Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5267-2022
https://doi.org/10.5194/essd-14-5267-2022
Data description paper
 | 
30 Nov 2022
Data description paper |  | 30 Nov 2022

A 1 km daily soil moisture dataset over China using in situ measurement and machine learning

Qingliang Li, Gaosong Shi, Wei Shangguan, Vahid Nourani, Jianduo Li, Lu Li, Feini Huang, Ye Zhang, Chunyan Wang, Dagang Wang, Jianxiu Qiu, Xingjie Lu, and Yongjiu Dai

Related authors

A China dataset of soil properties for land surface modelling (version 2, CSDLv2)
Gaosong Shi, Wenye Sun, Wei Shangguan, Zhongwang Wei, Hua Yuan, Lu Li, Xiaolin Sun, Ye Zhang, Hongbin Liang, Danxi Li, Feini Huang, Qingliang Li, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 517–543, https://doi.org/10.5194/essd-17-517-2025,https://doi.org/10.5194/essd-17-517-2025, 2025
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
OLIGOTREND, a global database of multi-decadal chlorophyll a and water quality time series for rivers, lakes, and estuaries
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data, 17, 3411–3430, https://doi.org/10.5194/essd-17-3411-2025,https://doi.org/10.5194/essd-17-3411-2025, 2025
Short summary
A 3 h, 1 km surface soil moisture dataset for the contiguous United States from 2015 to 2023
Haoxuan Yang, Jia Yang, Tyson E. Ochsner, Erik S. Krueger, Mengyuan Xu, and Chris B. Zou
Earth Syst. Sci. Data, 17, 3391–3409, https://doi.org/10.5194/essd-17-3391-2025,https://doi.org/10.5194/essd-17-3391-2025, 2025
Short summary
Comprehensive inventory of large hydropower systems in the Italian Alpine Region
Andrea Galletti, Soroush Zarghami Dastjerdi, and Bruno Majone
Earth Syst. Sci. Data, 17, 3353–3373, https://doi.org/10.5194/essd-17-3353-2025,https://doi.org/10.5194/essd-17-3353-2025, 2025
Short summary
An integrated high-resolution bathymetric model for the Danube Delta system
Lauranne Alaerts, Jonathan Lambrechts, Ny Riana Randresihaja, Luc Vandenbulcke, Olivier Gourgue, Emmanuel Hanert, and Marilaure Grégoire
Earth Syst. Sci. Data, 17, 3125–3140, https://doi.org/10.5194/essd-17-3125-2025,https://doi.org/10.5194/essd-17-3125-2025, 2025
Short summary
LakeBeD-US: a benchmark dataset for lake water quality time series and vertical profiles
Bennett J. McAfee, Aanish Pradhan, Abhilash Neog, Sepideh Fatemi, Robert T. Hensley, Mary E. Lofton, Anuj Karpatne, Cayelan C. Carey, and Paul C. Hanson
Earth Syst. Sci. Data, 17, 3141–3165, https://doi.org/10.5194/essd-17-3141-2025,https://doi.org/10.5194/essd-17-3141-2025, 2025
Short summary

Cited articles

Albertson, J. D. and Kiely, G.: On the structure of soil moisture time series in the context of land surface models, J. Hydrol., 243, 101–119, https://doi.org/10.1016/S0022-1694(00)00405-4, 2001. 
Balenović, I., Marjanović, H., Vuletić, D., Paladinić, E., and Indir, K.: Quality assessment of high density digital surface model over different land cover classes, Period. Biol., 117, 459–470, https://doi.org/10.18054/pb.2015.117.4.3452, 2016. 
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015. 
Baroni, G., Ortuani, B., Facchi, A., and Gandolfi, C.: The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field, J. Hydrol., 489, 148–159, https://doi.org/10.1016/j.jhydrol.2013.03.007, 2013. 
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
SMCI1.0 is a 1 km resolution dataset of daily soil moisture over China for 2000–2020 derived through machine learning trained with in situ measurements of 1789 stations, meteorological forcings, and land surface variables. It contains 10 soil layers with 10 cm intervals up to 100 cm deep. Evaluated by in situ data, the error (ubRMSE) ranges from 0.045 to 0.051, and the correlation (R) range is 0.866-0.893. Compared with ERA5-Land, SMAP-L4, and SoMo.ml, SIMI1.0 has higher accuracy and resolution.
Share
Altmetrics
Final-revised paper
Preprint