
Earth Syst. Sci. Data, 14, 5637–5649, 2022
https://doi.org/10.5194/essd-14-5637-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

A global dataset of daily maximum and minimum
near-surface air temperature at 1 km resolution

over land (2003–2020)

Tao Zhang1, Yuyu Zhou1, Kaiguang Zhao2, Zhengyuan Zhu3, Gang Chen4, Jia Hu1, and Li Wang5

1Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA
2School of Environment and Natural Resources, Ohio Agricultural Research and Development Center,

The Ohio State University, Wooster, OH 44691, USA
3Department of Statistics, Iowa State University, Ames, IA 50011, USA

4Laboratory for Remote Sensing and Environmental Change (LRSEC), Department of Geography and Earth
Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
5Department of Statistics, George Mason University, Fairfax, VA 22030, USA

Correspondence: Yuyu Zhou (yuyuzhou@iastate.edu)

Received: 7 July 2022 – Discussion started: 21 July 2022
Revised: 17 November 2022 – Accepted: 20 November 2022 – Published: 21 December 2022

Abstract. Near-surface air temperature (Ta) is a key variable in global climate studies. A global gridded dataset
of daily maximum and minimum Ta (Tmax and Tmin) is particularly valuable and critically needed in the scientific
and policy communities but is still not available. In this paper, we developed a global dataset of daily Tmax and
Tmin at 1 km resolution over land across 50◦ S–79◦ N from 2003 to 2020 through the combined use of ground-
station-based Ta measurements and satellite observations (i.e., digital elevation model and land surface tempera-
ture) via a state-of-the-art statistical method named Spatially Varying Coefficient Models with Sign Preservation
(SVCM-SP). The root mean square errors in our estimates ranged from 1.20 to 2.44 ◦C for Tmax and 1.69 to
2.39 ◦C for Tmin. We found that the accuracies were affected primarily by land cover types, elevation ranges,
and climate backgrounds. Our dataset correctly represents a negative relationship between Ta and elevation and
a positive relationship between Ta and land surface temperature; it captured spatial and temporal patterns of Ta
realistically. This global 1 km gridded daily Tmax and Tmin dataset is the first of its kind, and we expect it to be
of great value to global studies such as the urban heat island phenomenon, hydrological modeling, and epidemic
forecasting. The data have been published by Iowa State University at https://doi.org/10.25380/iastate.c.6005185
(Zhang and Zhou, 2022).

1 Introduction

Near-surface air temperature (Ta) refers to the atmospheric
temperature 1.5–2 m above surfaces, and it is an important
variable for numerous applications, especially those perti-
nent to climate and environment change (Huang et al., 2019;
Zhang et al., 2018), terrestrial hydrology and phenology (Lin
et al., 2012; Ren et al., 2019), public health (Lan et al., 2010,
2022; Zhang et al., 2019), disease vector propagation (Lowen
et al., 2007; Petrova and Russell, 2018; Wu et al., 2020),
and epidemic forecasting (Verma et al., 2017; Connor et al.,

1998). Ta generally varies across space and time dramatically
due to the spatial heterogeneity and temporal dynamics of
environmental factors such as solar radiation, wind speed,
land cover, cloud cover, and vegetation phenology (Benali
et al., 2012; Chen et al., 2015, 2021; Prihodko and Goward,
1997). At the global scale, a Ta dataset will be of limited or
no use if it does not characterize and capture such fine spatial
details and continuous temporal coverage. A high-/medium-
resolution global Ta dataset at the daily interval is highly de-
sirable.
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Many global or regional Ta datasets have been previously
published (Chen et al., 2021; Crespi et al., 2021; Fang et al.,
2021; Hersbach et al., 2018; Hooker et al., 2018; Kalnay
et al., 1996; MacDonald et al., 2020; Meyer et al., 2019;
Nashwan et al., 2019; Oyler et al., 2015; Thornton et al.,
2021; Werner et al., 2019); however, these have either coarse
spatiotemporal resolutions or only cover specific regions
(Table S3 in the Supplement). For example, some global
Ta datasets have daily frequencies but at coarse spatial res-
olutions (e.g., 0.05◦ or even coarser) (Hersbach et al., 2018;
Hooker et al., 2018; Kalnay et al., 1996); other Ta datasets
with medium spatial resolutions (∼ 1 km) are only available
for specific regions such as North America and mainland
China (MacDonald et al., 2020; Oyler et al., 2015; Thorn-
ton et al., 2021; Chen et al., 2021). There are also several
Ta datasets at even finer spatial resolutions but generated only
for much smaller spatial regions (Crespi et al., 2021; Meyer
et al., 2019; Nashwan et al., 2019; Werner et al., 2019). De-
spite the increasing need for a global daily Ta at finer reso-
lutions (e.g., 1 km), such global products do not exist yet – a
gap still not filled yet.

Methodologically speaking, a range of techniques have
been proposed and applied to generate Ta products; the ma-
jority of them rely on combining weather station data and
gridded auxiliary datasets to simply make spatial interpola-
tion or build empirical predictive models (Chen et al., 2015;
Goward et al., 1994; Hengl et al., 2012; Hou et al., 2013;
Hrisko et al., 2020; Li and Zha, 2019; Li et al., 2018; Ne-
mani and Running, 1989; Rao et al., 2019; Shen et al., 2020;
Shi et al., 2017; Sun et al., 2005; Yoo et al., 2018; Zhu et al.,
2013). Common spatial interpolation algorithms, such as in-
verse distance weighting (IDW), spline, and kriging, are un-
likely to be applicable at the global scale, for example, due to
the relative sparsity of weather stations and the high spatial
heterogeneity of Ta (Chai et al., 2011; Dodson and Marks,
1997; Li and Heap, 2011; Stahl et al., 2006). Model-based
approaches are often a better choice to capture the true spatial
variability in Ta; these methods are roughly divided into three
groups. The first is the temperature–vegetation index (TVX)
method, which estimates Ta from the maximum normalized
difference vegetation index (NDVI) based on the assumption
that the canopy temperature over fully covered vegetation ap-
proximates near-surface Ta (Goward et al., 1994; Nemani and
Running, 1989; Zhu et al., 2013). An apparent weakness of
the TVX method is its large uncertainty or unsuitability for
regions with low vegetation cover. The second group is the
energy balance method, leveraging the explicit modeling of
surface energy balance and the quantification of net radiation
(e.g., the sum of sensible, soil, and latent heat fluxes) (Sun
et al., 2005; Zhang et al., 2015). Energy-based methods are
physically based, requiring detailed characterization of sur-
face biophysical conditions and thereby making it difficult
to implement for large areas due to the lack of such detailed
biophysical parameters.

Of the three groups, the third category is statistical meth-
ods that estimate Ta via statistical relationships empirically
calibrated between Ta and other covariates. Common al-
gorithms used include geographically weighted regression
(GWR), cubist, random forests, and deep learning, among
others (Chen et al., 2015, 2021; Hooker et al., 2018; Li et al.,
2018; Rao et al., 2019; Shen et al., 2020; Yoo et al., 2018).
Compared to physical-based methods, statistical methods
have fewer restrictions on data requirements and better ap-
plicability for large spatial extents (Noi et al., 2017). How-
ever, direct applications of common statistical methods of-
ten fail to capture and preserve relationships between Ta
and auxiliary covariates (e.g., an unrealistically positive rela-
tionship between Ta and elevation), thereby leading to large
uncertainties or even incorrect results. To overcome such
drawbacks, we recently proposed a class of Spatially Vary-
ing Coefficient Models with Sign Preservation (SVCM-SP)
(Kim et al., 2021; Zhang et al., 2022b), which can capture
and preserve relationships between Ta and explanatory vari-
ables. The SVCM-SP algorithm was originally implemented
for estimating Ta over mainland China, with significant im-
provement in terms of both accuracies and computational
efficiency compared to alternative methods such as GWR
(Zhang et al., 2022b). The potential of SVCM-SP as a rou-
tine algorithm to generate global Ta products is still untapped
and addressed here.

Here we aim to generate a global dataset of daily max-
imum and minimum Ta (Tmax and Tmin) at 1 km resolu-
tion across 50◦ S–79◦ N from 2003 to 2020 by integrating
ground-station-based Ta measurements and gridded satellite-
observed covariates (i.e., digital elevation model, DEM; land
surface temperature, LST). We employed our newly devel-
oped SVCM-SP algorithm that, for example, can preserve
negative and positive relationships with elevation and LST,
respectively. Zhang et al. (2022b) successfully estimated and
validated gridded Ta using the SVCM-SP algorithm and
demonstrated its novelty through the comparison with the
GWR model, while in this study, we developed the global
product of gridded Ta, performed extensive model calibration
and accuracy assessment at the global scale, and provided
details on accuracy and spatial and temporal patterns of the
global gridded Ta. Our dataset aims to provide the first ever
1 km resolution daily maximum and minimum Ta dataset
with a global coverage.

2 Study area and data

Land areas covered by our global dataset span from 50◦ S
to 79◦ N. We divided the global lands roughly into five re-
gions: North America, South America, Europe and Asia,
Africa, and Australia and New Zealand. To encompass all
the land areas resolved at 1 km resolution, as well as to
cover all the possible weather stations, the boundaries of the
five regions were irregular. There also exist some overlaps
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Figure 1. Regions and locations of weather stations in this study. Red points are the locations of weather stations, and polygons are the
boundaries of regions used in the SVCM-SP algorithm. Specifically, polygons of red, purple, orange, blue, and black represent the boundaries
of North America, South America, Africa, Australia, and Europe and Asia, respectively.

between the regions. Our analysis considered three major
data sources: ground-station-based Ta observations, satellite-
derived LSTs, and elevation. In our algorithm, ground-
station-based Ta is assumed to be statistically related to satel-
lite LST and elevation. Details about each data source are
further described below.

Ground-station-based daily Tmax and Tmin were compiled
from a total of 103 156 weather stations from 2003 to
2020. These are obtained from two climatology networks:
the Global Historical Climatology Network daily (GHCNd)
across the world and the China Meteorological Data Service
Centre (CMDC) across mainland China. The LST dataset is a
global seamless 1 km resolution LST dataset at a daily (mid-
daytime and mid-nighttime) frequency from 2003 to 2020,
which was gap-filled from the MODIS LST products (Zhang
et al., 2022a). Both the mid-daytime and mid-nighttime LSTs
were considered in our analysis. The DEM layer we used
is the SRTM30_PLUS product at 1 km resolution (Becker
et al., 2009), which has been generated from the combina-
tion of the Shuttle Radar Topography Mission (SRTM30) to-
pography (collected in 2000) (Hennig et al., 2001; Rosen,
2000) within a latitude of ± 55◦, ICESat-derived topography
(collected from 1 February 2003 to 30 June 2005) (Dimarzio
et al., 2007) in Antarctica, and the GTOPO30 topography
(completed in late 1996) (Danielson and Gesch, 2011) in
the Arctic. Besides, the Köppen–Geiger climate zones and
MODIS land cover data (MCD12Q1) were acquired to di-
vide the world into zones for accuracy assessment (Sulla-
Menashe and Friedl, 2018). Specifically, our dataset covers
a small portion of Greenland which is constrained by the ex-
tent of the global seamless 1 km daily LST dataset.

Figure 2. Framework for implementing the SVCM-SP algorithm in
a region (e.g., Africa). β0, βelev, and βlst are the intercept, coeffi-
cients of elevation, and LST, respectively.

3 Methods

The core of our methodological framework is the SVCM-SP
algorithm that correlates ground-station-based Ta with satel-
lite LST and elevation. We applied the SVCM-SP algorithm
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Figure 3. Scatter plots between estimated and observed Ta in five regions in the year 2010. Each point represents the estimated and observed
Ta (Tmax or Tmin) on a specific day at a weather station. The color of points represents the density, in which red and blue points represent the
high and low densities, respectively. The red line is the regression line, and the black line is the 1 : 1 line.

to estimate Tmax and Tmin separately. To capture potential
non-stationarity, the algorithm was trained for each day of
the period 2003–2020, as well as for each of the five regions.
Before applying the SVCM-SP algorithm, weather station
Ta data were first pre-processed and filtered for quality con-
trol to ensure the high fidelity of reference Ta observations.

More specially, we first processed the weather station data
in three ways. First, the locations of many weather stations in
China, especially those located in complex terrains, are not
accurately documented, geo-referenced only at the level of
arc degrees and minutes in the metadata. Such location errors
have to be corrected, and we manually corrected the loca-
tions of those weather stations located over complex terrains
by searching the meteorological observation fields near the
reported locations of weather stations with the help of high-
spatial-resolution images from ArcGIS base map or Google
Maps (Zhang et al., 2022b). Second, there are missing values,
especially in stations in Africa and South America (Fig. S1 in
the Supplement). We filled these data gaps using a 5 d local
moving window (Fig. S2 in the Supplement). Accordingly,
the number of records largely increased (Figs. S3 and S4
in the Supplement) with reasonable error ranges (Fig. S5 in
the Supplement). Third, the processed ground-station-based
Ta data from the two steps were overlaid and matched with
satellite LST and elevation to extract pairs of ground-station-
based Ta and satellite covariates as inputs to the SVCM-
SP algorithm. Specifically, mid-daytime and mid-nighttime
LSTs were used to develop their relationship with air temper-
ature to interpolate station Tmax and Tmin, respectively. The
actual time of Tmax and Tmin may be slightly different from
mid-daytime and mid-nighttime LSTs. Within the small dif-
ference in time between LST and Tmax/Tmin, there will not be

significant change in the spatial variations in LST. Therefore,
the impact of time difference between LST and Tmax/Tmin on
the accuracy of the estimated Ta is minor as shown by shift-
ing LST for time difference (Fig. S8 in the Supplement).

The SVCM-SP algorithm seeks to build a spatially vary-
ing relationship between ground-station-based Ta with LST
and elevation with sign preservation (Kim et al., 2021; Zhang
et al., 2022b). A salient feature distinguishing it from conven-
tional regression approaches is the spatially varying nature
with constraints of estimated coefficients in the predictive re-
lationship:

Ta(ui,vi)= β0(ui,vi)+βelev(ui,vi)

× Elevation (ui,vi)+βlst(ui,vi)
× LST (ui,vi)+ εi, (1)

where both the variables (e.g., Ta, elevation, and LST) and
the model parameters are functions of locations/coordinates
(uivi). More importantly, the two slope parameters (e.g.,
βelev and βlst) are constrained to be negative and positive,
respectively. εi is the normal random error with mean zero
and finite variance. These unknown parameters were esti-
mated with a penalized bivariate spline method based on the
triangulation technique under constraints. Details about the
SVCM-SP algorithm are reported in Kim et al. (2021) and
Zhang et al. (2022b). To estimate Ta across the globe, we
applied the SVCM-SP algorithm to develop region-specific
relationships for the five regions (Fig. 2). Also, two separate
sets of equations were developed, one for Tmax using mid-
daytime LST as the explanatory variable, and another for
Tmin using midnight LST as the explanatory variable. The
model performance for estimating gridded Ta was assessed
based on root mean square error (RMSE) and mean square
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Table 1. Multi-year average accuracies for Tmax and Tmin in different regions from 2003 to 2020.

Indicator North America South America Europe and Asia Africa Australia

Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin

RMSE±SD (◦C) 2.44± 0.40 2.39± 0.39 1.99± 0.29 1.92± 0.21 1.80± 0.19 1.75± 0.26 2.22± 0.55 2.21± 0.40 1.20± 0.26 1.69± 0.26
MAE±SD (◦C) 1.82± 0.30 1.78± 0.29 1.47± 0.20 1.43± 0.15 1.29± 0.15 1.28± 0.20 1.62± 0.37 1.68± 0.29 0.89± 0.18 1.28± 0.21

Note: the selected testing stations were within 50 km surrounding the training stations. SD represents the corresponding standard deviation.

Table 2. Model performance for different land cover types in 2003–2020.

Land cover type Tmax Tmin

Records (%) RMSE±SD (◦C) MAE±SD (◦C) Records (%) RMSE±SD (◦C) MAE±SD (◦C)

Cropland 11.40 2.08± 0.77 1.59± 0.64 11.40 1.89± 0.69 1.45± 0.56
Forest 21.82 2.20± 0.84 1.71± 0.71 21.82 2.26± 0.86 1.76± 0.74
Grassland 38.01 2.29± 0.86 1.76± 0.72 38.00 2.29± 0.84 1.77± 0.73
Shrubland 1.58 2.13± 0.94 1.66± 0.77 1.57 2.36± 1.07 1.89± 0.97
Wetland 0.06 2.09± 0.83 1.54± 0.55 0.06 1.87± 0.68 1.40± 0.49
Water 1.60 2.09± 0.75 1.61± 0.60 1.59 2.07± 0.86 1.61± 0.71
Tundra 0.77 2.56± 1.40 1.97± 1.27 0.77 2.83± 1.30 2.17± 1.12
Impervious surface 21.49 2.06± 0.75 1.58± 0.62 21.53 1.84± 0.62 1.41± 0.50
Bare land 3.23 2.22± 0.84 1.71± 0.70 3.21 2.46± 0.95 1.96± 0.84
Snow/ice 0.05 2.18± 0.67 1.71± 0.59 0.05 2.46± 0.75 1.91± 0.61

Note: SD represents the corresponding standard deviation.

Table 3. Model performance for different elevation ranges in 2003–2020.

Elevation (m) Tmax Tmin

Records (%) RMSE±SD (◦C) MAE±SD (◦C) Records (%) RMSE±SD (◦C) MAE±SD (◦C)

< 1000 75.36 2.13± 0.80 1.63± 0.66 75.37 2.01± 0.72 1.54± 0.59
1000–2000 16.84 2.44± 0.90 1.89± 0.76 16.84 2.51± 0.99 1.99± 0.87
2000–3000 6.76 2.24± 0.88 1.75± 0.76 6.76 2.71± 0.98 2.18± 0.87
3000–4000 1.01 2.11± 1.04 1.65± 0.80 1.00 2.44± 0.87 1.95± 0.75
> 4000 0.03 2.69± 1.05 2.28± 1.00 0.03 2.48± 0.57 1.90± 0.43

Note: SD represents the corresponding standard deviation.

error (MAE) using the 10-fold cross-validation in these re-
gions in each day. Taking the RMSE as an example, a RMSE
was generated in each test of the 10-fold cross-validation,
and all RMSEs from the 10 tests were averaged as the fi-
nal RMSE on a specific day in a specific region. This accu-
racy assessment using the 10-fold cross-validation was im-
plemented based on independent validation data and can pro-
vide a reliable evaluation of the accuracy. For each station,
we can also calculate RMSE based on the time series of es-
timated and validation Ta from the 10-fold cross-validation.
Accordingly, we can calculate mean RMSE and correspond-
ing standard deviation in each land cover type, climate type,
and elevation range. Specifically, this accuracy assessment
represents conservative estimates of the uncertainties of our
data because when producing the final results, we used all

the available data, more than those in the 10-fold cross-
validation.

4 Results and discussion

4.1 Accuracy of the estimated Ta

The results of the 10-fold cross-validation indicate the accu-
racy of estimated Ta varies across regions within a reason-
able range (Fig. 3 and Table 1). The estimated and observed
Ta in different regions scattered along the 1 : 1 line with the
RMSE ranging from 1.17 to 2.38 and 1.59 to 2.34 ◦C, re-
spectively, for Tmax and Tmin in 2010 (Fig. 3). As shown in
Table 1, the estimated average RMSE and MAE from 2003
to 2020 ranged from 1.20 to 2.44 and 0.89 to 1.82 ◦C, re-
spectively. The highest accuracy was obtained in Australia
for Tmax, with a RMSE and MAE of 1.20 and 0.89 ◦C, re-
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Table 4. Model performance for different climate types in 2003–2020.

Climate type Tmax Tmin

Records (%) RMSE±SD (◦C) MAE±SD (◦C) Records (%) RMSE±SD (◦C) MAE±SD (◦C)

Equatorial 1.36 1.54± 0.67 1.24± 0.61 1.39 1.49± 0.73 1.20± 0.69
Arid 16.72 2.34± 1.00 1.80± 0.85 16.69 2.33± 0.91 1.83± 0.79
Warm temperate 46.28 2.14± 0.76 1.65± 0.64 46.29 1.94± 0.76 1.50± 0.64
Snow 34.99 2.21± 0.82 1.70± 0.68 34.98 2.36± 0.80 1.82± 0.68
Polar 0.65 2.32± 1.12 1.80± 0.94 0.65 2.35± 0.93 1.81± 0.76

Note: SD represents the corresponding standard deviation.

Figure 4. Accuracy of estimated Ta in climate zones in 2003–2020. Climate zones with black boundaries are areas with low densities of
weather stations (i.e., distances between training and validation sites are larger than 50 km). The white regions on land are areas without
reliable evaluations due to the lack of weather stations.

spectively. The lowest accuracy was obtained in North Amer-
ica for Tmax, with a RMSE and MAE of 2.44 and 1.82 ◦C, re-
spectively. Meanwhile, the variation in accuracy across years
in each region is smaller compared to spatial variations in
the accuracy across regions (Tables S1 and S2 in the Supple-
ment). The variations in accuracy may be caused by the dif-
ferences in climate and topography in these regions (Hooker

et al., 2018). For example, Australia is a continent with the
gentlest undulations of terrains with about 87 % of the land
below 500 m a.s.l. and is dominated by hot arid desert and
steppe climates, leading to the smallest spatial variations in
Ta. However, other regions contain a variety of dominant cli-
mate types and geomorphic types, contributing to the large
spatial variability observed in Ta.
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The accuracy of estimated Ta varied in different land
cover types, elevation ranges, and climate types (Tables 2–
4). RMSE and MAE for Tmax ranged from 2.06 to 2.56 and
1.54 to 1.97 ◦C, respectively, and these indicators for Tmin
range from 1.84 to 2.83 and 1.40 to 1.96 ◦C, respectively.
The model performs well for an impervious surface (with
the lowest RMSE), cropland, water, and wetland, whereas
RMSE values were higher for the tundra and bare land, which
was generally consistent with the findings of existing stud-
ies in mainland China (Chen et al., 2021; Shen et al., 2020;
Zhang et al., 2022b). As shown in Table 3, RMSE and MAE
values vary with elevation ranges but did not increase with
the increase in elevation ranges, which is different from ex-
isting findings (Chen et al., 2015; Rao et al., 2019). This is
because we only used weather stations within the distance of
50 km from the training sites to evaluate the accuracy of es-
timated Ta in this study, which can mitigate the effects of
sparse weather stations at high elevations on accuracy as-
sessment, as reported in existing studies (Chen et al., 2015;
Rao et al., 2019). RMSE and MAE values in equatorial cli-
mate zones are distinctly lower than those of other climate
zones (Table 4), indicating the highest accuracies for both
Tmax and Tmin possibly due to Ta near the Equator being gen-
erally warmer and less intra-annual variations compared to
other climate zones (Legates and Willmott, 1990).

Spatial distributions of RMSE illustrate that most of the
climate zones show reasonable accuracies (RMSE < 3.0 ◦C)
for Tmax and Tmin (Fig. 4). The lower-accuracy climate zones
(RMSE > 3.0 ◦C) mainly occur where there are low station
densities (Fig. S6 in the Supplement), which is consistent
with the finding of decreasing accuracy with the increase in
station density (Shen et al., 2020). Meanwhile, these lower-
accuracy climate zones are generally located at the boundary
of regions where some directions have no weather stations.

The RMSE values generally show distinctly seasonal pat-
terns in the five regions within reasonable ranges (Fig. 5).
Taking the year 2010 as an example, RMSEs in summer
(June, July, and August) are generally lower than those in
winter (December, January, and February) in North Amer-
ican, European, and Asian regions (Fig. 5) possibly due to
plant phenology, which leads to a closer relationship between
Ta and LST in the summer than in the winter (Benali et al.,
2012; Cai et al., 2017; Lin et al., 2012). This seasonal vari-
ation is less obvious in Africa and South America possi-
bly due to weaker correlations between plant phenology and
air temperature in the two regions, which are located across
the Equator (Adole et al., 2019; Sakai and Kitajima, 2019).
Specifically, the Australian region, which is located in the
Southern Hemisphere, shows higher RMSEs in summer (De-
cember, January, and February) than in winter (June, July,
and August) for Tmax. This may be caused by more homoge-
neous spatial variations in Tmax in winter than in summer in
the Australian region.

Figure 5. Temporal patterns of accuracies in estimated Ta in differ-
ent regions in the year 2010.

4.2 Spatial and temporal patterns of Ta

The estimated Ta shows significant spatial variations at the
global scale (Fig. 6). Taking the estimated Ta on one July day
as an example, both Tmax and Tmin decrease from about 30◦ N
to the North and South poles (Fig. 6). Meanwhile, lower Ta
values also occur at higher-elevation regions such as the Ti-
betan Plateau in the center of Asia and the Andes Mountains
in the west of South America. Therefore, the characteristics
of Ta change with latitude and elevation (i.e., the trend of
lower Ta in higher-latitude/elevation areas), which is consis-
tent with the existing studies (Chen et al., 2015; Zhang et al.,
2022b). The highest Ta values occur in northern Africa and
the Arabian Peninsula, as these regions are mainly covered
by the Gobi Desert.

The spatial patterns of estimated Ta in selected cities with
clear weather around the world illustrate that the urban heat
island (UHI) phenomenon (i.e., the higher temperature in ur-
ban than in the surrounding rural areas) has been well cap-
tured at the city scale (Fig. 7). On an example day of July in
2010, the estimated Ta in these cities shows an obvious UHI
phenomenon, which is reasonable with the transition from
urban centers to surrounding rural areas. The estimated Ta
in Changsha, China, shows several hotspots because some
nearby cities (such as Xiangtan and Zhuzhou) have also been
included in the buffer of Changsha, indicating the effective-
ness of the estimated Ta for presenting UHI in small urban ar-
eas. Specifically, as a coastal city, estimated Ta in Melbourne,
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Figure 6. Spatial pattern of estimated Ta at the global scale on an example day, day 200, in 2010.

Australia, shows decreasing trends from the coast, and the
UHI phenomenon is not obvious in surrounding small cities.
This is because there is also an increasing trend of eleva-
tion from the coast in Melbourne, leading to the mixed spa-
tial patterns of Ta due to the UHI phenomenon and elevation
changes.

The comparison of the temporal pattern between estimated
Ta and ground-station-based measurements from an exam-
ple of weather stations in a mega-city (Fig. 8) illustrates that
the SVCM-SP algorithm can effectively (RMSE of 1.25 ◦C
and 1.53 ◦C, respectively, for Tmax and Tmin) estimate Ta
for the entire period. As shown in Fig. 8, the estimated Ta
based on 10-fold cross-validation and Ta observations from
the weather station in Beijing, China, show similar tempo-
ral patterns and very close values for both Tmax and Tmin in
2010. For both clear weather (days 28 and 130 in Fig. 8) and
overcast weather (days 219 and 293 in Fig. 8) (Zhang et al.,
2022a), the gridded Ta can illustrate the UHI phenomenon.
An existing study has found that the estimated Ta in urban
areas was more accurate than those of other regions (Zhang
et al., 2022b), specifically suggesting its great value for urban
applications.

4.3 Comparison with existing Ta datasets

The gridded Ta data in this study have advantages regarding
spatiotemporal resolutions (i.e., 1 km and daily maximum

and minimum) and its global coverage (Table S3). The spatial
resolution of existing global Ta datasets with daily frequen-
cies and long-term coverage is generally low (e.g., 0.25◦)
(Hersbach et al., 2018; Kalnay et al., 1996). Ta datasets with
improved spatial resolutions (e.g., 1 km) are usually only
available at the continental or national scales (Chen et al.,
2021; Fang et al., 2021; MacDonald et al., 2020; Oyler et al.,
2015; Thornton et al., 2021).

The gridded Ta in this study can effectively capture the
spatial variation in Ta by preserving physical relationships
between Ta and response variables (Fig. S7 in the Supple-
ment). In other Ta datasets, such physical relationships (e.g.,
positive relationship between Ta and LST) cannot always be
preserved in some situations because these datasets were cre-
ated using methods without explicit constraints on the rela-
tionships between Ta and response variables. Efforts have
been made to build vertical lapse models to estimate grid-
ded Ta according to adiabatic lapse rate (ALR) (Dodson and
Marks, 1997; Rhee and Im, 2014; Thornton et al., 2021; Zhu
et al., 2017), but the generalization of these models is limited
because it is difficult to accurately capture ALR due to its
spatial change.

The accuracy of the resulting gridded Ta from this study
is comparable to several other reported gridded Ta datasets
(e.g., Chen et al., 2021; Oyler et al., 2015; Thornton et al.,
2021). Among them, the 1 km daily Ta from Daymet (Thorn-
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Figure 7. Spatial pattern of estimated Ta in five representative cities on day 200 of the year 2010. A city shape includes the urban Ta extracted
by using nighttime light data (Zhou et al., 2018) and a surrounding buffer of equal size. Black polygons are the urban extents extracted by
using global 30 m resolution artificial impervious area data (Li et al., 2020).

ton et al., 2021) reaches an MAE of 1.52 and 1.78 ◦C for Tmax
and Tmin, respectively, and the 30 arcsec (∼ 800 m) daily Ta
from TopoWx (Oyler et al., 2015) reaches 1.03 and 1.06 ◦C,
while in this study, the average MAE is 1.82 and 1.78 ◦C
in North America. However, Daymet failed to capture the
UHI phenomenon due to the spatial interpolation of Ta being
implemented based only on elevation (Menne et al., 2012)
and did not consider the impact of biophysical and socioe-
conomic factors on spatial variations in Ta (Li et al., 2018).
Therefore, Daymet has difficulties in capturing the spatial
variation in Ta in urban areas, although its accuracy is com-
parable to our dataset. The estimated Ta from TopoWx can
display the UHI phenomenon but tends to overestimate the
impact of topographical features and show fewer temporal
variations in the spatial pattern of Ta within a month than
that in this study, as a 10-year average of monthly LSTs was
used as a covariate in TopoWx (Li et al., 2018; Oyler et al.,
2015) instead of daily LST data in this study. The 1 km daily
average Ta data by Chen et al. (2021) reach a RMSE of 1.615
to 1.957 K using leave-location-out cross-validation in main-
land China, while the average RMSE of estimated Tmax and
Tmin is 1.80 and 1.75 ◦C, respectively, in Europe and Asia.
While the accuracy of Ta obtained in this study is comparable
to the other large-scale Ta datasets, our dataset is produced at

the global scale using consistent modeling and assessment
approaches.

There are some limitations in the SVCM-SP algorithm
used in this study for creating the gridded Ta dataset, and
future work can focus on improving the accuracy of the es-
timated Ta with an improved SVCM-SP algorithm. First, we
only considered the linear relationship between Ta and co-
variates. However, nonlinear relationships may exist between
Ta with elevation and LST when other factors, such as winds,
clouds, snow, and land cover types, have non-negligible im-
pacts on Ta (Cai et al., 2017; Good, 2016). Second, we only
used two covariates in the SVCM-SP algorithm, although
the potential of generalization of our framework is large.
Additional covariates (e.g., other surface characters such as
Geoscience Laser Altimeter System (GLAS)-derived canopy
height and vegetation parameters) can be explored in the
SVCM-SP algorithm to further improve the model perfor-
mance. Third, the limited number of valid station observa-
tions on specific days might introduce larger uncertainties
in interpolating Ta using the SVCM-SP algorithm. In future
studies, station observations from neighboring days can be
explored to improve the interpolation of Ta.
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Figure 8. Temporal pattern of estimated and observed Ta at the weather station of Beijing (black point) in the year 2010. The black rectangles
are example days showing maps of estimated data in Beijing.

5 Data availability

Data described in this paper can be ac-
cessed at Iowa State University’s DataShare at
https://doi.org/10.25380/iastate.c.6005185 (Zhang and
Zhou, 2022). The dataset contains 36 sub-datasets. Each
sub-dataset contains Tmax or Tmin of each year from 2003 to
2020 in five regions (i.e., North America, South America,
Europe and Asia, Africa, and Australia and New Zealand).
The data are in GeoTIFF with the georeferenced information
embedded. The MODIS ellipse sinusoidal projection with
a spatial resolution of 1 km is used in the data. The unit of
LST in GeoTIFF is 0.1◦ Celsius (◦C), and the naming rule
can be found in the file “README.pdf”.

6 Conclusions

We generated a global land (50◦ S–79◦ N) 1 km daily max-
imum and minimum Ta (i.e., Tmax and Tmin) dataset from
2003 to 2020 based on ground-station-based Ta measure-
ments and gap-filled LST dataset using the Spatially Vary-
ing Coefficient Models with Sign Preservation (SVCM-SP)
algorithm. The dataset showed acceptable accuracies based
on the 10-fold cross-validation for five regions of the globe

compared to existing Ta datasets. The RMSEs of estimated
Tmax and Tmin ranged from 1.20 to 2.44 and 1.69 to 2.39 ◦C,
respectively. The estimated Ta was affected by land cover
types, elevation ranges, and climate types, with varying ac-
curacies but within reasonable ranges. Our gridded Ta dataset
effectively captured the spatial variation in Ta under clear
physical meanings (i.e., negative and positive relationships
with elevation and LST, respectively), which is not always
true in other gridded Ta datasets. The new dataset is unique
in terms of spatiotemporal resolutions (i.e., 1 km daily maxi-
mum and minimum), global coverage, and temporal span and
should be useful for a wide range of applications such as the
urban heat island phenomenon, hydrological modeling, and
epidemic forecasting. Future work can focus on improving
the accuracy of the gridded Ta dataset using the SVCM-SP
algorithm by exploring more explanatory variables which are
available over large areas.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-14-5637-2022-supplement.
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