Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5267-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5267-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 1 km daily soil moisture dataset over China using in situ measurement and machine learning
Qingliang Li
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Guangdong Province Key Laboratory for Climate Change and Natural Disaster
Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510275, China
College of Computer Science and Technology, Changchun Normal
University, Changchun 130032, China
Gaosong Shi
College of Computer Science and Technology, Changchun Normal
University, Changchun 130032, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Guangdong Province Key Laboratory for Climate Change and Natural Disaster
Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510275, China
Vahid Nourani
Center of Excellence in Hydroinformatics and Faculty of Civil
Engineering, University of Tabriz, Tabriz 51368, Iran
Faculty of Civil and Environmental Engineering, Near East University, Near East Boulevard, Nicosia 99628, Turkey
Jianduo Li
State Key Laboratory of Severe Weather, Chinese Academy of
Meteorological Sciences, Beijing 10081, China
Lu Li
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Guangdong Province Key Laboratory for Climate Change and Natural Disaster
Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510275, China
Feini Huang
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Guangdong Province Key Laboratory for Climate Change and Natural Disaster
Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510275, China
Ye Zhang
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Guangdong Province Key Laboratory for Climate Change and Natural Disaster
Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510275, China
Chunyan Wang
College of Computer Science and Technology, Changchun Normal
University, Changchun 130032, China
Dagang Wang
School of Geography and Planning, Sun Yat-sen University, Guangzhou
510275, China
Jianxiu Qiu
School of Geography and Planning, Sun Yat-sen University, Guangzhou
510275, China
Xingjie Lu
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Guangdong Province Key Laboratory for Climate Change and Natural Disaster
Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510275, China
Yongjiu Dai
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Guangdong Province Key Laboratory for Climate Change and Natural Disaster
Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510275, China
Related authors
Gaosong Shi, Wenye Sun, Wei Shangguan, Zhongwang Wei, Hua Yuan, Lu Li, Xiaolin Sun, Ye Zhang, Hongbin Liang, Danxi Li, Feini Huang, Qingliang Li, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 517–543, https://doi.org/10.5194/essd-17-517-2025, https://doi.org/10.5194/essd-17-517-2025, 2025
Short summary
Short summary
In this study, we developed the second version of China's high-resolution soil information grid using legacy soil samples and advanced machine learning. This version predicts over 20 soil properties at six depths, providing accurate soil variation maps across China. It outperforms previous versions and global products, offering valuable data for hydrological and ecological analyses and Earth system modelling, enhancing our understanding of soil roles in environmental processes.
Shuyang Guo, Yongjiu Dai, Hua Yuan, and Hongbin Liang
The Cryosphere, 19, 3553–3570, https://doi.org/10.5194/tc-19-3553-2025, https://doi.org/10.5194/tc-19-3553-2025, 2025
Short summary
Short summary
The Snow, Ice, and Aerosol Radiation Model version 4 has only been used to evaluate bare-ice albedo in land surface models, with necessary ice property data lacking quality control. We integrated this model into our land surface model and improved bare-ice properties using quality-controlled satellite data. Our findings show regional warming and reduced snow cover in Greenland’s bare-ice region, driven by changes in bare-ice properties through bare-ice–snow albedo feedback.
Shulei Zhang, Hongbin Liang, Fang Li, Xingjie Lu, and Yongjiu Dai
Hydrol. Earth Syst. Sci., 29, 3119–3143, https://doi.org/10.5194/hess-29-3119-2025, https://doi.org/10.5194/hess-29-3119-2025, 2025
Short summary
Short summary
This study enhances irrigation modeling in the Common Land Model by capturing the full irrigation process, detailing water supplies from various sources, and enabling bidirectional coupling between water demand and supply. The proposed model accurately simulates irrigation water withdrawals, energy fluxes, river flow, and crop yields. It offers insights into irrigation-related climate impacts and water scarcity, contributing to sustainable water management and improved Earth system modeling.
Chen Yang, Zitong Jia, Wenjie Xu, Zhongwang Wei, Xiaolang Zhang, Yiguang Zou, Jeffrey McDonnell, Laura Condon, Yongjiu Dai, and Reed Maxwell
Hydrol. Earth Syst. Sci., 29, 2201–2218, https://doi.org/10.5194/hess-29-2201-2025, https://doi.org/10.5194/hess-29-2201-2025, 2025
Short summary
Short summary
We developed the first high-resolution, integrated surface water–groundwater hydrologic model of the entirety of continental China using ParFlow. The model shows good performance in terms of streamflow and water table depth when compared to global data products and observations. It is essential for water resources management and decision-making in China within a consistent framework in the changing world. It also has significant implications for similar modeling in other places in the world.
Zhongwang Wei, Qingchen Xu, Fan Bai, Xionghui Xu, Zixin Wei, Wenzong Dong, Hongbin Liang, Nan Wei, Xingjie Lu, Lu Li, Shupeng Zhang, Hua Yuan, Laibo Liu, and Yongjiu Dai
EGUsphere, https://doi.org/10.5194/egusphere-2025-1380, https://doi.org/10.5194/egusphere-2025-1380, 2025
Short summary
Short summary
Land surface models are used for simulating earth's surface interacts with the atmosphere. As models grow more complex and detailed, researchers need better tools to evaluate their performance. OpenBench, a new software system that makes evaluation process more comprehensive and efficient. It stands out by incorporating various factors and working with data at any scale which enabling scientists to incorporate new types of models and measurements as our understanding of Earth’s systems evolves.
Gaosong Shi, Wenye Sun, Wei Shangguan, Zhongwang Wei, Hua Yuan, Lu Li, Xiaolin Sun, Ye Zhang, Hongbin Liang, Danxi Li, Feini Huang, Qingliang Li, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 517–543, https://doi.org/10.5194/essd-17-517-2025, https://doi.org/10.5194/essd-17-517-2025, 2025
Short summary
Short summary
In this study, we developed the second version of China's high-resolution soil information grid using legacy soil samples and advanced machine learning. This version predicts over 20 soil properties at six depths, providing accurate soil variation maps across China. It outperforms previous versions and global products, offering valuable data for hydrological and ecological analyses and Earth system modelling, enhancing our understanding of soil roles in environmental processes.
Jiahao Shi, Hua Yuan, Wanyi Lin, Wenzong Dong, Hongbin Liang, Zhuo Liu, Jianxin Zeng, Haolin Zhang, Nan Wei, Zhongwang Wei, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 117–134, https://doi.org/10.5194/essd-17-117-2025, https://doi.org/10.5194/essd-17-117-2025, 2025
Short summary
Short summary
Flux tower data are widely recognized as benchmarking data for land surface models, but insufficient emphasis on and deficiency in site attribute data limits their true value. We collect site-observed vegetation, soil, and topography data from various sources. The final dataset encompasses 90 sites globally, with relatively complete site attribute data and high-quality flux validation data. This work has provided more reliable site attribute data, benefiting land surface model development.
Yangzi Che, Xuecao Li, Xiaoping Liu, Yuhao Wang, Weilin Liao, Xianwei Zheng, Xucai Zhang, Xiaocong Xu, Qian Shi, Jiajun Zhu, Honghui Zhang, Hua Yuan, and Yongjiu Dai
Earth Syst. Sci. Data, 16, 5357–5374, https://doi.org/10.5194/essd-16-5357-2024, https://doi.org/10.5194/essd-16-5357-2024, 2024
Short summary
Short summary
Most existing building height products are limited with respect to either spatial resolution or coverage, not to mention the spatial heterogeneity introduced by global building forms. Using Earth Observation (EO) datasets for 2020, we developed a global height dataset at the individual building scale. The dataset provides spatially explicit information on 3D building morphology, supporting both macro- and microanalysis of urban areas.
Ziqi Lin, Yongjiu Dai, Umakant Mishra, Guocheng Wang, Wei Shangguan, Wen Zhang, and Zhangcai Qin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-232, https://doi.org/10.5194/essd-2022-232, 2022
Manuscript not accepted for further review
Short summary
Short summary
Spatial soil organic carbon (SOC) data is critical for predictions in carbon climate feedbacks and future climate trends, but no conclusion has yet been reached on which dataset to be used for specific purposes. We evaluated the SOC estimates from five widely used global soil datasets and a regional permafrost dataset, and identify uncertainties of SOC estimates by region, biome, and data sources, hoping to help improve SOC/soil data in the future.
Yueli Chen, Xingwu Duan, Minghu Ding, Wei Qi, Ting Wei, Jianduo Li, and Yun Xie
Earth Syst. Sci. Data, 14, 2681–2695, https://doi.org/10.5194/essd-14-2681-2022, https://doi.org/10.5194/essd-14-2681-2022, 2022
Short summary
Short summary
We reconstructed the first annual rainfall erosivity dataset for the Tibetan Plateau in China. The dataset covers 71 years in a 0.25° grid. The reanalysis precipitation data are employed in combination with the densely spaced in situ precipitation observations to generate the dataset. The dataset can supply fundamental data for quantifying the water erosion, and extend our knowledge of the rainfall-related hazard prediction on the Tibetan Plateau.
Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, and Yiqi Luo
Biogeosciences, 19, 2245–2262, https://doi.org/10.5194/bg-19-2245-2022, https://doi.org/10.5194/bg-19-2245-2022, 2022
Short summary
Short summary
The relative ratio of wetland methane (CH4) emission pathways determines how much CH4 is oxidized before leaving the soil. We found an ebullition modeling approach that has a better performance in deep layer pore water CH4 concentration. We suggest using this approach in land surface models to accurately represent CH4 emission dynamics and response to climate change. Our results also highlight that both CH4 flux and belowground concentration data are important to constrain model parameters.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 1569–1586, https://doi.org/10.5194/hess-25-1569-2021, https://doi.org/10.5194/hess-25-1569-2021, 2021
Short summary
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
Zhengang Wang, Jianxiu Qiu, and Kristof Van Oost
Geosci. Model Dev., 13, 4977–4992, https://doi.org/10.5194/gmd-13-4977-2020, https://doi.org/10.5194/gmd-13-4977-2020, 2020
Short summary
Short summary
This study developed a spatially distributed carbon cycling model applicable in an eroding landscape. It includes all three carbon isotopes so that it is able to represent the carbon isotopic compositions. The model is able to represent the observations that eroding area is enriched in 13C and depleted of 14C compared to depositional area. Our simulations show that the spatial variability of carbon isotopic properties in an eroding landscape is mainly caused by the soil redistribution.
Cited articles
Albertson, J. D. and Kiely, G.: On the structure of soil moisture time
series in the context of land surface models, J. Hydrol., 243,
101–119, https://doi.org/10.1016/S0022-1694(00)00405-4, 2001.
Balenović, I., Marjanović, H., Vuletić, D., Paladinić, E.,
and Indir, K.: Quality assessment of high density digital surface model over
different land cover classes, Period. Biol., 117, 459–470,
https://doi.org/10.18054/pb.2015.117.4.3452, 2016.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Baroni, G., Ortuani, B., Facchi, A., and Gandolfi, C.: The role of
vegetation and soil properties on the spatio-temporal variability of the
surface soil moisture in a maize-cropped field, J. Hydrol., 489,
148–159, https://doi.org/10.1016/j.jhydrol.2013.03.007, 2013.
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Brocca, L., Morbidelli, R., Melone, F., and Moramarco, T.: Soil moisture
spatial variability in experimental areas of central Italy, J.
Hydrol., 333, 356–373, https://doi.org/10.1016/j.jhydrol.2006.09.004,
2007.
Bury, T. M., Sujith, R. I., Pavithran, I., Scheffer, M., Lenton, T. M., Anand, M., and Bauch, C. T.: Deep learning for early warning signals
of tipping points, P. Natl. Acad. Sci., 118,
e2106140118, https://doi.org/10.1073/pnas.2106140118, 2021.
Carranza, C., Nolet, C., Pezij, M., and van der Ploeg, M.: Root zone soil
moisture estimation with Random Forest, J. Hydrol., 593, 125840,
https://doi.org/10.1016/j.jhydrol.2020.125840, 2021.
Chakrabarti, S., Bongiovanni, T., Judge, J., Nagarajan, K., and Principe, J.
C.: Downscaling Satellite-Based Soil Moisture in Heterogeneous Regions Using
High-Resolution Remote Sensing Products and Information Theory: A Synthetic
Study, IEEE T. Geosci. Remote, 53, 85–101,
https://doi.org/10.1109/TGRS.2014.2318699, 2015.
Chawla, I., Karthikeyan, L., and Mishra, A. K.: A review of remote sensing
applications for water security: Quantity, quality, and extremes, J.
Hydrol., 585, 124826, https://doi.org/10.1016/j.jhydrol.2020.124826, 2020.
Chen, M., Willgoose, G. R., and Saco, P. M.: Investigating the impact of
leaf area index temporal variability on soil moisture predictions using
remote sensing vegetation data, J. Hydrol., 522, 274–284,
https://doi.org/10.1016/j.jhydrol.2014.12.027, 2015.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, USA, 13–17 August 2016, 785–794, https://doi.org/10.1145/2939672.2939785,
2016.
Chen, Y., Feng, X., and Fu, B.: An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003–2018, Earth Syst. Sci. Data, 13, 1–31, https://doi.org/10.5194/essd-13-1-2021, 2021.
Cong, N., Wang, T., Nan, H., Ma, Y., Wang, X., Myneni, R. B., and Piao, S.:
Changes in satellite-derived spring vegetation green-up date and its linkage
to climate in China from 1982 to 2010: a multimethod analysis, Glob. Change
Biol., 19, 881–891, https://doi.org/10.1111/gcb.12077, 2013.
Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P., Panciera,
R., de Rosnay, P., Ryu, D., and Walker, J. P.: Upscaling sparse ground-based
soil moisture observations for the validation of coarse-resolution satellite
soil moisture products, Rev. Geophys., 50, RG2002,
https://doi.org/10.1029/2011RG000372, 2012.
Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M.
G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W.,
Schlosser, C. A., and Yang, Z.-L.: The Common Land Model, B.
Am. Meteorol. Soc., 84, 1013–1024,
https://doi.org/10.1175/BAMS-84-8-1013, 2003.
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.:
GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land
Surface, B. Am. Meteorol. Soc., 87, 1381–1398,
https://doi.org/10.1175/BAMS-87-10-1381, 2006.
Dorigo, W. A., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiová, A.,
Sanchis-Dufau, A. D., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M.:
Global Automated Quality Control of In Situ Soil Moisture Data from the
International Soil Moisture Network, Vadose Zone J., 12, vzj2012.0097,
https://doi.org/10.2136/vzj2012.0097, 2013.
Dorogush, A. V., Ershov, V., and Gulin, A.: CatBoost: gradient boosting with
categorical features support, arXiv [preprint],
https://doi.org/10.48550/arXiv.1810.11363, 24 October 2018.
Entekhabi, D., Rodriguez-Iturbe, I., and Castelli, F.: Mutual interaction of
soil moisture state and atmospheric processes, J. Hydrol., 184,
3–17, https://doi.org/10.1016/0022-1694(95)02965-6, 1996.
Entekhabi, D., Njoku, E. G., Neill, P. E. O., Kellogg, K. H., Crow, W. T.,
Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J.,
Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C.,
Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman,
S. W., Tsang, L., and Zyl, J. V.: The Soil Moisture Active Passive (SMAP)
Mission, P. IEEE, 98, 704–716,
https://doi.org/10.1109/JPROC.2010.2043918, 2010.
Feng, H. and Liu, Y.: Combined effects of precipitation and air temperature
on soil moisture in different land covers in a humid basin, J.
Hydrol., 531, 1129–1140, https://doi.org/10.1016/j.jhydrol.2015.11.016,
2015.
Fujii, H., Koike, T., and Imaoka, K.: Improvement of the AMSR-E Algorithm
for Soil Moisture Estimation by Introducing a Fractional Vegetation Coverage
Dataset Derived from MODIS Data, Journal of the Remote Sensing Society of
Japan, 29, 282–292, https://doi.org/10.11440/rssj.29.282, 2009.
Gaur, N. and Mohanty, B. P.: Land-surface controls on near-surface soil
moisture dynamics: Traversing remote sensing footprints, Water Resour.
Res., 52, 6365–6385, https://doi.org/10.1002/2015WR018095, 2016.
Global Climate Observing System (GCOS): The Global Observing System for Climate: Implementation Needs, World Meteorological Organization, Guayaquil, Ecuador, Rep. GCOS-200, 341 pp.,
https://doi.org/10.13140/RG.2.2.23178.26566, 2016.
Gruber, A., Su, C. H., Crow, W. T., Zwieback, S., Dorigo, W. A., and Wagner,
W.: Estimating error cross-correlations in soil moisture data sets using
extended collocation analysis, J. Geophys. Res.-Atmos.,
121, 1208–1219, https://doi.org/10.1002/2015JD024027, 2016.
Gu, X., Li, J., Chen, Y. D., Kong, D., and Liu, J.: Consistency and
Discrepancy of Global Surface Soil Moisture Changes from Multiple
Model-Based Data Sets Against Satellite Observations, J. Geophys.
Res.-Atmos., 124, 1474–1495, https://doi.org/10.1029/2018JD029304,
2019.
Guo, L. and Lin, H.: Chapter Two – Addressing Two Bottlenecks to Advance the
Understanding of Preferential Flow in Soils, in: Advances in Agronomy,
edited by: Sparks, D. L., Academic Press, 61–117,
https://doi.org/10.1016/bs.agron.2017.10.002, 2018.
Hu, Q. and Feng, S.: A Daily Soil Temperature Dataset and Soil Temperature
Climatology of the Contiguous United States, J. Appl. Meteorol.,
42, 1139–1156, https://doi.org/10.1175/1520-0450(2003)042<1139:ADSTDA>2.0.CO;2, 2003.
Joshi, C. and Mohanty, B. P.: Physical controls of near-surface soil
moisture across varying spatial scales in an agricultural landscape during
SMEX02, Water Resour. Res., 46, W12503, https://doi.org/10.1029/2010WR009152,
2010.
Karthikeyan, L. and Kumar, D. N.: A novel approach to validate satellite
soil moisture retrievals using precipitation data, J. Geophys.
Res.-Atmos., 121, 11516–11535, https://doi.org/10.1002/2016JD024829, 2016.
Karthikeyan, L. and Mishra, A. K.: Multi-layer high-resolution soil moisture
estimation using machine learning over the United States, Remote Sens.
Environ., 266, 112706, https://doi.org/10.1016/j.rse.2021.112706, 2021.
Kemppinen, J., Niittynen, P., Virkkala, A.-M., Happonen, K., Riihimäki,
H., Aalto, J., and Luoto, M.: Dwarf Shrubs Impact Tundra Soils: Drier,
Colder, and Less Organic Carbon, Ecosystems, 24, 1378–1392,
https://doi.org/10.1007/s10021-020-00589-2, 2021.
Kerr, Y. H., Waldteufel, P., Wigneron, J., Delwart, S., Cabot, F., Boutin,
J., Escorihuela, M., Font, J., Reul, N., Gruhier, C., Juglea, S. E.,
Drinkwater, M. R., Hahne, A., Martín-Neira, M., and Mecklenburg, S.:
The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water
Cycle, P. IEEE, 98, 666–687,
https://doi.org/10.1109/JPROC.2010.2043032, 2010.
Kim, S., Zhang, R., Pham, H., and Sharma, A.: A Review of Satellite-Derived
Soil Moisture and Its Usage for Flood Estimation, Remote Sensing in Earth
Systems Sciences, 2, 225–246, https://doi.org/10.1007/s41976-019-00025-7,
2019.
Kumar, S. V., Reichle, R. H., Koster, R. D., Crow, W. T., and Peters-Lidard,
C. D.: Role of Subsurface Physics in the Assimilation of Surface Soil
Moisture Observations, J. Hydrometeorol., 10, 1534–1547,
https://doi.org/10.1175/2009JHM1134.1, 2009.
Le Bissonnais, Y., Renaux, B., and Delouche, H.: Interactions between soil
properties and moisture content in crust formation, runoff and interrill
erosion from tilled loess soils, CATENA, 25, 33–46,
https://doi.org/10.1016/0341-8162(94)00040-L, 1995.
Lei, S., Shi, Z., and Zou, Z.: Coupled Adversarial Training for Remote
Sensing Image Super-Resolution, IEEE T. Geosci. Remote, 58, 3633–3643, https://doi.org/10.1109/TGRS.2019.2959020, 2020.
Li, L., Shangguan, W., Deng, Y., Mao, J., Pan, J., Wei, N., Yuan, H., Zhang,
S., Zhang, Y., and Dai, Y.: A Causal Inference Model Based on Random Forests
to Identify the Effect of Soil Moisture on Precipitation, J.
Hydrometeorol., 21, 1115–1131, https://doi.org/10.1175/JHM-D-19-0209.1,
2020.
Li, Q., Wang, Z., Shangguan, W., Li, L., Yao, Y., and Yu, F.: Improved daily
SMAP satellite soil moisture prediction over China using deep learning model
with transfer learning, J. Hydrol., 600, 126698,
https://doi.org/10.1016/j.jhydrol.2021.126698, 2021.
Lin, L. and Liu, X.: Mixture-based weight learning improves the random
forest method for hyperspectral estimation of soil total nitrogen, Comput.
Electron. Agr., 192, 106634,
https://doi.org/10.1016/j.compag.2021.106634, 2022.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L.,
and Merchant, J. W.: Development of a global land cover characteristics
database and IGBP DISCover from 1 km AVHRR data, Int. J.
Remote Sens. 21, 1303–1330, https://doi.org/10.1080/014311600210191,
2000.
Ly, H. B., Nguyen, T. A., and Pham, B. T.: Estimation of Soil Cohesion Using
Machine Learning Method: A Random Forest Approach, Advances in Civil
Engineering, 2021, 8873993, https://doi.org/10.1155/2021/8873993, 2021.
Mao, T., Shangguan, W., Li, Q., Li, L., Zhang, Y., Huang, F., Li, J., Liu, W., and Zhang, R.:
A Spatial Downscaling Method for Remote Sensing Soil Moisture Based on
Random Forest Considering Soil Moisture Memory and Mass Conservation, Remote
Sensing, 14, 3858, https://doi.org/10.3390/rs14163858, 2022.
Meng, X., Mao, K., Meng, F., Shi, J., Zeng, J., Shen, X., Cui, Y., Jiang, L., and Guo, Z.: A fine-resolution soil moisture dataset for China in 2002–2018, Earth Syst. Sci. Data, 13, 3239–3261, https://doi.org/10.5194/essd-13-3239-2021, 2021.
Mishra, A., Vu, T., Veettil, A. V., and Entekhabi, D.: Drought monitoring
with soil moisture active passive (SMAP) measurements, J. Hydrol.,
552, 620–632, https://doi.org/10.1016/j.jhydrol.2017.07.033, 2017.
Mohamed, E., Habib, E., Abdelhameed, A. M., and Bayoumi, M.: Assessment of a
Spatiotemporal Deep Learning Approach for Soil Moisture Prediction and
Filling the Gaps in Between Soil Moisture Observations, Frontiers in
Artificial Intelligence, 4, 636234, https://doi.org/10.3389/frai.2021.636234, 2021.
Muñoz Sabater, J.: ERA5-Land hourly data from 1981 to present,
Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.e2161bac, 2019.
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to 1980, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.e2161bac, 2021.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E., and Anquetin, S.:
Flash flood warning based on rainfall thresholds and soil moisture
conditions: An assessment for gauged and ungauged basins, J.
Hydrol., 362, 274–290, https://doi.org/10.1016/j.jhydrol.2008.08.023,
2008.
O, S. and Orth, R.: Global soil moisture data derived through machine
learning trained with in-situ measurements, Scientific Data, 8, 170,
https://doi.org/10.1038/s41597-021-00964-1, 2021.
Ojha, R., Morbidelli, R., Saltalippi, C., Flammini, A., and Govindaraju, R.
S.: Scaling of surface soil moisture over heterogeneous fields subjected to
a single rainfall event, J. Hydrol., 516, 21–36,
https://doi.org/10.1016/j.jhydrol.2014.01.057, 2014.
Orth, R. and Seneviratne, S. I.: Using soil moisture forecasts for
sub-seasonal summer temperature predictions in Europe, Clim. Dynam., 43,
3403–3418, https://doi.org/10.1007/s00382-014-2112-x, 2014.
Pan, J., Shangguan, W., Li, L., Yuan, H., Zhang, S., Lu, X., Wei, N., and
Dai, Y.: Using data-driven methods to explore the predictability of surface
soil moisture with FLUXNET site data, Hydrol. Process., 33, 2978–2996,
https://doi.org/10.1002/hyp.13540, 2019.
Parinussa, R. M., Lakshmi, V., Johnson, F. M., and Sharma, A.: A new
framework for monitoring flood inundation using readily available satellite
data, Geophys. Rese. Lett., 43, 2599–2605,
https://doi.org/10.1002/2016GL068192, 2016.
Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H.,
Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson, M. W. J., de
Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H.,
Lovergine, F., Mahecha, M. D., Marzahn, P., Mattia, F., Musial, J. P.,
Preuschmann, S., Reichle, R. H., Satalino, G., Silgram, M., van Bodegom, P.
M., Verhoest, N. E. C., Wagner, W., Walker, J. P., Wegmüller, U., and
Loew, A.: A roadmap for high-resolution satellite soil moisture applications
– confronting product characteristics with user requirements, Remote
Sens. Environ., 252, 112162,
https://doi.org/10.1016/j.rse.2020.112162, 2021.
Rosenblatt, F.: The perceptron: A probabilistic model for information
storage and organization in the brain, Psychol. Rev., 65, 386–408,
https://doi.org/10.1037/h0042519, 1958.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture–climate interactions in a changing climate: A review,
Earth-Sci. Rev., 99, 125–161,
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Shangguan, W., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D., Ye, A.,
Yuan, H., Zhang, Q., Chen, D., Chen, M., Chu, J., Dou, Y., Guo, J., Li, H.,
Li, J., Liang, L., Liang, X., Liu, H., Liu, S., Miao, C., and Zhang, Y.: A
China data set of soil properties for land surface modeling, J.
Adv. Model. Earth Sy., 5, 212–224,
https://doi.org/10.1002/jame.20026, 2013.
Shangguan, W., Li, Q., and Shi, G.: A 1-km daily soil moisture dataset over
China based on in-situ measurement (2000–2020), National Tibetan Plateau
Data Center [data set], https://doi.org/10.11888/Terre.tpdc.272415, 2022.
Srivastava, P. K., Han, D., Ramirez, M. R., and Islam, T.: Machine Learning
Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land
Surface Temperature for Hydrological Application, Water Resour.
Manag., 27, 3127–3144, https://doi.org/10.1007/s11269-013-0337-9, 2013.
Tijdeman, E. and Menzel, L.: The development and persistence of soil moisture stress during drought across southwestern Germany, Hydrol. Earth Syst. Sci., 25, 2009–2025, https://doi.org/10.5194/hess-25-2009-2021, 2021.
Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., van der Kruk, J.,
Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., and
Vanderborght, J.: On the spatio-temporal dynamics of soil moisture at the
field scale, J. Hydrol., 516, 76–96,
https://doi.org/10.1016/j.jhydrol.2013.11.061, 2014.
Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J.-C., Bizzarri, B.,
Wigneron, J.-P., and Kerr, Y.: Operational readiness of microwave remote
sensing of soil moisture for hydrologic applications, Hydrol. Res.,
38, 1–20, https://doi.org/10.2166/nh.2007.029, 2007.
Wang, Y., Mao, J., Jin, M., Hoffman, F. M., Shi, X., Wullschleger, S. D., and Dai, Y.: Development of observation-based global multilayer soil moisture products for 1970 to 2016, Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, 2021.
Wei, Z., Meng, Y., Zhang, W., Peng, J., and Meng, L.: Downscaling SMAP soil
moisture estimation with gradient boosting decision tree regression over the
Tibetan Plateau, Remote Sens. Environ., 225, 30–44,
https://doi.org/10.1016/j.rse.2019.02.022, 2019.
Xu, J. W., Zhao, J. F., Zhang, W. C., and Xu, X. X.: A Novel Soil Moisture
Predicting Method Based on Artificial Neural Network and Xinanjiang Model,
Adv. Mat. Res., 121–122, 1028–1032,
https://doi.org/10.4028/www.scientific.net/AMR.121-122.1028, 2010.
Yao, Y., Qin, Q., Zhao, S., and Yuan, W.: Retrieval of soil
moisture based on MODIS shortwave infrared spectral feature, J. Infrared
Millim. Waves, 30, 9–14,
http://journal.sitp.ac.cn/hwyhmb/hwyhmben/article/abstract/100118 (last access: 25 November 2022), 2011.
Yuan, H., Dai, Y., Xiao, Z., Ji, D., and Shangguan, W.: Reprocessing the
MODIS Leaf Area Index products for land surface and climate modelling,
Remote Sens. Environ., 115, 1171–1187,
https://doi.org/10.1016/j.rse.2011.01.001, 2011.
Zeng, L., Hu, S., Xiang, D., Zhang, X., Li, D., Li, L., and Zhang, T.:
Multilayer Soil Moisture Mapping at a Regional Scale from Multisource Data
via a Machine Learning Method, Remote Sensing, 11, 284,
https://doi.org/10.3390/rs11030284, 2019.
Zhang, H., Wang, P., and Jiang, Z.: Nonpairwise-Trained Cycle Convolutional
Neural Network for Single Remote Sensing Image Super-Resolution, IEEE
T. Geosci. Remote, 59, 4250–4261,
https://doi.org/10.1109/TGRS.2020.3009224, 2021.
Zhang, Q., Yuan, Q., Li, J., Wang, Y., Sun, F., and Zhang, L.: Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019, Earth Syst. Sci. Data, 13, 1385–1401, https://doi.org/10.5194/essd-13-1385-2021, 2021.
Zhang, R., Kim, S., and Sharma, A.: A comprehensive validation of the SMAP
Enhanced Level-3 Soil Moisture product using ground measurements over varied
climates and landscapes, Remote Sens. Environ., 223, 82–94,
https://doi.org/10.1016/j.rse.2019.01.015, 2019.
Zhu, X., Guo, K., Ren, S., Hu, B., Hu, M., and Fang, H.: Lightweight Image
Super-Resolution With Expectation-Maximization Attention Mechanism, IEEE
T. Circ. Syst. Vid., 32, 1273–1284,
https://doi.org/10.1109/TCSVT.2021.3078436, 2022.
Zwieback, S., Chang, Q., Marsh, P., and Berg, A.: Shrub tundra ecohydrology:
rainfall interception is a major component of the water balance,
Environ. Res. Lett., 14, 055005,
https://doi.org/10.1088/1748-9326/ab1049, 2019.
Short summary
SMCI1.0 is a 1 km resolution dataset of daily soil moisture over China for 2000–2020 derived through machine learning trained with in situ measurements of 1789 stations, meteorological forcings, and land surface variables. It contains 10 soil layers with 10 cm intervals up to 100 cm deep. Evaluated by in situ data, the error (ubRMSE) ranges from 0.045 to 0.051, and the correlation (R) range is 0.866-0.893. Compared with ERA5-Land, SMAP-L4, and SoMo.ml, SIMI1.0 has higher accuracy and resolution.
SMCI1.0 is a 1 km resolution dataset of daily soil moisture over China for 2000–2020 derived...
Altmetrics
Final-revised paper
Preprint