

Supplement of

A global dataset of daily maximum and minimum near-surface air temperature at 1 km resolution over land (2003–2020)

Tao Zhang et al.

Correspondence to: Yuyu Zhou (yuyuzhou@iastate.edu)

The copyright of individual parts of the supplement might differ from the article licence.

1 S1 Estimating missing values at weather stations

2 We found that there were only a few weather stations with valid Ta measurements for some days of the study period in Africa, and 3 South America (Fig. S1). When the number of weather stations with valid measurements was too small for a specific day, the 4 performance of the SVCM-SP algorithm might be reduced. Therefore, we implemented a 5-day moving average algorithm (Kemp 5 et al., 1983) to fill the missing Ta measurements at weather stations in Africa and South America. As shown in the example in Fig. 6 S2, for a specific weather station, we checked each 5-day temporal window where the central day has a missing Ta measurement 7 in the original time series data. When there are at least two days have valid measurements in the 5-day local window, the missing 8 value in the central day was filled by using the average value of the local window. After filling the missing values, the number of 9 weather stations with valid measurements was largely increased (Fig. S3). Taking the day 316 of 2016 in Africa as an example, 10 after filling the missing values, the number of weather stations with valid measurements increased from 9 to 248 stations, and the 11 spatial distribution of stations was improved significantly (Fig. S4). We also implemented leave-one-out cross-validation by 12 randomly removing valid measurements from the original time series of Ta measurements at weather stations. Results of cross-13 validation indicated that the performance of the 5-day moving window algorithm performed well with RMSE values ranging from

14 1.6 to 2.7 °C in Africa and South America (Fig. S5).

Figure S1: Number of valid records (Y-axis) in five regions. Each box is based on the daily number of valid records in a specific year.
Each point represents the number of valid records in a specific day.

y 1

20 Figure S2: An example of filling missing Ta values at weather stations.

21

Figure S3: Number of valid records (Y-axis) after filling missing values in Africa and South America. Each box is based on the daily number of valid records in a specific year. Each point in the figure represents the number of valid records in a specific day. The number of filled records for Tmax and Tmin in Africa are 335,900 and 430,652, respectively, taking 17.7% and 21.4% of the total

25 records. In South America, they are 371,193 and 249,186, taking 31.4% and 18.0%, respectively.

27 Figure S4: An example of valid observations in Africa (Tmax on day of 316 in 2016).

29 Figure S5: RMSE of filled missing values at stations in Africa and South America based on the cross-validation.

30

31 Figure S6: Station density in climate zones in 2003-2020. Climate zones with black boundaries are areas with low densities of weather

32 stations (i.e., distances between training and validation sites are larger than 50 km). The white regions on land are areas without

33 reliable evaluations due to the lack of weather stations.

35 Figure S7: Spatial patterns of intercept (β_0), standardized regression coefficients of elevation (β_{elev}) and LST (β_{lst}) in day 200 of the

36 year 2010.

Figure S8: Residuals of estimated Ta based on the 10-fold cross-validation by shifting LSTs from -5 to 5 °C at a step of 0.5 °C in North America in the day 200 of 2010. Each box is based on the residual between observed and estimated Ta in the stations. Each point represents the residual in a specific station.

41 Tables

42 Table S1. Average RMSEs (±standard deviation) for Tmax and Tmin in five regions from 2003 to 2020 (Unit: °C)

Year	North America		South America		European & Asia		Africa		Australia	
	Tmax	Tmin	Tmax	Tmin	Tmax	Tmin	Tmax	Tmin	Tmax	Tmin
2003	2.49±0.39	2.42±0.36	2.10±0.32	1.82±0.18	1.79±0.19	1.74±0.27	2.09±0.56	2.10±0.37	1.20±0.27	1.63±0.23
2004	2.46±0.39	2.38±0.39	2.02±0.29	1.87±0.19	1.74 ± 0.17	1.74±0.27	2.19±0.69	2.20±0.39	1.17±0.25	1.65 ± 0.24
2005	2.44±0.39	2.36±0.38	2.03±0.34	1.80±0.19	1.79±0.20	1.73±0.26	2.20±0.63	2.28±0.43	1.15±0.22	1.63±0.23
2006	2.41±0.36	2.40±0.35	2.00±0.25	1.85±0.19	1.79±0.18	1.73±0.25	2.35±0.70	2.44±0.51	1.20±0.27	1.74 ± 0.27
2007	2.45±0.36	2.42±0.36	2.08±0.30	1.94±0.23	1.74 ± 0.18	1.72±0.23	2.26 ± 0.58	2.60±0.53	1.18±0.25	1.64 ± 0.25
2008	2.50±0.45	2.48±0.44	1.94±0.25	1.87 ± 0.18	1.74 ± 0.17	1.71±0.23	2.22±0.54	2.33±0.48	1.16±0.22	1.66 ± 0.26
2009	2.48±0.41	2.40±0.43	2.11±0.32	1.92±0.20	1.81 ± 0.18	1.75±0.25	2.07±0.51	2.19±0.37	1.19±0.27	1.67 ± 0.22
2010	2.36±0.32	2.32±0.36	2.06±0.25	1.93±0.20	1.84 ± 0.22	1.76±0.34	2.00 ± 0.48	2.23±0.39	1.14±0.23	1.57 ± 0.25
2011	2.45±0.37	2.39±0.43	2.02±0.31	1.95±0.24	1.81 ± 0.18	1.71±0.26	1.98 ± 0.49	2.12±0.34	1.14±0.21	1.62 ± 0.29
2012	2.41±0.36	2.39±0.35	1.94±0.26	2.00±0.19	1.81±0.19	1.71±0.27	2.03±0.53	2.21±0.40	1.16±0.23	1.71 ± 0.28

2013	2.44±0.42	2.40 ± 0.42	2.02±0.38	2.03±0.22	1.81±0.21	1.76±0.27	2.10±0.43	2.29±0.39	1.20±0.26	1.75±0.23
2014	2.50±0.49	2.41±0.44	1.95±0.26	2.10±0.19	1.84±0.20	1.64±0.23	2.19±0.38	2.17±0.41	1.23±0.27	1.73±0.26
2015	2.39±0.40	2.35±0.40	1.86±0.25	2.04±0.22	1.83±0.20	1.66 ± 0.22	2.23±0.42	2.15±0.37	1.22±0.26	1.71±0.27
2016	2.37±0.38	2.34±0.38	1.89 ± 0.27	1.96±0.24	1.84±0.18	1.63±0.25	2.18±0.46	2.13±0.37	1.21±0.27	1.64±0.25
2017	2.45±0.41	2.39±0.40	1.80±0.24	1.92±0.22	1.81±0.19	1.69±0.25	2.44±0.58	2.15±0.35	1.24±0.27	1.74±0.28
2018	2.43±0.41	2.38±0.39	2.04±0.28	1.87±0.22	1.83±0.18	1.98±0.34	2.40±0.60	2.04±0.37	1.27±0.28	1.76±0.29
2019	2.43±0.42	2.38±0.42	2.00±0.29	1.83±0.19	1.79±0.19	1.94±0.32	2.48 ± 0.66	2.08±0.40	1.30±0.32	1.81±0.27
2020	2.41±0.42	2.42±0.36	2.03±0.29	1.85±0.25	1.72±0.16	1.84±0.23	2.52±0.67	2.04±0.38	1.25±0.28	1.69±0.28

43 Note: The selected testing stations were within 50 km surrounding the training stations.

45 Table S2. Average MAEs (±standard deviation) for Tmax and Tmin in five regions from 2003 to 2020 (Unit: °C)

Year	North America		South America		Europe & Asia		Africa		Australia	
	Tmax	Tmin	Tmax	Tmin	Tmax	Tmin	Tmax	Tmin	Tmax	Tmin
2003	1.86±0.30	1.79±0.27	1.56±0.23	1.34±0.14	1.29±0.15	1.27±0.20	1.55±0.40	1.62±0.28	0.89±0.18	1.24±0.19
2004	1.83±0.29	1.77±0.29	1.48±0.20	1.39±0.14	1.25±0.14	1.27±0.20	1.60±0.49	1.71±0.29	0.87±0.18	1.26±0.20
2005	1.82±0.30	1.75±0.28	1.50±0.21	1.33±0.15	1.29±0.16	1.26±0.19	1.59±0.40	1.76±0.32	0.86±0.15	1.25±0.19
2006	1.81±0.27	1.79±0.27	1.47±0.18	1.35±0.15	1.30±0.15	1.27±0.18	1.70±0.49	1.84±0.34	0.89±0.19	1.33±0.23
2007	1.82±0.27	1.80±0.27	1.53±0.21	1.41±0.16	1.26±0.15	1.25±0.18	1.59±0.38	1.94±0.35	0.88±0.17	1.25±0.21
2008	1.87±0.34	1.84±0.33	1.44±0.18	1.39±0.13	1.25±0.14	1.25±0.18	1.56±0.36	1.76±0.34	0.86±0.16	1.26±0.22
2009	1.85±0.31	1.78±0.32	1.56±0.21	1.45±0.15	1.31±0.15	1.28±0.19	1.49±0.35	1.68±0.27	0.89±0.19	1.27±0.18
2010	1.76±0.24	1.71±0.27	1.54±0.18	1.45±0.14	1.34±0.18	1.29±0.25	1.45±0.31	1.70±0.28	0.86±0.16	1.19±0.21
2011	1.83±0.28	1.77±0.32	1.49±0.22	1.45±0.17	1.30±0.15	1.25±0.19	1.44±0.32	1.62±0.24	0.85±0.16	1.22±0.24
2012	1.79±0.27	1.78±0.27	1.44±0.18	1.48±0.15	1.3±0.15	1.25±0.20	1.51±0.38	1.68±0.29	0.86±0.17	1.30±0.23
2013	1.82±0.31	1.78±0.32	1.48±0.24	1.52±0.16	1.31±0.18	1.29±0.20	1.57±0.31	1.72±0.29	0.89±0.18	1.32±0.19
2014	1.87±0.36	1.79±0.33	1.45±0.19	1.58±0.15	1.32±0.16	1.21±0.18	1.62±0.28	1.63±0.27	0.92±0.20	1.32±0.21
2015	1.79±0.31	1.75±0.30	1.37±0.18	1.52±0.16	1.32±0.17	1.22±0.17	1.63±0.28	1.64±0.27	0.91±0.18	1.30±0.22
2016	1.78±0.29	1.74±0.28	1.40±0.19	1.46±0.16	1.33±0.16	1.19±0.18	1.61±0.30	1.64±0.27	0.90±0.20	1.25±0.21
2017	1.83±0.31	1.77±0.29	1.35±0.17	1.44±0.16	1.30±0.16	1.24±0.19	1.77±0.36	1.66±0.26	0.92±0.20	1.33±0.24
2018	1.82±0.30	1.77±0.30	1.49±0.19	1.39±0.17	1.28±0.14	1.46±0.24	1.76±0.38	1.56±0.26	0.94±0.21	1.34±0.24
2019	1.82±0.31	1.77±0.31	1.47±0.20	1.37±0.14	1.26±0.15	1.43±0.23	1.84±0.43	1.58±0.27	0.96±0.23	1.38±0.22
2020	1.80±0.31	1.80±0.27	1.47±0.20	1.38±0.17	1.20±0.13	1.35±0.17	1.85±0.42	1.54±0.26	0.93±0.20	1.28±0.23

46 Note: The selected testing stations were within 50 km surrounding the training stations.

Literature	Spatial extent	Spatial resolution Temporal frequency		Coverage time	Accuracy (default: RMSE)	
Kalnay et al., 1996	Global	2.5 °	4-times daily	1948 – present		
Hersbach et al., 2018	Global	0.25 °	Hourly	1979 – present		
Thornton et al., 2021	North America, Hawaii, and Puerto Rico	1 km	Daily (Tmax and Tmin)	1950 – present calendar year	MAE of 1.52 °C (Tmax) and 1.78 °C (Tmin)	
Oyler et al., 2015	CONUS	30-arcsec (~800m)	Daily (Tmax and Tmin)	1948 - 2016	MAE of 1.03 °C (Tmax) and 1.06 °C (Tmin)	
Hooker et al., 2018	Global	0.05 °	Monthly	2003 - 2016	1.14–1.55 °C	
Meyer et al., 2019	South Africa	3.5 km	Hourly	2010 - 2014	2.61 °C	
Werner et al., 2019	Northwestern North American	1/16 °	Daily	1971 - 2000	~2.2–3.5 °C	
Nashwan et al., 2019	Central North region of Egypt	0.05 °	Daily (Tmax and Tmin)	1981 – 2017	1.41 °C (Tmax) 1.31 °C (Tmin)	
MacDonald et al., 2020	North American	60-arcsec (~2 km)	Monthly (Tmax and Tmin)	1901 - 2016	MAE of 0.7 °C (Tmax) and 1.02 °C (Tmin)	
Crespi et al., 2021	North-eastern Italy	250 m	Daily (Tmean)	1980 - 2018	MAE is 1.5 °C	
Chen et al., 2021	Mainland China	1 km	Daily (Tmean)	2003 - 2019	1.615–1.957 K (leave- location-out cross- validation)	
Fang et al., 2021	China	0.1 °	Daily (Tmax, Tmin, and Tmean)	1979 – 2018	0.86–1.78 °C (Tmax), 0.78–2.09 °C (Tmin), 0.35–1.00 °C (Tmean)	
This study (Zhang and Zhou, 2022)	Global	1 km	Daily (Tmax and Tmin)	2003 - 2020	1.20–2.44 °C (Tmax), 1.69–2.39 °C (Tmin)	

53 References:

- 54 Chen, Y., Liang, S., Ma, H., Li, B., He, T. and Wang, Q.: An all-sky 1km daily land surface air temperature product over
- mainland China for 2003-2019 from MODIS and ancillary data, Earth Syst. Sci. Data, 13(8), 4241–4261, doi:10.5194/essd-134241-2021, 2021.
- 57 Crespi, A., Matiu, M., Bertoldi, G., Petitta, M. and Zebisch, M.: A high-resolution gridded dataset of daily temperature and
- precipitation records (1980-2018) for Trentino-South Tyrol (north-eastern Italian Alps), Earth Syst. Sci. Data, 13(6), 2801–2818,
 doi:10.5194/essd-13-2801-2021, 2021.
- Fang, S., Mao, K., Xia, X., Wang, P., Shi, J., Bateni, S., Xu, T., Cao, M. and Heggy, E.: A dataset of daily near-surface air
 temperature in China from 1979 to 2018, Earth Syst. Sci. Data Discuss., (October), 1–37, doi:10.5194/essd-2021-309, 2021.
- 62 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R. and Rozum,
- 63 I.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store
- 64 (CDS), ECMWF, 147, 5–6, 2018.
- Hooker, J., Duveiller, G. and Cescatti, A.: Data descriptor: A global dataset of air temperature derived from satellite remote
 sensing and weather stations, Sci. Data, 5, 1–11, doi:10.1038/sdata.2018.246, 2018.
- 67 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu,
- 68 Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R.,
- 59 Jenne, R. and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77(3), 437–472,
- 70 doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
- Kemp, W. P., Burnell, D. G., Everson, D. O. and Thomson, A. J.: Estimating missing daily maximum and minimum
 temperatures., J. Clim. Appl. Meteorol., 22(9), 1587–1593, doi:10.1175/1520-0450(1983)022<1587:EMDMAM>2.0.CO;2,
 1983.
- MacDonald, H., McKenney, D. W., Papadopol, P., Lawrence, K., Pedlar, J. and Hutchinson, M. F.: North American historical
 monthly spatial climate dataset, 1901–2016, Sci. Data, 7(1), 1–11, doi:10.1038/s41597-020-00737-2, 2020.
- 76 Meyer, H., Schmidt, J., Detsch, F. and Nauss, T.: Hourly gridded air temperatures of South Africa derived from MSG SEVIRI,
- 77 Int. J. Appl. Earth Obs. Geoinf., 78(February), 261–267, doi:10.1016/j.jag.2019.02.006, 2019.
- Nashwan, M. S., Shahid, S. and Chung, E. S.: Development of high-resolution daily gridded temperature datasets for the central
 north region of Egypt, Sci. Data, 6(1), 1–13, doi:10.1038/s41597-019-0144-0, 2019.
- 80 Oyler, J. W., Ballantyne, A., Jencso, K., Sweet, M. and Running, S. W.: Creating a topoclimatic daily air temperature dataset for
- 81 the conterminous United States using homogenized station data and remotely sensed land skin temperature, Int. J. Climatol.,
- 82 35(9), 2258–2279, doi:10.1002/joc.4127, 2015.
- 83 Thornton, P. E., Shrestha, R., Thornton, M., Kao, S. C., Wei, Y. and Wilson, B. E.: Gridded daily weather data for North
- 84 America with comprehensive uncertainty quantification, Sci. Data, 8(1), 1–17, doi:10.1038/s41597-021-00973-0, 2021.
- 85 Werner, A. T., Schnorbus, M. A., Shrestha, R. R., Cannon, A. J., Zwiers, F. W., Dayon, G. and Anslow, F.: A long-term,
- temporally consistent, gridded daily meteorological dataset for northwestern North America, Sci. Data, 6, 1–16,

- doi:10.1038/sdata.2018.299, 2019.
- 88 Zhang, T. and Zhou, Y.: A global 1 km resolution daily near-surface air temperature dataset (2003 2020), Iowa State Univ.,
- doi:10.25380/iastate.c.6005185, 2022.