Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5637-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5637-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global dataset of daily maximum and minimum near-surface air temperature at 1 km resolution over land (2003–2020)
Tao Zhang
Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA
Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA
Kaiguang Zhao
School of Environment and Natural Resources, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
Zhengyuan Zhu
Department of Statistics, Iowa State University, Ames, IA 50011, USA
Gang Chen
Laboratory for Remote Sensing and Environmental Change (LRSEC), Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
Jia Hu
Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA
Li Wang
Department of Statistics, George Mason University, Fairfax, VA 22030, USA
Related authors
Tao Zhang, Yuyu Zhou, Zhengyuan Zhu, Xiaoma Li, and Ghassem R. Asrar
Earth Syst. Sci. Data, 14, 651–664, https://doi.org/10.5194/essd-14-651-2022, https://doi.org/10.5194/essd-14-651-2022, 2022
Short summary
Short summary
We generated a global seamless 1 km daily (mid-daytime and mid-nighttime) land surface temperature (LST) dataset (2003–2020) using MODIS LST products by proposing a spatiotemporal gap-filling framework. The average root mean squared errors of the gap-filled LST are 1.88°C and 1.33°C, respectively, in mid-daytime and mid-nighttime. The global seamless LST dataset is unique and of great use in studies on urban systems, climate research and modeling, and terrestrial ecosystem studies.
Wanru He, Xuecao Li, Yuyu Zhou, Zitong Shi, Guojiang Yu, Tengyun Hu, Yixuan Wang, Jianxi Huang, Tiecheng Bai, Zhongchang Sun, Xiaoping Liu, and Peng Gong
Earth Syst. Sci. Data, 15, 3623–3639, https://doi.org/10.5194/essd-15-3623-2023, https://doi.org/10.5194/essd-15-3623-2023, 2023
Short summary
Short summary
Most existing global urban products with future projections were developed in urban and non-urban categories, which ignores the gradual change of urban development at the local scale. Using annual global urban extent data from 1985 to 2015, we forecasted global urban fractional changes under eight scenarios throughout 2100. The developed dataset can provide spatially explicit information on urban fractions at 1 km resolution, which helps support various urban studies (e.g., urban heat island).
Tao Zhang, Yuyu Zhou, Zhengyuan Zhu, Xiaoma Li, and Ghassem R. Asrar
Earth Syst. Sci. Data, 14, 651–664, https://doi.org/10.5194/essd-14-651-2022, https://doi.org/10.5194/essd-14-651-2022, 2022
Short summary
Short summary
We generated a global seamless 1 km daily (mid-daytime and mid-nighttime) land surface temperature (LST) dataset (2003–2020) using MODIS LST products by proposing a spatiotemporal gap-filling framework. The average root mean squared errors of the gap-filled LST are 1.88°C and 1.33°C, respectively, in mid-daytime and mid-nighttime. The global seamless LST dataset is unique and of great use in studies on urban systems, climate research and modeling, and terrestrial ecosystem studies.
Min Zhao, Changxiu Cheng, Yuyu Zhou, Xuecao Li, Shi Shen, and Changqing Song
Earth Syst. Sci. Data, 14, 517–534, https://doi.org/10.5194/essd-14-517-2022, https://doi.org/10.5194/essd-14-517-2022, 2022
Short summary
Short summary
We generated a unique dataset of global annual urban extents (1992–2020) using consistent nighttime light observations and analyzed global urban dynamics over the past 3 decades. Evaluations using other urbanization-related ancillary data indicate that the derived urban areas are reliable for characterizing spatial extents associated with intensive human settlement and high-intensity socioeconomic activities. This dataset can provide unique information for studying urbanization and its impacts.
Zuoqi Chen, Bailang Yu, Chengshu Yang, Yuyu Zhou, Shenjun Yao, Xingjian Qian, Congxiao Wang, Bin Wu, and Jianping Wu
Earth Syst. Sci. Data, 13, 889–906, https://doi.org/10.5194/essd-13-889-2021, https://doi.org/10.5194/essd-13-889-2021, 2021
Short summary
Short summary
An extended time series (2000–2018) of NPP-VIIRS-like nighttime light (NTL) data was proposed through a cross-sensor calibration from DMSP-OLS NTL data (2000–2012) and NPP-VIIRS NTL data (2013–2018). Compared with the annual composited NPP-VIIRS NTL data, our extended NPP-VIIRS-like NTL data have a high accuracy and also show a good spatial pattern and temporal consistency. It could be a useful proxy to monitor the dynamics of urbanization for a longer time period compared to existing NTL data.
Cited articles
Adole, T., Dash, J., Rodriguez-Galiano, V., and Atkinson, P. M.:
Photoperiod controls vegetation phenology across Africa, Commun. Biol., 2, 1–13, https://doi.org/10.1038/s42003-019-0636-7, 2019.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S. H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., von Rosenberg, J., Wallace, G., and Weatherall, P.:
Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371, https://doi.org/10.1080/01490410903297766, 2009.
Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., and Santos, A.:
Estimating air surface temperature in Portugal using MODIS LST data, Remote Sens. Environ., 124, 108–121, https://doi.org/10.1016/j.rse.2012.04.024, 2012.
Cai, Y., Chen, G., Wang, Y., and Yang, L.:
Impacts of land cover and seasonal variation on maximum air temperature estimation using MODIS imagery, Remote Sens.-Basel, 9, 3, https://doi.org/10.3390/rs9030233, 2017.
Chai, H., Cheng, W., Zhou, C., Chen, X., Ma, X., and Zhao, S.:
Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur Autonomous Region, China, Nat. Sci., 03, 999–1010, https://doi.org/10.4236/ns.2011.312125, 2011.
Chen, F., Liu, Y., Liu, Q., and Qin, F.:
A statistical method based on remote sensing for the estimation of air temperature in China, Int. J. Climatol., 35, 2131–2143, https://doi.org/10.1002/joc.4113, 2015.
Chen, Y., Liang, S., Ma, H., Li, B., He, T., and Wang, Q.:
An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data, Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, 2021.
Connor, S. J., Flasse, S. P., Thomson, M. C., and Perryman, A. H.:
Environmental information systems in malaria risk mapping and epidemic forecasting, Disasters, 22, 39–56, https://doi.org/10.1111/1467-7717.00074, 1998.
Crespi, A., Matiu, M., Bertoldi, G., Petitta, M., and Zebisch, M.:
A high-resolution gridded dataset of daily temperature and precipitation records (1980–2018) for Trentino-South Tyrol (north-eastern Italian Alps), Earth Syst. Sci. Data, 13, 2801–2818, https://doi.org/10.5194/essd-13-2801-2021, 2021.
Danielson, J. J. and Gesch, D. B.:
Global multi-resolution terrain elevation data 2010 (GMTED2010), Washington, DC, USA, US Department of the Interior, US Geological Survey, https://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf (last access: 15 December 2022), 2011.
Dimarzio, J., Brenner, A., Fricker, H., Schutz, R., Shuman, C., and Zwally, H.:
GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica, Version 1, [online] https://nsidc.org/data/NSIDC-0304/versions/1 (last access: 18 May 2021), 2007.
Dodson, R. and Marks, D.:
Daily air temperature interpolated at high spatial resolution over a large mountainous region, Clim. Res., 8, 1–20, https://doi.org/10.3354/cr008001, 1997.
Fang, S., Mao, K., Xia, X., Wang, P., Shi, J., Bateni, S. M., Xu, T., Cao, M., Heggy, E., and Qin, Z.:
Dataset of daily near-surface air temperature in China from 1979 to 2018, Earth Syst. Sci. Data, 14, 1413–1432, https://doi.org/10.5194/essd-14-1413-2022, 2022.
Good, E. J.:
An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures, J. Geophys. Res.-Atmos., 121, 8801–8819, https://doi.org/10.1002/2016JD025318, 2016.
Goward, S. N., Waring, R. H., Dye, D. G., and Yang, J.: Ecological Remote Sensing at OTTER: Satellite Macroscale Observations, Ecol. Appl., 4, 322–343, 1994.
Hengl, T., Heuvelink, G. B. M., Tadić, M. P., and Pebesma, E. J.:
Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images, Theor. Appl. Climatol., 107, 265–277, https://doi.org/10.1007/s00704-011-0464-2, 2012.
Hennig, T. A., Kretsch, J. L., Pessagno, C. J., Salamonowicz, P. H., and Stein, W. L.: The shuttle radar topography mission, in: Digital Earth Moving, edited by: Westort, C. Y., Lect. Notes Comput. Sci. (including Sub-ser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2181, 65–77, https://doi.org/10.1007/3-540-44818-7_11, 2001.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Rozum, I.:
ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), ECMWF, 147, 5–6, 2018.
Hooker, J., Duveiller, G., and Cescatti, A.:
Data descriptor: A global dataset of air temperature derived from satellite remote sensing and weather stations, Sci. Data, 5, 1–11, https://doi.org/10.1038/sdata.2018.246, 2018.
Hou, P., Chen, Y., Qiao, W., Cao, G., Jiang, W., and Li, J.:
Near-surface air temperature retrieval from satellite images and influence by wetlands in urban region, Theor. Appl. Climatol., 111, 109–118, https://doi.org/10.1007/s00704-012-0629-7, 2013.
Hrisko, J., Ramamurthy, P., Yu, Y., Yu, P., and Melecio-Vázquez, D.:
Urban air temperature model using GOES-16 LST and a diurnal regressive neural network algorithm, Remote Sens. Environ., 237, 111495, https://doi.org/10.1016/j.rse.2019.111495, 2020.
Huang, M., Piao, S., Ciais, P., Peñuelas, J., Wang, X., Keenan, T. F., Peng, S., Berry, J. A., Wang, K., Mao, J., Alkama, R., Cescatti, A., Cuntz, M., De Deurwaerder, H., Gao, M., He, Y., Liu, Y., Luo, Y., Myneni, R. B., Niu, S., Shi, X., Yuan, W., Verbeeck, H., Wang, T., Wu, J., and Janssens, I. A.:
Air temperature optima of vegetation productivity across global biomes, Nat. Ecol. Evol., 3, 772–779, https://doi.org/10.1038/s41559-019-0838-x, 2019.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.:
The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kim, M., Wang, L., and Zhou, Y.:
Spatially varying coefficient models with sign preservation of the coefficient functions, J. Agr. Biol. Envir. St., 26, 367–386, https://doi.org/10.1007/s13253-021-00443-5, 2021.
Lan, L., Lian, Z., and Pan, L.:
The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings, Appl. Ergon., 42, 29–36, https://doi.org/10.1016/j.apergo.2010.04.003, 2010.
Lan, L., Tang, J., Wargocki, P., Wyon, D. P., and Lian, Z.:
Cognitive performance was reduced by higher air temperature even when thermal comfort was maintained over the 24–28 ∘C range, Indoor Air, 32, 1–15, https://doi.org/10.1111/ina.12916, 2022.
Legates, D. R. and Willmott, C. J.:
Mean seasonal and spatial variability in global surface air temperature, Theor. Appl. Climatol., 41, 11–21, https://doi.org/10.1007/BF00866198, 1990.
Li, J. and Heap, A. D.:
A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors, Ecol. Inform., 6, 228–241, https://doi.org/10.1016/j.ecoinf.2010.12.003, 2011.
Li, L. and Zha, Y.:
Estimating monthly average temperature by remote sensing in China, Adv. Space Res., 63, 2345–2357, https://doi.org/10.1016/j.asr.2018.12.039, 2019.
Li, X., Zhou, Y., Asrar, G. R., and Zhu, Z.:
Developing a 1 km resolution daily air temperature dataset for urban and surrounding areas in the conterminous United States, Remote Sens. Environ., 215, 74–84, https://doi.org/10.1016/j.rse.2018.05.034, 2018.
Li, X., Gong, P., Zhou, Y., Wang, J., Bai, Y., Chen, B., Hu, T., Xiao, Y., Xu, B., Yang, J., Liu, X., Cai, W., Huang, H., Wu, T., Wang, X., Lin, P., Li, X., Chen, J., He, C., Li, X., Yu, L., Clinton, N., and Zhu, Z.:
Mapping global urban boundaries from the global artificial impervious area (GAIA) data, Environ. Res. Lett., 15, 094044, https://doi.org/10.1088/1748-9326/ab9be3, 2020.
Lin, S., Moore, N. J., Messina, J. P., DeVisser, M. H., and Wu, J.:
Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa, Int. J. Appl. Earth Obs., 18, 128–140, https://doi.org/10.1016/j.jag.2012.01.004, 2012.
Lowen, A. C., Mubareka, S., Steel, J., and Palese, P.:
Influenza virus transmission is dependent on relative humidity and temperature, PLoS Pathog., 3, 1470–1476, https://doi.org/10.1371/journal.ppat.0030151, 2007.
MacDonald, H., McKenney, D. W., Papadopol, P., Lawrence, K., Pedlar, J., and Hutchinson, M. F.:
North American historical monthly spatial climate dataset, 1901–2016, Sci. Data, 7, 1–11, https://doi.org/10.1038/s41597-020-00737-2, 2020.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.:
An overview of the global historical climatology network-daily database, J. Atmos. Ocean. Tech., 29, 897–910, https://doi.org/10.1175/JTECH-D-11-00103.1, 2012.
Meyer, H., Schmidt, J., Detsch, F., and Nauss, T.:
Hourly gridded air temperatures of South Africa derived from MSG SEVIRI, Int. J. Appl. Earth Obs., 78, 261–267, https://doi.org/10.1016/j.jag.2019.02.006, 2019.
Nashwan, M. S., Shahid, S., and Chung, E. S.:
Development of high-resolution daily gridded temperature datasets for the central north region of Egypt, Sci. Data, 6, 1–13, https://doi.org/10.1038/s41597-019-0144-0, 2019.
Nemani, R. R. and Running, S. W.:
Estimation of Regional Surface Resistance to Evapotranspiration from NDVI and Thermal-IR AVHRR Data, J. Appl. Meteorol. Clim., 28, 276–284, https://doi.org/10.1175/1520-0450(1989)028{%}3C0276:EORSRT{%}3E2.0.CO;2, 1989.
Noi, P. T., Degener, J., and Kappas, M.:
Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data, Remote Sens.-Basel, 9, 398, https://doi.org/10.3390/rs9050398, 2017.
Oyler, J. W., Ballantyne, A., Jencso, K., Sweet, M., and Running, S. W.:
Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature, Int. J. Climatol., 35, 2258–2279, https://doi.org/10.1002/joc.4127, 2015.
Petrova, V. N. and Russell, C. A.:
The evolution of seasonal influenza viruses, Nat. Rev. Microbiol., 16, 47–60, https://doi.org/10.1038/nrmicro.2017.118, 2018.
Prihodko, L. and Goward, S. N.:
Estimation of air temperature from remotely sensed surface observations, Remote Sens. Environ., 60, 335–346, https://doi.org/10.1016/S0034-4257(96)00216-7, 1997.
Rao, Y., Liang, S., Wang, D., Yu, Y., Song, Z., Zhou, Y., Shen, M., and Xu, B.:
Estimating daily average surface air temperature using satellite land surface temperature and top-of-atmosphere radiation products over the Tibetan Plateau, Remote Sens. Environ., 234, 111462, https://doi.org/10.1016/j.rse.2019.111462, 2019.
Ren, S., Qin, Q., and Ren, H.:
Contrasting wheat phenological responses to climate change in global scale, Sci. Total Environ., 665, 620–631, https://doi.org/10.1016/j.scitotenv.2019.01.394, 2019.
Rhee, J. and Im, J.:
Estimating high spatial resolution air temperature for regions with limited in situ data using MODIS products, Remote Sens.-Basel, 6, 7360–7378, https://doi.org/10.3390/rs6087360, 2014.
Rosen, P. A.:
Synthetic aperture radar interferometry, P. IEEE, 88, 333–380, https://doi.org/10.1109/5.838084, 2000.
Sakai, S. and Kitajima, K.:
Tropical phenology: Recent advances and perspectives, Ecol. Res., 34, 50–54, https://doi.org/10.1111/1440-1703.1131, 2019.
Shen, H., Jiang, Y., Li, T., Cheng, Q., Zeng, C., and Zhang, L.:
Deep learning-based air temperature mapping by fusing remote sensing, station, simulation and socioeconomic data, Remote Sens. Environ., 240, 111692, https://doi.org/10.1016/j.rse.2020.111692, 2020.
Shi, Y., Jiang, Z., Dong, L., and Shen, S.:
Statistical estimation of high-resolution surface air temperature from MODIS over the Yangtze River Delta, China, J. Meteorol. Res.-PRC, 31, 448–454, https://doi.org/10.1007/s13351-017-6073-y, 2017.
Stahl, K., Moore, R. D., Floyer, J. A., Asplin, M. G., and McKendry, I. G.:
Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density, Agr. Forest Meteorol., 139, 224–236, https://doi.org/10.1016/j.agrformet.2006.07.004, 2006.
Sulla-Menashe, D. and Friedl, M. A.:
User Guide to Collection 6 MODIS Land Cover Dynamics (MCD12Q2) Product, User Guid., 6, 1–18, https://modis-land.gsfc.nasa.gov/pdf/MCD12Q1_C6_Userguide04042018.pdf (last access: 15 December 2022), 2018.
Sun, Y. J., Wang, J. F., Zhang, R. H., Gillies, R. R., Xue, Y., and Bo, Y. C.:
Air temperature retrieval from remote sensing data based on thermodynamics, Theor. Appl. Climatol., 80, 37–48, https://doi.org/10.1007/s00704-004-0079-y, 2005.
Thornton, P. E., Shrestha, R., Thornton, M., Kao, S. C., Wei, Y., and Wilson, B. E.:
Gridded daily weather data for North America with comprehensive uncertainty quantification, Sci. Data, 8, 1–17, https://doi.org/10.1038/s41597-021-00973-0, 2021.
Verma, P., Sarkar, S., Singh, P., and Dhiman, R. C.: Devising a method towards development of early warning tool for detection of malaria outbreak, The Indian Journal of Medical Research, 146, 612–621, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861472/ (last access: 15 December 2022), 2017.
Werner, A. T., Schnorbus, M. A., Shrestha, R. R., Cannon, A. J., Zwiers, F. W., Dayon, G., and Anslow, F.:
A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America, Sci. Data, 6, 1–16, https://doi.org/10.1038/sdata.2018.299, 2019.
Wu, Y., Jing, W., Liu, J., Ma, Q., Yuan, J., Wang, Y., Du, M., and Liu, M.:
Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries, Sci. Total Environ., 729, 1–7, https://doi.org/10.1016/j.scitotenv.2020.139051, 2020.
Yoo, C., Im, J., Park, S., and Quackenbush, L. J.:
Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data, ISPRS J. Photogramm., 137, 149–162, https://doi.org/10.1016/j.isprsjprs.2018.01.018, 2018.
Zhang, F., de Dear, R., and Hancock, P.:
Effects of moderate thermal environments on cognitive performance: A multidisciplinary review, Appl. Energ., 236, 760–777, https://doi.org/10.1016/j.apenergy.2018.12.005, 2019.
Zhang, R., Rong, Y., Tian, J., Su, H., Li, Z. L., and Liu, S.:
A remote sensing method for estimating surface air temperature and surface vapor pressure on a regional Scale, Remote Sens.-Basel, 7, 6005–6025, https://doi.org/10.3390/rs70506005, 2015.
Zhang, T. and Zhou, Y.:
A global 1 km resolution daily near-surface air temperature dataset (2003–2020), Iowa State University [data set], https://doi.org/10.25380/iastate.c.6005185, 2022.
Zhang, T., Zhou, Y., Zhu, Z., Li, X., and Asrar, G. R.:
A global seamless 1 km resolution daily land surface temperature dataset (2003–2020), Earth Syst. Sci. Data, 14, 651–664, https://doi.org/10.5194/essd-14-651-2022, 2022a.
Zhang, T., Zhou, Y., Wang, L., Zhao, K., and Zhu, Z.:
Estimating 1 km gridded daily air temperature using a spatially varying coefficient model with sign preservation, Remote Sens. Environ., 277, 113072, https://doi.org/10.1016/j.rse.2022.113072, 2022b.
Zhang, Z., Chang, J., Xu, C. Y., Zhou, Y., Wu, Y., Chen, X., Jiang, S., and Duan, Z.:
The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years, Sci. Total Environ., 635, 443–451, https://doi.org/10.1016/j.scitotenv.2018.04.113, 2018.
Zhou, Y., Li, X., Asrar, G. R., Smith, S. J., and Imhoff, M.:
A global record of annual urban dynamics (1992–2013) from nighttime lights, Remote Sens. Environ., 219, 206–220, https://doi.org/10.1016/j.rse.2018.10.015, 2018.
Zhu, W., Lu, A., and Jia, S.:
Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products, Remote Sens. Environ., 130, 62–73, https://doi.org/10.1016/j.rse.2012.10.034, 2013.
Zhu, W., Lű, A., Jia, S., Yan, J., and Mahmood, R.:
Retrievals of all-weather daytime air temperature from MODIS products, Remote Sens. Environ., 189, 152–163, https://doi.org/10.1016/j.rse.2016.11.011, 2017.
Short summary
We generated a global 1 km daily maximum and minimum near-surface air temperature (Tmax and Tmin) dataset (2003–2020) using a novel statistical model. The average root mean square errors ranged from 1.20 to 2.44 °C for Tmax and 1.69 to 2.39 °C for Tmin. The gridded global air temperature dataset is of great use in a variety of studies such as the urban heat island phenomenon, hydrological modeling, and epidemic forecasting.
We generated a global 1 km daily maximum and minimum near-surface air temperature (Tmax and...
Altmetrics
Final-revised paper
Preprint