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Abstract. High-quality gridded soil moisture products are essential for many Earth system science applica-
tions, while the recent reanalysis and remote sensing soil moisture data are often available at coarse resolution
and remote sensing data are only for the surface soil. Here, we present a 1 km resolution long-term dataset of
soil moisture derived through machine learning trained by the in situ measurements of 1789 stations over China,
named SMCI1.0 (Soil Moisture of China by in situ data, version 1.0). Random forest is used as a robust ma-
chine learning approach to predict soil moisture using ERA5-Land time series, leaf area index, land cover type,
topography and soil properties as predictors. SMCI1.0 provides 10-layer soil moisture with 10 cm intervals up to
100 cm deep at daily resolution over the period 2000–2020. Using in situ soil moisture as the benchmark, two in-
dependent experiments were conducted to evaluate the estimation accuracy of SMCI1.0: year-to-year (ubRMSE
ranges from 0.041 to 0.052 and R ranges from 0.883 to 0.919) and station-to-station experiments (ubRMSE
ranges from 0.045 to 0.051 and R ranges from 0.866 to 0.893). SMCI1.0 generally has advantages over other
gridded soil moisture products, including ERA5-Land, SMAP-L4, and SoMo.ml. However, the high errors of
soil moisture are often located in the North China Monsoon Region. Overall, the highly accurate estimations of
both the year-to-year and station-to-station experiments ensure the applicability of SMCI1.0 to study the spatial–
temporal patterns. As SMCI1.0 is based on in situ data, it can be a useful complement to existing model-based
and satellite-based soil moisture datasets for various hydrological, meteorological, and ecological analyses and
models. The DOI link for the dataset is http://dx.doi.org/10.11888/Terre.tpdc.272415 (Shangguan et al., 2022).
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1 Introduction

Soil moisture (SM) plays a key role in land–atmosphere in-
teractions through its strong impacts on the water and carbon
cycle (Entekhabi et al., 1996; Seneviratne et al., 2010; Wag-
ner et al., 2007). The status of SM is closely related to climate
and weather conditions (Dirmeyer et al., 2006). The high-
quality SM data with a fine spatial–temporal scale can be val-
ued as indispensable tools for observing the extreme weather
events, e.g., droughts (e.g., Chawla et al., 2020; Mishra et
al., 2017; Tijdeman and Menzel, 2021), floods (e.g., Kim et
al., 2019; Norbiato et al., 2008; Parinussa et al., 2016), and
carbon cycle modeling (O and Orth, 2021). Further, SM is
also identified as an important component of the Essential
Climate Variables by the Global Observing System for Cli-
mate (GCOS, 2016). However, high-quality SM data acqui-
sition is a challenging task due to the complicated spatiotem-
poral variations of the SM (Guo and Lin, 2018; Ojha et al.,
2014; Vereecken et al., 2014). Such spatiotemporal variations
of SM are usually affected by the inherent heterogeneity of
soils, land cover, and weather (Brocca et al., 2007; Crow et
al., 2012; Vereecken et al., 2014).

At present, the methods for SM data estimation can be
divided into five categories: in situ observations, satellite
observations, offline land surface model simulations, Earth
system model simulations, and reanalysis products. For in
situ SM observations, SM data are usually measured by the
probe measurement method (Orth and Seneviratne, 2014),
in which as direct observations this method usually leads to
lower errors than satellite observations, land surface model
simulations, Earth system model simulations, and reanaly-
sis products (Pan et al., 2019). Although a large number
of stations are distributed all over the world, there are still
many regions with no in situ SM observations due to finan-
cial constraints (Karthikeyan and Kumar, 2016), and field
stations are too sparse to capture adequate spatial coverage
(Gruber et al., 2016). For satellite observations, SM data are
mainly retrieved by microwave radiometers (frequencies are
less than 12 GHz) on satellites (Entekhabi et al., 2010; Fujii
et al., 2009; Kerr et al., 2010), which can provide the global
SM data with uniform distributions, but for the microwave-
radiometer-measured SM data from the near surface, only the
top-layer SM (typically ∼ 5 cm) can be retrieved and the data
gaps exist in regions with dense vegetation and snow-covered
or frozen soils. The SM data of the offline land surface model
and Earth system model simulations span multiple soil lay-
ers and have a seamless spatial distribution (Gu et al., 2019),
but they both have uncertain and different forcing factors due
to the spatial sub-grid heterogeneity of soil properties and
vegetation, thus leading to large differences from in situ SM
observations (Dirmeyer et al., 2006; Kumar et al., 2009). Re-
analysis products can also provide SM data with good tempo-
ral variations by assimilating observations into land surface
models or Earth system models (Chen et al., 2021). They can
also provide SM data at deeper soil depth than satellite ob-

servations, but reanalysis products usually lead to higher dis-
agreement with in situ SM observations when the assimilated
meteorological variables (e.g., precipitation) are biased (Bal-
samo et al., 2015).

In brief, the characteristic strong points and shortcomings
both coexist in each type of SM product. Hence, we are ea-
ger to develop the high-quality SM product which compre-
hensively has a high-resolution seamless spatial distribution,
long time periods, and low errors from the above SM prod-
ucts.

Recently, machine learning (ML) models have been suc-
cessfully applied for predicting (Li et al., 2021; Mohamed
et al., 2021; Xu et al., 2010) or downscaling (Chakrabarti
et al., 2014; Srivastava et al., 2013; Wei et al., 2019; Mao
et al., 2022) the SM values. They capture the complex non-
linear relationship between SM and all available predictors
related to SM variation (e.g., meteorological variables, land
cover, and soil data) with better accuracy. ML models pro-
vide the capacity to estimate high-quality SM data based on
in situ SM measurements (Sungmin and Orth, 2020) and fur-
ther to improve the generated SM product with low errors
and seamless spatial distribution for long time periods. Ran-
dom forest (RF) methods such as the ML method were ap-
plied by Zeng et al. (2019) to generate 0.5 km daily SM data
for the period from 2010 to 2014 over Oklahoma based on
in situ SM records and satellite observations. The low root
mean square error (ranging from 0.038 to 0.050 m3 m−3 for
the year-to-year test and from 0.044 to 0.057 for the station-
to-station test) was obtained from experiments, demonstrat-
ing the accuracy of the gridded SM data. O and Orth (2021)
used the long short-term memory (LSTM) model as a deep
learning approach to estimate daily SM data over the whole
world at 27.75 km spatial resolution for the period from
2000 to 2019, stating the superiority of their SM data over
the ERA5 dataset. It was necessary to note that the above
two studies both emphasized that the applied in situ SM
observations could not cover all the tested regions, lead-
ing to relatively high uncertainty outside the training con-
ditions. In other words, the more in situ SM stations in the
test region, the higher the quality of gridded SM data by
ML models. Additionally, Carranza et al. (2021) used the
RF model to estimate root zone SM within a small catch-
ment from 2016 to 2018 and demonstrated that the ML
model had slightly higher accuracy than a process-based
model combined with data assimilation for data-poor re-
gions. Karthikeyan and Mishra (2021) applied extreme gra-
dient boosting (XGBoost) to estimate daily SM data over
the United States, with about 1 km resolution for the period
from 31 March 2015 to 29 February 2019 (only 1431 d), and
the results showed that the estimations can capture temporal
variations of SM well.

China is one of the largest countries in the world, reaching
from central to eastern Asia. The climate types are complex
and diverse and span the wet, semi-humid, semi-dry, and dry
climate types from southeast to northwest, and the northward
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extent and intensity of summer monsoon often cause signifi-
cant changes in precipitation and arid–humid climate (Cong
et al., 2013). Since SM and precipitation can interact with
each other (Li et al., 2020), in situ data-based estimation of
SM is a challenging task due to such heterogeneity and com-
plex spatiotemporal variabilities.

Previous studies have already provided several gridded
SM products covering China or the world but mainly based
on remote sensing data and only for the surface layer (e.g.,
Chen et al., 2021; Meng et al., 2021; Wang et al., 2021 and
Q. Zhang et al., 2021). However, there is still a big gap in
the technical literature about daily SM data with high qual-
ity (high-resolution seamless spatial distribution, long time
periods, and low errors) at multiple layers based on in situ
measurements for China. Although O and Orth (2021) gen-
erated the global SM data with the ML model which includes
the China region, only data from about 20 in situ SM stations
have been applied for SM modeling for the whole of China.
In addition, the resolution of this product is 0.25◦, which lim-
its its use in regional applications when high-resolution SM
is required.

To fill this research gap, in this study, we aimed at gen-
erating high-quality gridded SM data over China using in
situ measurements and the RF model (Fig. 1). The predic-
tors consisted of static data and time series variables, in-
cluding ERA5-Land (the land component of the fifth genera-
tion of European Reanalysis, Muñoz Sabater, 2019, 2021),
the USGS (United States Geological Survey) land cover
type (Loveland et al., 2000), the USGS DEM (digital eleva-
tion model, Balenović et al., 2016), the reprocessed MODIS
LAI (MODerate-resolution Imaging Spectroradiometer Leaf
Area Index, Yuan et al., 2011), and the CSDL (China Soil
Dataset for Land surface modeling, Shangguan et al., 2013).
The in situ SM observations from 1648 stations were em-
ployed as the SM modeling target after quality control pro-
cedures.

The new Chinese gridded SM product (SMCI1.0, Soil
Moisture of China by in situ data, version 1.0) provides SM
data at 10 layers, which include soil depths from 10 to 100 cm
with an interval of 10 cm. Meanwhile, SMCI1.0 has ∼ 1 km
(30 s) spatial resolution and daily temporal resolution over
the period from 1 January 2010 to 31 December 2020. For
the SMCI1.0 product, we mainly considered answering the
following research questions.

1. What is the sensitivity of the in situ SM data to all the
predictors, including meteorological data (air tempera-
ture, precipitation, total evaporation, potential evapora-
tion), soil data (SM and soil temperature at different soil
layers, static soil properties), leaf area index, and land
cover type.

2. Can the RF model successfully generate high-quality
gridded SM (high-resolution seamless spatial distribu-
tion, long time periods, and low errors) at multiple lay-
ers over China based on in situ SM observations?

3. How does the RF model perform for spatiotemporal es-
timation of SM in the year-to-year and station-to-station
scenarios?

4. What are the conditions under which SMCI1.0 SM data
may lead to lower errors and higher errors against ad-
justed in situ SM observations?

For the above issues, we make four contributions to generat-
ing and validating multi-layer gridded SM data over China.
First, we record and make a detailed analysis of the correla-
tions between in situ SM and all predictors. Then, we apply
the RF to model the complex relationship between predic-
tors and in situ SM observations and further validate it using
year-to-year and station-to-station experiments. Finally, we
intuitively display and analyze the quality of SMCI1.0 under
different conditions, which can help the researchers to im-
prove the Chinese gridded SM intentionally and strategically.
Section 2 describes the in situ SM data, the predicting data,
the RF model, and its application in SM estimation. Section 3
gives the validation results, experimental results, a sampled
map on a day, and the relative importance of the predictors.
Sections 4 and 6 present the discussion and conclusions, re-
spectively.

2 Materials and methods

2.1 In situ SM observations

Target SM data for the RF model were constructed from
the CMA SM observations. The dataset contains hourly data
from 1789 stations over China for 1 January 2010 to 31 De-
cember 2020. The spatial distribution of the observations is
shown in Fig. S1a. It should be noted that data from such a
large number of in situ stations can help ML models to cap-
ture the complex nonlinear relationship between SM and pre-
dictors under various training conditions and thus to generate
high-quality gridded SM data. The automated quality con-
trol of in situ SM observations was performed before train-
ing the RF model. We first removed the null values over the
long period (10 d time step) and outlier/unreasonable SM val-
ues. To check the unreasonable SM values, four plausibility
checks were performed, such as checking geophysical con-
sistency using precipitation and soil temperature, spike de-
tection, break detection, and constant value detection. The
details can be found in the Global Automated Quality Con-
trol method (Dorigo et al., 2013). Finally, the removed values
were replaced by the linear interpolation method according
to the remaining SM values in the same time period from 5 d
ahead to 5 d later. To facilitate the generation of 1 km grid-
ded SM data at multiple layers by the RF model, the CMA
SM observations were processed to daily ones, and the ob-
servations were averaged if there was more than one station
within a grid at 1 km resolution. We simply averaged all the
available observations on each day and all stations if there
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Figure 1. Generation process for the SMCI1.0 product with 1 km spatial resolution and daily temporal resolution over the period from
1 January 2000 to 31 December 2020 over China.

was more than one station within each grid with 1 km reso-
lution. In this way, we got 1648 spatial points (or grids) of
observations. The description of in situ SM can be found in
the Supplement (Sect. S1 and Fig. S1).

After the above data processing, the correction of the de-
viation and variance of the in situ SM was performed, which
can help the ML model to achieve the high-quality SM prod-
uct. In situ SM data have been obtained by various sensor
types with different calibration processes. Hence, to over-
come the artifacts during the RF model training, we adjusted
the observations to match the means and standard deviations
of the ERA5-Land SM in the corresponding time periods,
grid cells, and layers using the method proposed by Sungmin
and Orth (2020). In this method, we first obtained a weight
by dividing the standard deviations of the in situ SM at each

station by that of the ERA5-Land SM at the corresponding
grid, and then we multiplied the original in situ SM by this
weight. After that, we computed the difference between the
average value of the in situ SM at each station and the ERA5-
Land SM at the corresponding grid and subtracted the in situ
SM from the computed difference. This method made the
target in situ SM resemble the mean and standard deviation
of the ERA5-Land SM and retained daily temporal varia-
tions which follow the original in situ SM time series. As
the soil depth of each soil layer of the ERA5-Land SM was
inconsistent with that of the in situ SM, we mapped the soil
layer of the ERA5-Land SM to the corresponding soil lay-
ers of the in situ SM. Hence, the in situ SM data from 10 to
30 cm were adjusted based on the gridded SM at layer2 from
the ERA5-Land dataset (7–28 cm), and the in situ SM data
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from 30 to 100 cm were adjusted based on the gridded SM at
layer3 from the ERA5-Land dataset (28–100 cm).

2.2 Datasets as predictors

Table 1 shows the used predictors for the RF model. Most
predictors were collected from the ERA5-Land reanalysis
dataset, which is an enhanced version of the ERA5 land com-
ponent forced by meteorological fields from ERA5. The rea-
sons for selecting the ERA5-Land dataset as a preference
were as follows. (1) It is generated under a single simulation
of a land surface model using ERA5 reanalysis as the forcing
data but with a series of improvements which make it more
accurate for all types of land applications (Muñoz-Sabater
et al., 2021). (2) ERA5-Land is currently updated with 2–
3 months’ latency, which allows us to update SMCI1.0 in
time. (3) ERA5-Land is long-term (since 1950) data and has
a seamless spatial distribution and multiple layers, which
makes it possible to generate high-quality SMCI1.0. Com-
pared with satellite observations, we can avoid the spatial–
temporal gaps and limited time periods covered by using
ERA5-Land reanalysis (Sungmin and Orth, 2020). The static
data of predictors were collected from the USGS land cover
type (Loveland et al., 2000) and the DEM (Balenović et al.,
2016), the reprocessed MODIS LAI Version 6 for land sur-
face and climate modeling (Yuan et al., 2011), and the CSDL
(Shangguan et al., 2013), including sand, silt, and clay con-
tent, rock fragments, and bulk densities. The reprocessed
MODIS LAI Version 6 was improved by a two-step inte-
grated method with continuity and consistency in the space
and time domains (Yuan et al., 2011). It was worth not-
ing that the temporal resolution of the reprocessed MODIS
LAI Version 6 was 8 d, and the daily LAI between the 8 d
was computed by linear interpolation of the nearest two LAI
values at a 8 d time step. CSDL was derived by the poly-
gon linkage method, whose results are consistent with com-
mon knowledge of Chinese soil scientists (Shangguan et al.,
2013). All the predictors were processed to the same 1 km
by 1 km grid system. ERA5-Land data with 9 km resolution
were resampled into 1 km by the nearest neighbor method,
and the MODIS LAI with 500 m resolution was aggregated
into 1 km by averaging.

2.3 RF

RF is an ensemble machine learning approach that applies
the decision tree and bagging methods for the classification
and regression problem (Breiman, 2001). The simple de-
cision tree model partitions the variable space and further
groups the datasets recursively based on similar instances.
For the candidate variables from a set of predictors, a split is
determined by the values of the desired variable that evolves
into a tree structure with multiple parent and child nodes.
Meanwhile, the response variance for decision regression
trees is applied as the criterion to maximize the purity of

each node (the response variance is applied to measure node
purity) and further to find the optimal split. RF generates
diverse decision trees to avoid overfitting through the bag-
ging method, which constructs multiple training sub-datasets
by resampling with replacement of the original dataset. For
each training sub-dataset, a decision tree grows until the pre-
assumed criterion is reached (e.g., the value for the minimum
node size). When all decision trees are generated, the average
of all the estimations from each decision tree is computed.

The importance of the predictors obtained by the RF
model is also worth noting and can be explored with a per-
mutation method. In the permutation method, different SM
values are estimated by permuting all the predictors. Hence,
the importance of the predictors can be detected by compar-
ing the accuracy of the SM estimation. For example, if one
predictor is dominant in estimating the target SM, the esti-
mated SM value accuracy is expected to be lower using the
other non-permuted predictors.

2.4 The application of the random forest model

In this study, we first determined the optimal values of hyper-
parameters in the RF model based on the 10-fold cross-
validation method. After calibration of the hyper-parameters,
two independent experiments were conducted to investigate
the estimation accuracy of the developed SMCI1.0 spatial–
temporal data (year-to-year and station-to-station experi-
ments). In the year-to-year experiments, the data from 2010
to 2017 at each station were reserved for the training set, and
to evaluate the accuracy of SMCI1.0 at the temporal scale,
we compared the SM generated by the RF model with the in
situ SM data from 2018 to 2020. In the station-to-station ex-
periments, the randomly selected data from two-thirds of the
stations from 2010 to 2020 were applied for training, and the
data of the remaining stations were used to evaluate the ac-
curacy of SMCI1.0 at the spatial scale. Finally, the SMCI1.0
product was generated by the RF model at 1 km resolution
based on the in situ SM and predictors (shown in Table 1)
from all stations and all years. In addition to the 1 km resolu-
tion, we also produced a version of 9 km resolution by aggre-
gating the higher-resolution predictors for the convenience of
applications when coarser SM data are needed in broad-scale
studies. In addition to the period of 2010–2020 when in situ
SM data are available, we also produced the gridded SM for
the period of 2000–2009 when in situ SM data are unavail-
able, assuming that the relationship between SM and the pre-
dictors remained the same in the last 2 decades. It is proper
to suppose that the data quality during 2000–2009 is poorer
than that of 2010–2020.

The number of randomly selected variables from all the
predictors (max_features) and the value for the minimum
node size (min_samples_leaf) are the vital hyper-parameters
for the RF model, which can affect the modeling perfor-
mance. Other hyper-parameters, such as the number of trees
(n_estimators), were not determined based on the RF’s own
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Table 1. Details of the predictors for training the random forest model.

Source Type Variable (code) Description Time span Spatial
resolution

Temporal
resolution

ERA5-Land
(land component
of the fifth gener-
ation of European
Reanalysis)

Time series Precipitation (tp)
Accumulated precipitation in 1 week (tp_sum7)
Accumulated precipitation in 1 month (tp_sum28)
Air temperature (t2m)
Potential evaporation (pev)
Total evaporation (e)
Leaf area index high vegetation (lai_hv)
Leaf area index low vegetation (lai_lv)
Soil moisture from 7 to 100 cm soil depth
(swvl2 to swvl3)

Meteorological
forcings and land
surface variables

2010–2020 ∼ 9 km hourly

CSDL
(China Soil Dataset
for Land surface
modeling)

Static Rock fragment (GRAV)
Porosity (POR)
Sand, silt, clay (SA, SI, CL)

Soil predictors – ∼ 1 km –

USGS
(United States
Geology Survey)

Static Land cover type (land types)
Elevation (DEM)

Predominant land
cover type and
elevation

– ∼ 1 km –

Reprocessed
MODIS LAI,
version 6

Time series Leaf area index (LAI) Reprocessed LAI
using a two-step
integrated method

2010–2020 ∼ 500 m 8 d

training. Meanwhile, to prevent an overfitting problem, we
applied the 10-fold cross-validation method to tune the val-
ues of max_features and min_samples_leaf in the range
[1,25]with a single interval and [5,30]with five intervals via
the gridded direct search method. The accuracy of RF mod-
els with all hyper-parameters calibrated by the direct search
method at 10 cm soil depth is shown in Table S1. It can be
seen that the root mean square error (RMSE) obtained based
on all the hyper-parameters ranged from 0.601 to 0.637, and
the best accuracy (RMSE= 0.601) could be achieved when
max_features and min_samples_leaf were set to 1 and 20, re-
spectively, and they are used for the remaining modeling of
this study.

The modeling performance and quality of the SMCI1.0
product were evaluated in terms of ubRMSE, MAE (mean
absolute error), R (correlation coefficient), R2 (explained
variation), and bias, respectively. ubRMSE and MAE were
applied to test the ability to estimate volatility and fluctuation
amplitude, respectively. R denotes the fluctuation pattern and
R2 represents the percentage of variance explained by the
RF model. Bias was used to observe whether the estimations
were overestimated or underestimated. These metrics were
computed as follows:

ubRMSE=

√∑N
i=1
[(

xi −X
)
−
(
yi −Y

)]2
N

, (1)

MAE=
∑N

i=1 |xi − yi |

N
, (2)

Bias= xi − yi, (3)

R =

∑N
i=1

(
xi −X

)(
yi −Y

)√
n∑

i=1

(
xi −X

)2√ n∑
i=1

(
yi −Y

)2 , (4)

R2
= 1−

∑N
i=1(yi − xi)2

N
∑N

i=1
(
yi −Y

)2 , (5)

where yi and xi denoted the ith in situ SM and gridded SM
for all the stations and periods, respectively. Y and X repre-
sented the mean values of the in situ SM and gridded SM,
respectively.

3 Results

3.1 Validation of RF-based SM modeling

To evaluate and validate the performance of the RF model
in generating SMCI1.0, we mainly discussed the modeling
ability with year-to-year and station-to-station experiments,
which could ensure that the SMCI1.0 product has low er-
rors on both temporal and spatial scales against in situ SM
records. Meanwhile, we also compared the results with the
state-of-the-art global gridded datasets such as ERA5-Land,
SMAP-L4, and SoMo.ml.

The scatter plot of the mean values of SMCI1.0 and in
situ SM data for each station, the frequency distributions
of all SM values in SMCI1.0 and in in situ measurements,
and the violin plot for the distribution of daily SM from
stations for each climate type are presented for the year-to-
year experiment in Fig. 2 (from 10 to 30 cm soil depths)
and Fig. S2 (from 40 to 100 cm soil depths). As shown in
Fig. 2a, we can conclude that there is generally good agree-
ment between the mean of SMCI1.0 and that of in situ SM
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at each station (the correlation ranges from 0.867 to 0.908),
which demonstrates that the RF model can capture spatial
variations in in situ SM well. The RF model showed some-
what better results at deeper soil depths, such as the RF
model at 30 cm soil depth, which had a better performance
than that at 10 and 20 cm soil depths as shown by Fig. 2a,
which was consistent with the previous studies (e.g., Sung-
min and Orth, 2020). The worst results were achieved by the
RF model at 70 and 90 cm soil depths, as shown by Fig. S2a
(ubRMSE= 0.053, MAE= 0.038, R = 0.867, R2

= 0.731
at 70 cm soil depth; ubRMSE= 0.052, MAE= 0.036, R =

0.883, R2
= 0.759 at 90 cm soil depth). Meanwhile, the best

result was achieved by the RF model at 30 cm soil depth
(ubRMSE= 0.043, MAE= 0.033, R = 0.908, R2

= 0.824).
As shown by Fig. 2b, although SMCI1.0 yielded less vari-
ability in the value ranges from 0 to 0.18, 0.38 to 0.43, and
0.46 to 0.6 and higher variability in other ranges, as a whole,
SMCI1.0 data generally agree well with in situ SM values.
The same conclusion can be drawn from the 40 to 100 cm soil
depths in Fig. S2b. The SMCI1.0 data were further evaluated
for each climate type in Figs. 2c and S2c. With regard to the
violin plot, the RF model could estimate consistent results
with in situ SM. However, the inconsistent SM was estimated
in a tropical monsoon climate (Am) and desert climate (Bw).
The reason could be attributed to only a few in situ SM data
in these climatic regions, as presented in Fig. S1e. Finally,
we concluded that the RF model can reproduce the temporal
variation in in situ SM data accurately in an unseen period.

It is clear from Figs. 3 and S3 that, although the results
of the station-to-station experiment were inferior to those of
the year-to-year estimation, the RF model could also perform
well in estimating seamless SM over China at unseen loca-
tions. Additionally, similarly to the year-to-year experiment,
the RF model performed better at 30 cm soil depth than those
at other soil depths in the station-to-station experiment.

Finally, we compared the SMCI1.0 product with other
gridded datasets (ERA5-Land, SoMo.ml, and SMAP-L4) ac-
cording to the median ubRMSE, R, bias, and MAE. Accord-
ing to Figs. 4 and S4, the SMCI1.0 product provides the low-
est median ubRMSE and MAE values for the 10 to 100 cm
soil depths. Considering the median bias between gridded
SM and in situ SM observations, the SMCI1.0 product shows
an almost similar accuracy to ERA5-Land datasets for all
depths but a higher accuracy than the SoMo.ml and SMAP-
L4 datasets. It was worth noting that the SMAP-L4 dataset
has the widest spread of errors and tended to underestimate
in situ measurements, which led to higher median ubRMSE
and MAE values. Regarding the median R between grid-
ded SM and in situ SM observations, the SMCI1.0 product
has a slightly higher quality than the SoMo.ml dataset for
10, 20, 80, and 100 cm soil depths and obvious advantages
over the ERA5-Land and SMAP-L4 datasets for all depths,
while it had a lower quality than the SoMo.ml dataset for
the other soil depths. Considering all the above metrics, the

SMCI1.0 product provides more robust data than some other
commonly used gridded datasets.

Overall, the RF model could be able to successfully gen-
erate the SM data with low errors, taking in situ SM ob-
servations as the reference in unseen periods and locations.
According to the comparison analysis, the SMCI1.0 prod-
uct outperforms some other SM products, including ERA5-
Land, SoMo.ml, and SMAP-L4.

3.2 The spatial and temporal evaluation of SMCI1.0

Overall performance of the proposed modeling and accuracy
of the SMCI1.0 dataset were evaluated in Sect. 3.1, but noth-
ing was presented there about the variability and trend of
this dataset at different temporal and spatial scales. Hence,
to evaluate the temporal variation of the SMCI1.0 data, we
randomly selected stations from different climate regions to
evaluate the dynamics of the SM data in SMCI1.0, ERA5-
Land, SMAP-L4, SoMo.ml, and in situ SM from 10 to 20 cm
soil depths. On the other hand, for the spatial scale, we repre-
sented the estimation performance for each in situ SM station
in terms of ubRMSE, R, and bias. Notably, a year-to-year ex-
periment was conducted to evaluate each station as much as
possible.

Figure 5 compares the temporal dynamics of the SM data
from SMCI1.0, ERA5-Land, SMAP-L4, SoMo.ml, and in
situ datasets at 10 cm soil depth along with local precipita-
tion. We could see that, although the SMCI1.0 product shows
a large deviation compared with the in situ SM in the snow
climate and fully humid zone (Df-51431: E, N), it was al-
most consistent with in situ SM in other regions. It is neces-
sary to note that the SM values in the desert climate region
(Bw-W1063: E, N) show higher variability but low precipita-
tion from the 231st to 325th days, and the SMCI1.0 product
could still adequately capture their relationship (represented
in the light blue rectangle). Overall, and similarly to in situ
data, SMCI1.0 data reasonably follow the consistency with
climate conditions as SM is increased and decreased under
wet and dry conditions, respectively.

Figure 6 represents the in situ testing performance accord-
ing to the ubRMSE, R, bias, and MAE values. We could
see that the SMCI1.0 product led to relatively low ubRMSE,
bias, and MAE over most regions. Additionally, Fig. 7 shows
that the low errors of the SMCI1.0 product often appeared
in the arid regions, which was consistent with the previous
study (Zhang et al., 2019). However, the higher ubRMSE
and MAE and lower R values could be seen in the North
China Monsoon Region. The North China Monsoon Region
has typical temperate monsoon climate characteristics, where
the annual temperature is high and the rainy season is con-
centrated. The SM variations in the North China Monsoon
Region were complex, which may present great challenges
for estimating SM with the RF model. Except for the North
China Monsoon Region, SMCI1.0 data mostly led to R val-
ues larger than 0.5. According to the bias in Fig. 6, we could
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Figure 2. Comparisons between SMCI1.0 and in situ SM from 10 to 30 cm soil depth in the year-to-year experiment: comparison of (a) the
scatter plot between the mean of SMCI1.0 and that of in situ SM at each station, (b) the frequency distributions of all SM values in SMCI1.0
and that in in situ measurements, and (c) the violin plot for the distribution of daily SM from stations for each climate type.

see that the SMCI1.0 product tends to be underestimated
in northeastern and southwestern China and overestimated
in eastern China, which had a similar trend to the ERA5-
Land dataset, which can also be confirmed by the box plot of
bias in Fig. 5. The SMCI1.0 product led to lower errors than
SoMo.ml in estimating in situ SM. Meanwhile, the SMCI1.0
product is often underestimated in northern China but overes-
timated in Sichuan Province (97◦21′ E–108◦12′ E, 26◦03′ N–
34◦19′ N), in contrast to the SoMo.ml dataset. According to
the R values in Fig. 6, the SMCI1.0 product led to simi-
lar results to the SoMo.ml dataset and performed better than
the ERA5-Land and SMAP-L4 datasets, which could also be
represented by the box plot of R in Fig. 5.

3.3 Spatial patterns of SMCI1.0

To describe the general spatial patterns of SMCI1.0 over
China, as an example, the 1 km SM maps are presented for
1 January 2016 by Fig. 7, which shows that the spatial conti-
guity of SM patterns for SMCI1.0 could be captured well,
and most high-resolution details of SM patterns in all the

climatic regions for SMCI1.0 had a more detailed “expres-
sion” than that for the other SM products. Meanwhile, the
spatial pattern of SMCI1.0 was more consistent with those
of high-resolution predictors such as the DEM and LAI in
some regions, which indicated that SMCI1.0 could better
reflect the detailed spatial distribution of SM. Southeastern
China is the tropical monsoon climate zone, where the rainy
season was concentrated (presented in Fig. 5). Hence, these
regions are predominantly wet in the SM maps. Northwest-
ern China is the desert climate region, with few rainfall and
dry conditions (also represented in Fig. 5). Qinghai Province
(89◦35′ E–103◦04′ E, 31◦09′ N–39◦19′ N) belongs to the tun-
dra climate zone, where some soils are wet and others are
dry. This is probably due to the complicated topography of
Qinghai Province in that some regions with woody plants
can intercept rainfall, which may decrease the overall water
input into the soil (Zwieback et al., 2019), and other regions
with vegetation can decrease soil temperature and evapora-
tion from the soil surface by shading, preventing the loss of
soil moisture (Kemppinen et al., 2021).
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Figure 3. Same as Fig. 2 but for station-to-station estimation.

4 Discussion

4.1 Relative importance of predictors

The relative importance of predictors at the 10 soil depths
is shown in Figs. 8 and S7. Bars present the variability of
the relative importance across the predictors. As presented
in Fig. 8, the ERA5-Land SM is the most important one
for estimating in situ SM from 10 to 100 cm soil depths. In
addition to the ERA5-Land SM, evapotranspiration, DEM,
clay, reprocessed MODIS LAI (Version 6), porosity, LAI
low vegetation, air temperature, LAI high vegetation, and
silt followed. The importance of the other predictors was
less than 0.01, which was not discussed in this study. It is
well known that evapotranspiration has a strong correlation
with the SM dynamic under water-limited conditions (Al-
bertson and Kiely, 2001). So, evapotranspiration is greatly
associated with SM in the regression model. Clay, porosity,
rock fragment, silt, and sand are soil properties that can af-
fect SM values. Le Bissonnais et al. (1995) investigated SM
for 31 soil types with different soil properties over Illinois
and showed that the available SM varied with regard to soil
groups. Soil properties could help the RF model to identify

the variation of SM more accurately. LAI is a vital parame-
ter on the land surface and controls many complex processes
in relation to vegetation, which determined evapotranspira-
tion and furthermore can impact the water balance (Chen et
al., 2015). Air temperature and SM were closely related, so
that, from the hot to the cold, SM decreases for all kinds of
land covers (Feng and Liu, 2015). However, air temperature
shows a significant effect on the RF-based modeling perfor-
mance for the upper soil layers (at 10 and 20 cm soil depths),
while it is less for the deeper soil (as presented in Fig. S7), as
also stressed by Hu and Feng (2003). It is commonly known
that the land cover type is closely related to the variation of
SM, but it received lower importance (less than 0.01) in the
current RF model than the other predictors. Notably, this rate
of importance was computed at the 1 km spatial resolution,
but other rates of importance for land cover types may be
obtained at a higher spatial resolution. Although land cover
type shows less importance to SM at a coarse spatial reso-
lution (Gaur and Mohanty, 2016; Joshi and Mohanty, 2010),
it has a strong correlation with in situ SM data (Baroni et
al., 2013). Meanwhile, intuitively, precipitation and SM were
also closely related (Seneviratne et al., 2010). Although the
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Figure 4. Comparison between gridded datasets (SMCI1.0, ERA5-Land, SoMo.ml, and SMAP_L4) at soil depths of (a) 10 cm, (b) 20 cm,
(c) 30 cm, and (d) 40 cm. The red lines indicate the zero value for bias and the best performance among datasets for ubRMSE, R, and MAE.

importance of precipitation (less than 0.01) was not reflected
in the RF model, this did not necessarily imply that precip-
itation could not impact the variation of SM. This could be
attributed to the relatively low frequency for daily rainfall
during several years, which led to a low ranking compared
with other predictors based on the RF importance ranking
metrics. It should be noted that the static variables and the
reprocessed LAI provide information at 1 km or 500 m reso-
lution, while ERA5-Land is at 9 km resolution. So, the spa-
tial details at 1 km resolution came from the static variables
and the reprocessed LAI rather than ERA5-Land. This aspect
cannot be reflected well by the importance of RF as RF mod-
els were established to mainly reflect the temporal variation.
This is because we have many more samples of SM in the
time dimension than those in the spatial dimension (1648).
As a result, the importance of higher-resolution variables (es-
pecially static variables) in estimating the spatial variation of

SM was essentially underestimated by the importance met-
ric.

4.2 Sensitivity to precipitation, air temperature, and
radiation

We applied partial correlation to analyze the sensitivity be-
tween the meteorological variables (precipitation, air tem-
perature, and radiation) and SM data. As Fig. 9 shows, pre-
cipitation had a stronger correlation with SM in SMCI1.0
and ERA5-Land data than that in the SoMo.ml product
across most regions in China, presenting significant posi-
tive partial correlations. Additionally, air temperature had
a significant positive partial correlation with SM in north-
western China and negative partial correlations in north-
ern China and Liaoning Province (118◦53′ E–125◦46′ E,
38◦43′ N–43◦26′ N) for SMCI1.0. The negative partial cor-
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Figure 5. Time series of in situ and estimated SM by the RF model at 10 cm soil depth along with daily precipitation in different climatic
zones.
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Figure 6. Goodness-of-fit statistics (ubRMSE, R, bias, and MAE) at 10 cm soil depth for the RF model during the tested period.

relation between air temperature and SM is consistent with
the physics of the process that higher evaporation is caused
by higher air temperatures, leading to lower SM. In some of
the plateau areas (73◦19′ E–104◦47′ E, 26◦00′ N–39◦47′ N),
the shortwave radiation is the dominant factor in SM vari-
ability for the SMCI1.0 product, physically sound logic that
the strong radiation in the plateau area has a great impact on
the land surface process. Meanwhile, we also found that the
shortwave radiation has a great influence on the SM variabil-
ity in tropical monsoon climate regions, which is also consis-
tent with the previous study (Yao et al., 2011). The negative
correlation between radiation and SM for the SoMo.ml prod-
uct in the temperature climate region was stronger than that
for the SMCI1.0 product, which could explain more nega-
tive trends in SM in the temperature climate region for the
SoMo.ml product. Compared with the other SM products,
the SMCI1.0 dataset shows similar spatial patterns for all the
partial correlations. Overall, the SMCI1.0 product provides
reasonable results in reflecting the relationship between SM
and its related meteorological variables.

4.3 Factors affecting the quality of the SMCI1.0 dataset

Figures 2 and S2 show that SM results at 70 and 90 cm were
significantly worse than those at other depths. The reason
may be that linked to the inability of the RF model to esti-
mate accurate SM when data from only a few in situ SM sta-
tions are available. From Fig. S1b, we can see that the total
number of data at 70 and 90 cm soil depths are quite small. In
other words, more abundant data could help the RF model to
“learn” relationships between predictors and in situ SM data
reliably and further improve the quality of high-resolution
SM estimation over China. Meanwhile, compared with the
previous study of O and Orth (2021), our SMCI1.0 showed
the superior quality (Figs. 4–6), because the larger numbers
of in situ SM data of China were applied for the RF-based
modeling.

From Fig. 5, during the rainfall near the 91st day across
the tropical monsoon climate zone (Am) and near the 1st
day across the snow climate with a dry winter zone (Dw),
the in situ SM values did not increase due to high precipi-
tation, but the SMCI1.0 product could capture the increase
in SM (denoted in the light blue rectangle). The reason may
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Figure 7. Soil moisture maps from different products on 1 January 2016. The resolution is 1 km for SMC1.0, 9 km for ERA5-Land and
SMAP-L4, and 0.25◦ for SoMo.ml.
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Figure 8. Relative importance of predictors for the random forest
(RF) model at soil depths of (a) 10 cm, (b) 20 cm, and (c) 30 cm.

be that the applied predictors had a bias with in situ mea-
surements and further affected the SM estimation by the RF
model. Meanwhile, we also found that the RF model could
overcome much bias in dry conditions, except for those from
the 196th to 305th days in the snow climate and fully humid
zone (shown in the light red rectangle). In the case of 30 cm
soil depth (Fig. S5), we could see an agreement between sev-
eral peak events that could be attributed to the soil texture
homogeneity at the 10 and 30 cm soil depths. Almost all cli-
matic regions had lower dynamic ranges at 30 cm soil depth
than that at 10 cm, and this may be attributed to the persistent

behavior of SM at 30 cm soil depth. In the case of the 30 cm
soil depth in Fig. S6, the SMCI1.0 product had a higher accu-
racy than that at 10 cm soil depth (Fig. 6), especially in terms
of ubRMSE and MAE metrics. The reason may be the back-
ground aridity, which could lead to low variability of SM in
the deeper layers (Karthikeyan and Mishra 2021), so that the
RF model could capture the SM variation in SM straightfor-
wardly.

In contrast, it is inconsistent for the results of R, ubRMSE,
and MAE in Figs. 2 and 4, which is similar to the previ-
ous study (Sungmin and Orth, 2020) (represented in their
Figs. 4 and 5). For example, the SMCI1.0 product led to the
ubRMSE, MAE, and R values being 0.046, 0.035, and 0.889
at 10 cm soil depth in Fig. 2. However, in Fig. 4, the box plot
shows the lowest ubRMSE and MAE and highest R values
of the SMCI1.0 product as 0.03, 0.02, and 0.7, respectively.
The reason may be the circumstances of computing the same
metrics in different ways, so that the results of Fig. 2 are for
all stations and temporal periods, whereas Fig. 4 shows the
results of the temporal period at only one station.

The results obtained by the RF method were also com-
pared with those of some other ML models, including
the CatBoost (Dorogush et al., 2018), XgBoost (Chen and
Guestrin, 2016), and Neural Network (Rosenblatt et al.,
1958) models. We found that their performance is similar to
RF models with a R2 value of around 0.79. Therefore, due to
the comparable performance and wide application of RF to
SM modeling (e.g., Carranza et al., 2021; Lin and Liu, 2022;
Ly et al., 2021) and more importantly due to its cost-effective
runtime, only the results of RF were considered to produce
high-resolution SM data in this study.

4.4 Requirement of further validations and
improvements

The SMCI1.0 product generally agrees well with in situ SM
data over China with regard to other considered datasets in
the year-to-year and station-to-station validation scenarios.
However, we cannot ensure the same quality over differ-
ent parts of China. The reason is that in situ SM stations
are unevenly distributed over China, with higher sparsity in
the west. We hope that more in situ SM stations will be
evenly deployed in China, where such data could improve
the quality of SM in most regions as far as possible. Triple
collocation analysis (Karthikeyan and Mishra, 2021) is also
an alternative method for evaluating the SMCI1.0 product.
Meanwhile, there are many possible reasons for the failure
of the RF model, such as a lack of sufficient data and the
weak “learning” of the model itself. Hence, not only addi-
tional records from China need to be available, but more ro-
bustly estimated models may also be proposed and used for
SM modeling. For instance, the deep learning models can
be built and optimized for different homogeneous regions
(Karthikeyan and Mishra, 2021), or the optical remote sens-
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Figure 9. Partial correlation coefficients between annual mean SM and precipitation (the first column), air temperature (the second column),
and radiation (the third column) for the different gridded SM products. The fourth column represents the best explanatory power (highest
absolute partial correlation) for the interannual variability in SM for the different gridded SM products.

ing can be used for the human-induced regions (Chen et al.,
2021), which may lead to better estimation of SM.

It is well known that higher-resolution (<1 km) SM es-
timation is typically considered a complex and challenging
task (Peng et al., 2021). The relatively important predictors
identified in Sect. 4.1 can enhance the modeling performance
and generated data quality of the higher-resolution SM prod-
uct. The SMCI1.0 product may also be used as a vital predic-
tor for improving the higher-resolution SM products. More-
over, downscaling to the higher-resolution SM product based
on the lower-resolution predictors can also be considered a
super-resolution task in computer science, and the advanced
deep learning models can also be explored (Lei et al., 2020;
H. Zhang et al., 2021; Zhu et al., 2022).

4.5 Comparison with previous products and implications
for the soil moisture modeling

This section mainly described and discussed the compar-
ison between SMCI1.0 and some other SM products and

the implications for the soil moisture modeling and attri-
bution. From the results presented in Sect. 3, we can see
that SMCI1.0 generally outperforms some other SM prod-
ucts (e.g., ERA5-Land, SoMo.ml, and SMAP-L4) in most
cases. The most important uniqueness of SMCI1.0 is its tak-
ing the in situ SM data as the training target with abundant
sample size. Even though we used ERA5-Land to correct
their means and standard deviation at each site, the tempo-
ral variation still came from the point observations. We have
also examined the RF model training with the original SM
observations and found that the performance of the model is
much worse, with a R2 of 0.67 compared with the model,
with a correction with a R2 of 0.79. More importantly, the
resulting SM maps demonstrated an unreasonably noisy spa-
tial distribution. This indicates that the in situ SM in China
has a fundamental data inconsistency, and the correction ac-
cording to ERA5-Land is necessary, which has physical con-
sistency. Furthermore, SMCI1.0 has been provided with rela-
tively high spatial and temporal resolutions (1 km, daily) for
10 soil depths, which makes it possible for wider applica-
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tions at finer scales and deep soils for the whole of China,
while reanalysis and remote sensing SM data are often at a
coarser resolution, and remote sensing SM data are only for
the surface soil.

As a limitation of SMCI1.0, the machine-learning-based
model cannot always reflect the variation of SM well, espe-
cially for some extreme events or so-called “tipping points”
(Bury et al., 2021). From Fig. 5, we can see that SMCI1.0
deviated from the in situ SM data in some cases, though this
also happened to the other three SM products. For example,
from the 35th day to the 61st day across the snow climate,
fully humid (Df), SMCI1.0 and SoMo.ml overestimated it,
while SMAP_L4 underestimated it. Tipping points denoted
that a slowly changing SM sparks a sudden shift to a new one
(Bury et al., 2021). This discontinuity creates a big challenge
for estimating in situ SM by ML models, because tipping
points simplify the dynamics of a complex system, down to
the limited number of possible “normal forms” (Bury et al.,
2021). ML models cannot accurately capture such extreme
events. Hence, for these extreme events, we hope that ML
models trained on a sufficiently diverse dataset of possible
SM variation will capture the complex relationship between
SM and predictors well. As a suggestion for future work, a
possible solution for this limitation is to apply a land sur-
face model, such as the Common Land Model (Dai et al.,
2003), to simulate large numbers of SM data and select the
local bifurcations in SM variation as supplementary samples
to enhance the learning generality of the RF model.

5 Code and data availability

All resources of the RF model, including the training and
testing code, are publicly available at https://github.com/
ljz1228/SMCI1.0_RF (last access: 22 November 2022). Data
with resolutions of 1 and 9 km can be accessed at http:
//dx.doi.org/10.11888/Terre.tpdc.272415 (Shangguan et al.,
2022).

6 Conclusions

High-resolution SM has several potential applications in
flood and drought prediction and carbon cycle modeling.
Currently available SM gridded products covering China or
the world are often based on remote sensing data or numeri-
cal modeling. However, there is still a lack of SM data with
high resolution at multiple layers based on in situ measure-
ments for China. In this study, the gridded SM data were
estimated through the RF method over China based on the
ERA5-Land reanalysis, USGS land cover type and DEM,
and reprocessed LAI and soil properties from the CSDL,
which included soil depths from 10 to 100 cm and had a
1 km spatial and daily temporal resolution over the period
from 1 January 2010 to 31 December 2020. Two indepen-
dent experiments with in situ soil moisture as the benchmark

were conducted to investigate the quality of SMCI1.0: year-
to-year experiment (ubRMSE ranges from 0.041 to 0.052,
MAE ranges from 0.03 to 0.036, R ranges from 0.883 to
0.919, and R2 ranges from 0.767 to 0.842) and station-to-
station experiment (ubRMSE ranges from 0.045 to 0.051,
MAE ranges from 0.035 to 0.038, R ranges from 0.866 to
0.893, and R2 ranges from 0.749 to 0.798). SMCI1.0 gener-
ally showed advantages over other gridded SM products, in-
cluding ERA5-Land, SMAP-L4, and SoMo.ml. Meanwhile,
with regard to the agreement statistics (ubRMSE, R, bias,
and MAE), we could see that the SMCI1.0 product has rel-
atively low ubRMSE, bias, and MAE values over most re-
gions. However, the high errors of SM obtained were of-
ten located in the North China Monsoon Region. Moreover,
SMCI1.0 has a reasonable spatial pattern and demonstrates
more spatial details compared with the SM products. As a
result, the SMCI1.0 product based on in situ data can be
useful a complement of existing model-based and satellite-
based datasets for various hydrological, meteorological, and
ecological analyses and models, especially for those applica-
tions requiring high-resolution SM maps. Further works may
focus on improving the SM map by using advanced deep
learning methods and adding more observations, especially
for the western part of China. It is also possible to update
and extend the time coverage of this dataset before 2010 as
long as in situ SM data become available.
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