Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5267-2022
https://doi.org/10.5194/essd-14-5267-2022
Data description paper
 | 
30 Nov 2022
Data description paper |  | 30 Nov 2022

A 1 km daily soil moisture dataset over China using in situ measurement and machine learning

Qingliang Li, Gaosong Shi, Wei Shangguan, Vahid Nourani, Jianduo Li, Lu Li, Feini Huang, Ye Zhang, Chunyan Wang, Dagang Wang, Jianxiu Qiu, Xingjie Lu, and Yongjiu Dai

Related authors

A China dataset of soil properties for land surface modeling (version 2)
Gaosong Shi, Wenye Sun, Wei Shangguan, Zhongwang Wei, Hua Yuan, Ye Zhang, Hongbin Liang, Lu Li, Xiaolin Sun, Danxi Li, Feini Huang, Qingliang Li, and Yongjiu Dai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-299,https://doi.org/10.5194/essd-2024-299, 2024
Revised manuscript under review for ESSD
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024,https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
HANZE v2.1: an improved database of flood impacts in Europe from 1870 to 2020
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data, 16, 5145–5170, https://doi.org/10.5194/essd-16-5145-2024,https://doi.org/10.5194/essd-16-5145-2024, 2024
Short summary
A Copernicus-based evapotranspiration dataset at 100 m spatial resolution over four Mediterranean basins
Paulina Bartkowiak, Bartolomeo Ventura, Alexander Jacob, and Mariapina Castelli
Earth Syst. Sci. Data, 16, 4709–4734, https://doi.org/10.5194/essd-16-4709-2024,https://doi.org/10.5194/essd-16-4709-2024, 2024
Short summary
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024,https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps
Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner
Earth Syst. Sci. Data, 16, 4311–4323, https://doi.org/10.5194/essd-16-4311-2024,https://doi.org/10.5194/essd-16-4311-2024, 2024
Short summary

Cited articles

Albertson, J. D. and Kiely, G.: On the structure of soil moisture time series in the context of land surface models, J. Hydrol., 243, 101–119, https://doi.org/10.1016/S0022-1694(00)00405-4, 2001. 
Balenović, I., Marjanović, H., Vuletić, D., Paladinić, E., and Indir, K.: Quality assessment of high density digital surface model over different land cover classes, Period. Biol., 117, 459–470, https://doi.org/10.18054/pb.2015.117.4.3452, 2016. 
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015. 
Baroni, G., Ortuani, B., Facchi, A., and Gandolfi, C.: The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field, J. Hydrol., 489, 148–159, https://doi.org/10.1016/j.jhydrol.2013.03.007, 2013. 
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
SMCI1.0 is a 1 km resolution dataset of daily soil moisture over China for 2000–2020 derived through machine learning trained with in situ measurements of 1789 stations, meteorological forcings, and land surface variables. It contains 10 soil layers with 10 cm intervals up to 100 cm deep. Evaluated by in situ data, the error (ubRMSE) ranges from 0.045 to 0.051, and the correlation (R) range is 0.866-0.893. Compared with ERA5-Land, SMAP-L4, and SoMo.ml, SIMI1.0 has higher accuracy and resolution.
Altmetrics
Final-revised paper
Preprint