis, P.-A.: LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999–2016 from Landsat archives, Earth Syst. Sci. Data, 10, 727–743, https://doi.org/10.5194/essd-10-727-2018, 2018.
Reinart, A. and Reinhold, M.: Mapping surface temperature in large lakes
with MODIS data, Remote Sens. Environ., 112, 603–611, https://doi.org/10.1016/j.rse.2007.05.015,
2008.
Roy, D. P., Wulder, M. A., Loveland, T. R., C. E., W., Allen, R. G.,
Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R.,
Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F.,
Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F., Hipple, J. D.,
Hostert, P., Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee,
Z. P., Lymburner, L., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R.,
Vogelmann, J., Wynne, R. H., and Zhu, Z.: Landsat-8: Science and product
vision for terrestrial global change research, Remote Sens. Environ., 145,
154–172, https://doi.org/10.1016/j.rse.2014.02.001, 2014.
Schneider, P. and Hook, S. J.: Space observations of inland water bodies
show rapid surface warming since 1985, Geophys. Res. Lett., 37, L22405,
https://doi.org/10.1029/2010GL045059, 2010.
Sentlinger, G. I., Hook, S. J., and Laval, B.: Sub-pixel water temperature
estimation from thermal-infrared imagery using vectorized lake features,
Remote Sens. Environ., 112, 1678–1688,
https://doi.org/10.1016/j.rse.2007.08.019, 2008.
Shi, Q. and Xie, P.: Impact of lake
surface temperature variations on lake
effect snow over the great lakes region, J. Geophys. Res.-Atmos., 124, 12553–12567, https://doi.org/10.1029/2019JD031261, 2019.
Sima, S., Ahmadalipour, A., and Tajrishy, M.: Mapping surface temperature in
a hyper-saline lake and investigating the effect of temperature distribution
on the lake evaporation, Remote Sens. Environ., 136, 374–385,
https://doi.org/10.1016/j.rse.2013.05.014, 2013.
Slater, J. A., Garvey, G., Johnston, C., Haase, J., Heady, B., Kroenung, G.,
and Little, J.: The SRTM data “finishing” process and products,
Photogramm. Eng. Remote Sensing, 72, 237–247,
https://doi.org/10.14358/PERS.72.3.237, 2006.
Statistics Canada: 2016 Census-Boundary files, Statistics Canada [data set], https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/files-fichiers/ghy_000c06a_e.zip, last access: 30 March 2022.
U.S. Geological Survey: Landsat 8 Data Users Handbook, Nasa, 8, 97, 2016.
USGS: landsat-level-1-processing-details,
https://www.usgs.gov/landsat-missions/landsat-level-1-processing-details,
last access: 11 March 2022.
Wan, Z., Zhang, Y., Zhang, Q., and Li, Z. L.: Validation of the
land-surface temperature products retrieved from terra moderate resolution
imaging spectroradiometer data, Remote Sens. Environ., 83, 163–180,
https://doi.org/10.1016/S0034-4257(02)00093-7, 2002.
Wang, J., Xue, P., Pringle, W., Yang, Z., and Qian, Y.: Impacts of lake
surface temperature on the summer
climate over the Great Lakes Region,
J. Geophys. Res.-Atmos., 127, e2021JD036231,
https://doi.org/10.1029/2021JD036231, 2022.
Wloczyk, C., Richter, R., Borg, E., and Neubert, W.: Sea and lake surface
temperature retrieval from Landsat thermal data in Northern Germany, Journal of Remote Sensing, 27, 2489–2502,
https://doi.org/10.1080/01431160500300206, 2006.
Woolway, R. I., Merchant, C. J., Van Den Hoek, J., Azorin-Molina, C.,
Nõges, P., Laas, A., Mackay, E. B., and Jones, I. D.: Northern
Hemisphere Atmospheric Stilling Accelerates Lake Thermal Responses to a
Warming World, Geophys. Res. Lett., 46, 11983–11992,
https://doi.org/10.1029/2019GL082752, 2019.
Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O'Reilly,
C. M., and Sharma, S.: Global lake responses to climate change, Nat. Rev.
Earth Environ., 1, 388–403, https://doi.org/10.1038/s43017-020-0067-5,
2020.
Xie, C., Zhang, X., Zhuang, L., Zhu, R., and Guo, J.: Analysis of surface
temperature variation of lakes in China using MODIS land surface temperature
data, Scientific Reports, 12, 2415, https://doi.org/10.1038/s41598-022-06363-9, 2022.
Yang, K., Yu, Z., and Luo, Y.: Analysis on driving factors of lake surface
water temperature for major lakes in Yunnan-Guizhou Plateau, Water Res.,
184, 116018, https://doi.org/10.1016/j.watres.2020.116018, 2020.
Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence,
R., and Evangelista, P. H.: A survival guide to Landsat preprocessing,
Ecology, 98, 920–932, https://doi.org/10.1002/ecy.1730, 2017.
Zhang, G., Yao, T., Chen, W., Zheng, G., Shum, C. K., Yang, K., Piao, S.,
Sheng, Y., Yi, S., Li, J., O'Reilly, C. M., Qi, S., Shen, S. S. P., Zhang,
H., and Jia, Y.: Regional differences of lake evolution across China during
1960s–2015 and its natural and anthropogenic causes, Remote Sens. Environ.,
221, 386–404, https://doi.org/10.1016/j.rse.2018.11.038, 2019.
Zhang, X., Duan, K. Q., Shi, P. H., and Yang, J. H.: Effect of lake
surface temperature on the summer precipitation over the Tibetan Plateau, J.
Mt. Sci., 13, 802–810, https://doi.org/10.1007/s11629-015-3743-z, 2016.
Zhao, G., Gao, H., and Cai, X.: Estimating lake temperature profile and
evaporation losses by leveraging MODIS LST data, Remote Sens. Environ., 251,
112104, https://doi.org/10.1016/j.rse.2020.112104, 2020.
Short summary
Lake surface temperature (LST) is a significant indicator of climate change and influences local weather and climate. This study developed a LST dataset retrieved from Landsat archives for 535 lakes across the North Slave Region, NWT, Canada. The data consist of individual NetCDF files for all observed days for each lake. The North Slave LST dataset will provide communities, scientists, and stakeholders with the changing spatiotemporal trends of LST for the past 38 years (1984–2021).
Lake surface temperature (LST) is a significant indicator of climate change and influences local...
Altmetrics
Final-revised paper
Preprint