Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2883-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2883-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Escherichia coli concentration, multiscale monitoring over the decade 2011–2021 in the Mekong River basin, Lao PDR
Laurie Boithias
CORRESPONDING AUTHOR
Géosciences Environnement Toulouse (GET), Université de
Toulouse, CNRS, IRD, UPS, Toulouse, France
Olivier Ribolzi
CORRESPONDING AUTHOR
Géosciences Environnement Toulouse (GET), Université de
Toulouse, CNRS, IRD, UPS, Toulouse, France
Emma Rochelle-Newall
Sorbonne Université, Univ. Paris Est Creteil, IRD, CNRS, INRAE,
Institute of Ecology and Environmental Sciences of Paris (iEES-Paris),
Paris, France
Chanthanousone Thammahacksa
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Paty Nakhle
Géosciences Environnement Toulouse (GET), Université de
Toulouse, CNRS, IRD, UPS, Toulouse, France
Bounsamay Soulileuth
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Anne Pando-Bahuon
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Keooudone Latsachack
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Norbert Silvera
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Phabvilay Sounyafong
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Khampaseuth Xayyathip
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Rosalie Zimmermann
Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology
Laboratory, Mahosot Hospital, Vientiane, Lao PDR
Department of Environmental Sciences, University of Basel, Basel,
Switzerland
Department of Medical Microbiology and Infection Prevention, Amsterdam
University Medical Centers (UMC), Amsterdam, the Netherlands
Sayaphet Rattanavong
Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology
Laboratory, Mahosot Hospital, Vientiane, Lao PDR
Priscia Oliva
Géosciences Environnement Toulouse (GET), Université de
Toulouse, CNRS, IRD, UPS, Toulouse, France
Thomas Pommier
Laboratoire d'Ecologie Microbienne (LEM), CNRS, UCBL, VetAgroSup,
Université de Lyon, Villeurbanne, France
Olivier Evrard
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL),
CEA, CNRS, UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Sylvain Huon
Sorbonne Université, Univ. Paris Est Creteil, IRD, CNRS, INRAE,
Institute of Ecology and Environmental Sciences of Paris (iEES-Paris),
Paris, France
Jean Causse
Société Transcender, Rennes, France/Ecole des Hautes Etudes
en Santé Publique (EHESP), Laboratoire d'Etude et de Recherche en
Environnement et Santé, IRSET-INSERM, Rennes, France
Thierry Henry-des-Tureaux
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Oloth Sengtaheuanghoung
Ministry of Agriculture and Forestry (MAF), Department of
Agricultural Land Management (DALaM), Vientiane, Lao PDR
Nivong Sipaseuth
Ministry of Agriculture and Forestry (MAF), Department of
Agricultural Land Management (DALaM), Vientiane, Lao PDR
Alain Pierret
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Related authors
Ather Abbas, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho
Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, https://doi.org/10.5194/gmd-15-3021-2022, 2022
Short summary
Short summary
The field of artificial intelligence has shown promising results in a wide variety of fields including hydrological modeling. However, developing and testing hydrological models with artificial intelligence techniques require expertise from diverse fields. In this study, we developed an open-source framework based upon the python programming language to simplify the process of the development of hydrological models of time series data using machine learning.
Ather Abbas, Sangsoo Baek, Norbert Silvera, Bounsamay Soulileuth, Yakov Pachepsky, Olivier Ribolzi, Laurie Boithias, and Kyung Hwa Cho
Hydrol. Earth Syst. Sci., 25, 6185–6202, https://doi.org/10.5194/hess-25-6185-2021, https://doi.org/10.5194/hess-25-6185-2021, 2021
Short summary
Short summary
Correct estimation of fecal indicator bacteria in surface waters is critical for public health. Process-driven models and recently data-driven models have been applied for water quality modeling; however, a systematic comparison for simulation of E. coli is missing in the literature. We compared performance of process-driven (HSPF) and data-driven (LSTM) models for E. coli simulation. We show that LSTM can be an alternative to process-driven models for estimation of E. coli in surface waters.
Paul Hazet, Anthony Foucher, Olivier Evrard, and Benjamin Quesada
EGUsphere, https://doi.org/10.5194/egusphere-2025-2127, https://doi.org/10.5194/egusphere-2025-2127, 2025
Short summary
Short summary
Using a sediment core and hydroclimatic data, this study assesses how past environmental changes contribute to the growing vulnerability of hydropower in southern France.
Gerald Dicen, Floriane Guillevic, Surya Gupta, Pierre-Alexis Chaboche, Katrin Meusburger, Pierre Sabatier, Olivier Evrard, and Christine Alewell
Earth Syst. Sci. Data, 17, 1529–1549, https://doi.org/10.5194/essd-17-1529-2025, https://doi.org/10.5194/essd-17-1529-2025, 2025
Short summary
Short summary
Fallout radionuclides (FRNs) such as 137Cs and 239+240Pu are considered to be critical tools in various environmental research. Here, we compiled reference soil data on these FRNs from the literature to build a comprehensive database. Using this database, we determined the distribution and sources of 137Cs and 239+240Pu. We also demonstrated how the database can be used to identify the environmental factors that influence their distribution using a machine learning algorithm.
Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, and Olivier Evrard
SOIL, 10, 109–138, https://doi.org/10.5194/soil-10-109-2024, https://doi.org/10.5194/soil-10-109-2024, 2024
Short summary
Short summary
Sediment source fingerprinting is a relevant tool to support soil conservation and watershed management in the context of accelerated soil erosion. To quantify sediment source contribution, it requires the selection of relevant tracers. We compared the three-step method and the consensus method and found very contrasted trends. The divergences between virtual mixtures and sample prediction ranges highlight that virtual mixture statistics are not directly transferable to actual samples.
Anthony Foucher, Sergio Morera, Michael Sanchez, Jhon Orrillo, and Olivier Evrard
Hydrol. Earth Syst. Sci., 27, 3191–3204, https://doi.org/10.5194/hess-27-3191-2023, https://doi.org/10.5194/hess-27-3191-2023, 2023
Short summary
Short summary
The current research investigated, as a representative study case, the sediment accumulated in the Poechos Reservoir (located on the west coast of northern Peru) for retrospectively reconstructing the impact on sediment dynamics (1978–2019) of extreme phases of the El Niño–Southern Oscillation, land cover changes after humid periods and agricultural expansion along the riverine system.
Olivier Evrard, Thomas Chalaux-Clergue, Pierre-Alexis Chaboche, Yoshifumi Wakiyama, and Yves Thiry
SOIL, 9, 479–497, https://doi.org/10.5194/soil-9-479-2023, https://doi.org/10.5194/soil-9-479-2023, 2023
Short summary
Short summary
Twelve years after the nuclear accident that occurred in Fukushima in March 2011, radioactive contamination remains a major concern in north-eastern Japan. The Japanese authorities completed an unprecedented decontamination programme. The central objective was to not expose local inhabitants to excessive radioactive doses. At the onset of the full reopening of the Difficult-to-Return Zone in 2023, the current review provides an update of a previous synthesis published in 2019.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Ather Abbas, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho
Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, https://doi.org/10.5194/gmd-15-3021-2022, 2022
Short summary
Short summary
The field of artificial intelligence has shown promising results in a wide variety of fields including hydrological modeling. However, developing and testing hydrological models with artificial intelligence techniques require expertise from diverse fields. In this study, we developed an open-source framework based upon the python programming language to simplify the process of the development of hydrological models of time series data using machine learning.
Ather Abbas, Sangsoo Baek, Norbert Silvera, Bounsamay Soulileuth, Yakov Pachepsky, Olivier Ribolzi, Laurie Boithias, and Kyung Hwa Cho
Hydrol. Earth Syst. Sci., 25, 6185–6202, https://doi.org/10.5194/hess-25-6185-2021, https://doi.org/10.5194/hess-25-6185-2021, 2021
Short summary
Short summary
Correct estimation of fecal indicator bacteria in surface waters is critical for public health. Process-driven models and recently data-driven models have been applied for water quality modeling; however, a systematic comparison for simulation of E. coli is missing in the literature. We compared performance of process-driven (HSPF) and data-driven (LSTM) models for E. coli simulation. We show that LSTM can be an alternative to process-driven models for estimation of E. coli in surface waters.
Virginie Sellier, Oldrich Navratil, John Patrick Laceby, Cédric Legout, Anthony Foucher, Michel Allenbach, Irène Lefèvre, and Olivier Evrard
SOIL, 7, 743–766, https://doi.org/10.5194/soil-7-743-2021, https://doi.org/10.5194/soil-7-743-2021, 2021
Short summary
Short summary
Open-cast mining increases soil erosion and transfer of sediment in river systems. Providing a methodology to better understand the sediment dynamic of these catchments is essential to manage this pollution. In this study, different tracers such as elemental geochemistry or colour properties were tested to trace and quantify the mining source contributions to the sediment inputs in the Thio River catchment, one of the first areas exploited for nickel mining in New Caledonia (i.e. since 1880).
Anthony Foucher, Pierre-Alexis Chaboche, Pierre Sabatier, and Olivier Evrard
Earth Syst. Sci. Data, 13, 4951–4966, https://doi.org/10.5194/essd-13-4951-2021, https://doi.org/10.5194/essd-13-4951-2021, 2021
Short summary
Short summary
Sediment archives provide a powerful and unique tool for reconstructing the trajectory and the resilience of terrestrial and aquatic ecosystems facing major environmental changes. Establishing an age depth–model is the first prerequisite of any paleo-investigation. This study synthesizes the distribution of two radionuclides classically used to this aim, providing a worldwide reference to help the scientific community reach a consensus for dating recent sedimentary archives.
Olivier Evrard, Caroline Chartin, J. Patrick Laceby, Yuichi Onda, Yoshifumi Wakiyama, Atsushi Nakao, Olivier Cerdan, Hugo Lepage, Hugo Jaegler, Rosalie Vandromme, Irène Lefèvre, and Philippe Bonté
Earth Syst. Sci. Data, 13, 2555–2560, https://doi.org/10.5194/essd-13-2555-2021, https://doi.org/10.5194/essd-13-2555-2021, 2021
Short summary
Short summary
This dataset provides an original compilation of radioactive dose rates and artificial radionuclide activities in sediment deposited after floods in the rivers draining the main radioactive pollution plume in Fukushuma, Japan, between November
2011 and November 2020. In total, 782 sediment samples collected from 27 to 71 locations during 16 fieldwork campaigns were analysed. This provides a unique post-accidental dataset to better understand the environmental fate of radionuclides.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
Cited articles
Abbas, A., Baek, S., Silvera, N., Soulileuth, B., Pachepsky, Y., Ribolzi, O., Boithias, L., and Cho, K. H.: In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models, Hydrol. Earth Syst. Sci., 25, 6185–6202, https://doi.org/10.5194/hess-25-6185-2021, 2021.
Abbas, A., Boithias, L., Pachepsky, Y., Kim, K., Chun, J. A., and Cho, K. H.: AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods, Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, 2022.
Arias, M. E., Cochrane, T. A., Kummu, M., Lauri, H., Holtgrieve, G. W.,
Koponen, J., and Piman, T.: Impacts of hydropower and climate change on
drivers of ecological productivity of Southeast Asia's most important
wetland, Ecol. Model., 272, 252–263,
https://doi.org/10.1016/j.ecolmodel.2013.10.015, 2014.
Boithias, L., Choisy, M., Souliyaseng, N., Jourdren, M., Quet, F., Buisson,
Y., Thammahacksa, C., Silvera, N., Latsachack, K., Sengtaheuanghoung, O.,
Pierret, A., Rochelle-Newall, E., Becerra, S., and Ribolzi, O.: Hydrological
regime and water shortage as drivers of the seasonal incidence of diarrheal
diseases in a tropical montane environment, PLoS Negl. Trop. Dis., 10,
e0005195, https://doi.org/10.1371/journal.pntd.0005195, 2016.
Boithias, L., Ribolzi, O., Lacombe, G., Thammahacksa, C., Silvera, N.,
Latsachack, K., Soulileuth, B., Viguier, M., Auda, Y., Robert, E., Evrard,
O., Huon, S., Pommier, T., Zouiten, C., Sengtaheuanghoung, O., and
Rochelle-Newall, E.: Quantifying the effect of overland flow on Escherichia coli pulses
during floods: Use of a tracer-based approach in an erosion-prone tropical
catchment, J. Hydrol., 594, 125935,
https://doi.org/10.1016/j.jhydrol.2020.125935, 2021a.
Boithias, L., Auda, Y., Audry, S., Bricquet, J., Chanhphengxay, A., Chaplot,
V., de Rouw, A., Henry des Tureaux, T., Huon, S., Janeau, J., Latsachack,
K., Le Troquer, Y., Lestrelin, G., Maeght, J., Marchand, P., Moreau, P.,
Noble, A., Pando-Bahuon, A., Phachomphon, K., Phanthavong, K., Pierret, A.,
Ribolzi, O., Riotte, J., Robain, H., Rochelle-Newall, E., Sayavong, S.,
Sengtaheuanghoung, O., Silvera, N., Sipaseuth, N., Soulileuth, B.,
Souliyavongsa, X., Sounyaphong, P., Tasaketh, S., Thammahacksa, C.,
Thiebaux, J., Valentin, C., Vigiak, O., Viguier, M., and Xayyathip, K.: The
Multiscale TROPIcal CatchmentS critical zone observatory M-TROPICS dataset
II: land use, hydrology and sediment production monitoring in Houay Pano,
northern Lao PDR, Hydrol. Process., 35, e14126,
https://doi.org/10.1002/hyp.14126, 2021b.
Causse, J., Billen, G., Garnier, J., Henri-des-Tureaux, T., Olasa, X.,
Thammahacksa, C., Latsachak, K. O., Soulileuth, B., Sengtaheuanghoung, O.,
Rochelle-Newall, E., and Ribolzi, O.: Field and modelling studies of
Escherichia coli loads in tropical streams of montane agro-ecosystems, J. Hydro-Environ.
Res., 9, 496–507, https://doi.org/10.1016/j.jher.2015.03.003, 2015.
Chaplot, V. and Poesen, J.: Sediment, soil organic carbon and runoff
delivery at various spatial scales, Catena, 88, 46–56,
https://doi.org/10.1016/j.catena.2011.09.004, 2012.
Exley, J. L. R., Liseka, B., Cumming, O., and Ensink, J. H. J.: The
Sanitation Ladder, What Constitutes an Improved Form of Sanitation?,
Environ. Sci. Technol., 49, 1086–1094, https://doi.org/10.1021/es503945x,
2015.
Global Water Forum: Basins under pressure: the Mekong basin, 47 pp., 2015.
Hecht, J. S., Lacombe, G., Arias, M. E., Dang, T. D., and Piman, T.:
Hydropower dams of the Mekong River basin: A review of their hydrological
impacts, J. Hydrol., 568, 285–300,
https://doi.org/10.1016/j.jhydrol.2018.10.045, 2019.
Kim, M., Boithias, L., Cho, K. H., Silvera, N., Thammahacksa, C.,
Latsachack, K., Rochelle-Newall, E., Sengtaheuanghoung, O., Pierret, A.,
Pachepsky, Y. A., and Ribolzi, O.: Hydrological modeling of Fecal Indicator
Bacteria in a tropical mountain catchment, Water Res., 119, 102–113,
https://doi.org/10.1016/j.watres.2017.04.038, 2017.
Kim, M., Boithias, L., Cho, K. H., Sengtaheuanghoung, O., and Ribolzi, O.:
Modeling the Impact of Land Use Change on Basin-scale Transfer of Fecal
Indicator Bacteria: SWAT Model Performance, J. Environ. Qual., 47,
1115–1122, https://doi.org/10.2134/jeq2017.11.0456, 2018.
Kondolf, G. M., Rubin, Z. K., and Minear, J. T.: Dams on the Mekong:
Cumulative sediment starvation, Water Resour. Res., 50, 5158–5169,
https://doi.org/10.1002/2013WR014651, 2014.
Lao Statistics Bureau: Results of Population and Housing Census 2015 – The
4th Population and Housing Census (PHC), 282 pp., 2015.
Le Meur, M., Le Phu, V., and Nicolas, G.: What Is the Future of the Lower
Mekong Basin Struggling against Human Activities? A Review, in: River Deltas
– Recent Advances, IntechOpen, https://doi.org/10.5772/intechopen.95010,
2021.
Liechti, N., Zimmermann, R. E., Zopfi, J., Robinson, M. T., Pierret, A.,
Ribolzi, O., Rattanavong, S., Davong, V., Newton, P. N., Wittwer, M., and
Dance, D. A. B.: Whole-Genome Assemblies of 16 Burkholderia pseudomallei Isolates from Rivers in
Laos, Microbiol. Resour. Announc., 10, e01226-20, https://doi.org/10.1128/MRA.01226-20,
2021.
Lyon, S. W., King, K., Polpanich, O., and Lacombe, G.: Assessing hydrologic
changes across the Lower Mekong Basin, J. Hydrol. Reg. Stud., 12, 303–314,
https://doi.org/10.1016/j.ejrh.2017.06.007, 2017.
MA: Millennium Ecosystem Assessment, Ecosystems and Human Well-being:
Synthesis, Island Press/World Resources Institute, Washington DC, 155 pp., 2005.
MRC: The flow of the Mekong, Mekong River Commission Management Information
Booklet Series No. 2, 12 pp., 2009.
Nakhle, P., Boithias, L., Pando-Bahuon, A., Thammahacksa, C., Gallion, N.,
Sounyafong, P., Silvera, N., Latsachack, K., Soulileuth, B.,
Rochelle-Newall, E. J., Marcangeli, Y., Pierret, A., and Ribolzi, O.: Decay
Rate of Escherichia coli in a Mountainous Tropical Headwater Wetland, Water, 13, 2068,
https://doi.org/10.3390/w13152068, 2021a.
Nakhle, P., Ribolzi, O., Boithias, L., Rattanavong, S., Auda, Y., Sayavong,
S., Zimmermann, R., Soulileuth, B., Pando, A., Thammahacksa, C.,
Rochelle-Newall, E., Santini, W., Martinez, J. M., Gratiot, N., and Pierret,
A.: Effects of hydrological regime and land use on in-stream Escherichia coli concentration
in the Mekong basin, Lao PDR, Sci. Rep., 11, 3460,
https://doi.org/10.1038/s41598-021-82891-0, 2021b.
Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., and Hyndman, D.:
A Review of the Integrated Effects of Changing Climate, Land Use, and Dams
on Mekong River Hydrology, Water, 10, 266,
https://doi.org/10.3390/w10030266, 2018.
Ribolzi, O., Cuny, J., Sengsoulichanh, P., Mousquès, C., Soulileuth, B.,
Pierret, A., Huon, S., and Sengtaheuanghoung, O.: Land Use and Water Quality
Along a Mekong Tributary in Northern Lao P.D.R., Environ. Manage., 47,
291–302, https://doi.org/10.1007/s00267-010-9593-0, 2011.
Ribolzi, O., Rochelle-Newall, E., Dittrich, S., Auda, Y., Newton, P. N.,
Rattanavong, S., Knappik, M., Soulileuth, B., Sengtaheuanghoung, O., Dance,
D. A. B., and Pierret, A.: Land use and soil type determine the presence of
the pathogen Burkholderia pseudomallei in tropical rivers, Environ. Sci. Pollut. Res., 23,
7828–7839, https://doi.org/10.1007/s11356-015-5943-z, 2016a.
Ribolzi, O., Evrard, O., Huon, S., Rochelle-Newall, E., Henri-des-Tureaux,
T., Silvera, N., Thammahacksac, C., and Sengtaheuanghoung, O.: Use of
fallout radionuclides (7Be, 210Pb) to estimate resuspension of Escherichia coli from
streambed sediments during floods in a tropical montane catchment, Environ.
Sci.Pollut. Res., 23, 3427–3435,
https://doi.org/10.1007/s11356-015-5595-z, 2016b.
Ribolzi, O., Evrard, O., Huon, S., de Rouw, A., Silvera, N., Latsachack, K.
O., Soulileuth, B., Lefèvre, I., Pierret, A., Lacombe, G.,
Sengtaheuanghoung, O., and Valentin, C.: From shifting cultivation to teak
plantation: effect on overland flow and sediment yield in a montane tropical
catchment, Sci. Rep., 7, 3987, https://doi.org/10.1038/s41598-017-04385-2,
2017.
Ribolzi, O., Boithias, L., Thammahacksa, C., Silvera, N., Pando-Bahuon, A.,
Sengtaheuanghoung, O., Sipaseuth, N., Latsachack, K., Soulileuth, B.,
Sounyafong, P., Khampaseuth, X., and Pierret, A.: Escherichia coli concentrations and
physico-chemical measurements (2011–2021) at the outlet of six catchments of
the Mekong river basin, northern Lao PDR, DataSuds, V3 [data set],
https://doi.org/10.23708/1YZQHH, 2021a.
Ribolzi, O., Boithias, L., Thammahacksa, C., Rochelle-Newall, E.,
Pando-Bahuon, A., Silvera, N., Sengtaheuanghoung, O., Sipaseuth, N., and
Pierret, A.: Escherichia coli concentrations and physico-chemical measurements (2011–2021)
at the outlet of the Houay Pano catchment, northern Lao PDR, DataSuds, V3 [data set],
https://doi.org/10.23708/EWOYNK, 2021b.
Ribolzi, O., Zimmermann, R., Thammahacksa, C., Rattanavong, S., Oliva, P.,
Sengtaheuanghoung, O., and Pierret, A.: Escherichia coli concentrations and physico-chemical
measurements at the outlet of 29 catchments of the Mekong river basin, Lao
PDR, during dry and rainy seasons (2016), DataSuds, V3 [data set],
https://doi.org/10.23708/ZRSBM4, 2021c.
Ribolzi, O., Causse, J., Thammahacksa, C., Latsachack, K., Huon, S.,
Henry-Des-Tureaux, T., Sengtaheuanghoung, O., Sipaseuth, N., and Pierret,
A.: Escherichia coli concentrations and physico-chemical measurements (2011) along a
cross-sectional profile of the Nam Khan river, Mekong river basin, northern
Lao PDR, DataSuds, V3 [data set], https://doi.org/10.23708/RNY0LD, 2022.
Rochelle-Newall, E., Nguyen, T. M. H., Le, T. P. Q., Sengtaheuanghoung, O.,
and Ribolzi, O.: A short review of fecal indicator bacteria in tropical
aquatic ecosystems: knowledge gaps and future directions, Front. Microbiol.,
6, 308, https://doi.org/10.3389/fmicb.2015.00308, 2015.
Rochelle-Newall, E. J., Ribolzi, O., Viguier, M., Thammahacksa, C., Silvera,
N., Latsachack, K., Dinh, R. P., Naporn, P., Sy, H. T., Soulileuth, B.,
Hmaimum, N., Sisouvanh, P., Robain, H., Janeau, J.-L., Valentin, C.,
Boithias, L., and Pierret, A.: Effect of land use and hydrological processes
on Escherichia coli concentrations in streams of tropical, humid headwater catchments, Sci.
Rep., 6, 32974, https://doi.org/10.1038/srep32974, 2016.
Sabo, J. L., Ruhi, A., Holtgrieve, G. W., Elliott, V., Arias, M. E., Ngor,
P. B., Räsänen, T. A., and Nam, S.: Designing river flows to improve
food security futures in the Lower Mekong Basin, Science, 358, eaao1053,
https://doi.org/10.1126/science.aao1053, 2017.
Santini, W., Camenen, B., Le Coz, J., Vauchel, P., Guyot, J.-L., Lavado, W., Carranza, J., Paredes, M. A., Pérez Arévalo, J. J., Arévalo, N., Espinoza Villar, R., Julien, F., and Martinez, J.-M.: An index concentration method for suspended load monitoring in large rivers of the Amazonian foreland, Earth Surf. Dynam., 7, 515–536, https://doi.org/10.5194/esurf-7-515-2019, 2019.
Shrestha, B., Maskey, S., Babel, M. S., van Griensven, A., and Uhlenbrook,
S.: Sediment related impacts of climate change and reservoir development in
the Lower Mekong River Basin: a case study of the Nam Ou Basin, Lao PDR,
Climatic Change, 149, 13–27, https://doi.org/10.1007/s10584-016-1874-z,
2018.
Tong, Y., Yao, R., He, W., Zhou, F., Chen, C., Liu, X., Lu, Y., Zhang, W.,
Wang, X., Lin, Y., and Zhou, M.: Impacts of sanitation upgrading to the
decrease of fecal coliforms entering into the environment in China, Environ.
Res., 149, 57–65, https://doi.org/10.1016/j.envres.2016.05.009, 2016.
USGS: Dissolved oxygen: U.S. Geological Survey Techniques and Methods, book
9, chap. A6.2, version 2.0., 48 pp., https://doi.org/10.3133/tm9A6.2, 2006.
Vos, T., Lim, S. S., Abbafati, C., Abbas, K. M., Abbasi, M., Abbasifard, M.,
Abbasi-Kangevari, M., Abbastabar, H., Abd-Allah, F., Abdelalim, A.,
Abdollahi, M., Abdollahpour, I., Abo lhassani, H., Aboyans, V., Abrams, E.
M., Abreu, L. G., Abrigo, M. R. M., Abu-Raddad, L. J., Abushouk, A. I.,
Acebedo, A., Ackerman, I. N., Adabi, M., Adamu, A. A., Adebayo, O. M.,
Adekanmbi, V., Adelson, J. D., Adetokunboh, O. O., Adham, D., Afshari, M.,
Afshin, A., Agardh, E. E., Agarwal, G., Agesa, K. M., Aghaali, M., Aghamir,
S. M. K., Agrawal, A., Ahmad, T., Ahmadi, A., Ahmadi, M., Ahmadieh, H.,
Ahmadpour, E., Akalu, T. Y., Akinyemi, R. O., Akinyemiju, T., Akombi, B.,
Al-Aly, Z., Alam, K., Alam, N., Alam, S., Alam, T., Alanzi, T. M.,
Albertson, S. B., Alcalde-Rabanal, J. E., Alema, N. M., Ali, M., Ali, S.,
Alicandro, G., Alijanzadeh, M., Alinia, C., Alipour, V., Aljunid, S. M.,
Alla, F., Allebeck, P., Almasi-Hashiani, A., Alonso, J., Al-Raddadi, R. M.,
Altirkawi, K. A., Alvis-Guzman, N., Alvis-Zakzuk, N. J., Amini, S.,
Amini-Rarani, M., Aminorroaya, A., Amiri, F., Amit, A. M. L., Amugsi, D. A.,
Amul, G. G. H., Anderlini, D., Andrei, C. L., Andrei, T., Anjomshoa, M.,
Ansari, F., Ansari, I., Ansari-Moghaddam, A., Antonio, C. A. T., Antony, C.
M., Antriyandarti, E., Anvari, D., Anwer, R., Arabloo, J., Arab-Zozani, M.,
Aravkin, A. Y., Ariani, F., Ärnlöv, J., Aryal, K. K., Arzani, A.,
Asadi-Aliabadi, M., Asadi-Pooya, A. A., Asghari, B., Ashbaugh, C., et al.:
Global burden of 369 diseases and injuries in 204 countries and territories,
1990–2019: a systematic analysis for the Global Burden of Disease Study
2019, The Lancet, 396, 1204–1222,
https://doi.org/10.1016/S0140-6736(20)30925-9, 2020.
WLE: Dataset on the Dams of the Irrawaddy, Mekong, Red and Salween River Basins, Vientiane, Lao PDR: CGIAR Research Program on Water, Land and Ecosystems – Greater Mekong, https://wle-mekong.cgiar.org/maps/, last access: 21 June 2022.
Zimmermann, R. E., Ribolzi, O., Pierret, A., Rattanavong, S., Robinson, M.
T., Newton, P. N., Davong, V., Auda, Y., Zopfi, J., and Dance, D. A. B.:
Rivers as carriers and potential sentinels for Burkholderia pseudomallei in Laos, Sci. Rep., 8, 8674,
https://doi.org/10.1038/s41598-018-26684-y, 2018.
Short summary
Fecal pathogens in surface waters may threaten human health, especially in developing countries. The Escherichia coli (E. coli) database is organized in three datasets and includes 1602 records from 31 sampling stations located within the Mekong River basin in Lao PDR. Data have been used to identify the drivers of E. coli dissemination across tropical catchments, including during floods. Data may be further used to interpret new variables or to map the health risk posed by fecal pathogens.
Fecal pathogens in surface waters may threaten human health, especially in developing countries....
Altmetrics
Final-revised paper
Preprint