Articles | Volume 14, issue 6
https://doi.org/10.5194/essd-14-2883-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2883-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Escherichia coli concentration, multiscale monitoring over the decade 2011–2021 in the Mekong River basin, Lao PDR
Laurie Boithias
CORRESPONDING AUTHOR
Géosciences Environnement Toulouse (GET), Université de
Toulouse, CNRS, IRD, UPS, Toulouse, France
Olivier Ribolzi
CORRESPONDING AUTHOR
Géosciences Environnement Toulouse (GET), Université de
Toulouse, CNRS, IRD, UPS, Toulouse, France
Emma Rochelle-Newall
Sorbonne Université, Univ. Paris Est Creteil, IRD, CNRS, INRAE,
Institute of Ecology and Environmental Sciences of Paris (iEES-Paris),
Paris, France
Chanthanousone Thammahacksa
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Paty Nakhle
Géosciences Environnement Toulouse (GET), Université de
Toulouse, CNRS, IRD, UPS, Toulouse, France
Bounsamay Soulileuth
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Anne Pando-Bahuon
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Keooudone Latsachack
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Norbert Silvera
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Phabvilay Sounyafong
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Khampaseuth Xayyathip
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Rosalie Zimmermann
Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology
Laboratory, Mahosot Hospital, Vientiane, Lao PDR
Department of Environmental Sciences, University of Basel, Basel,
Switzerland
Department of Medical Microbiology and Infection Prevention, Amsterdam
University Medical Centers (UMC), Amsterdam, the Netherlands
Sayaphet Rattanavong
Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology
Laboratory, Mahosot Hospital, Vientiane, Lao PDR
Priscia Oliva
Géosciences Environnement Toulouse (GET), Université de
Toulouse, CNRS, IRD, UPS, Toulouse, France
Thomas Pommier
Laboratoire d'Ecologie Microbienne (LEM), CNRS, UCBL, VetAgroSup,
Université de Lyon, Villeurbanne, France
Olivier Evrard
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL),
CEA, CNRS, UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Sylvain Huon
Sorbonne Université, Univ. Paris Est Creteil, IRD, CNRS, INRAE,
Institute of Ecology and Environmental Sciences of Paris (iEES-Paris),
Paris, France
Jean Causse
Société Transcender, Rennes, France/Ecole des Hautes Etudes
en Santé Publique (EHESP), Laboratoire d'Etude et de Recherche en
Environnement et Santé, IRSET-INSERM, Rennes, France
Thierry Henry-des-Tureaux
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Oloth Sengtaheuanghoung
Ministry of Agriculture and Forestry (MAF), Department of
Agricultural Land Management (DALaM), Vientiane, Lao PDR
Nivong Sipaseuth
Ministry of Agriculture and Forestry (MAF), Department of
Agricultural Land Management (DALaM), Vientiane, Lao PDR
Alain Pierret
IRD, Department of Agricultural Land Management (DALaM), Vientiane,
Lao PDR
Related authors
Ather Abbas, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho
Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, https://doi.org/10.5194/gmd-15-3021-2022, 2022
Short summary
Short summary
The field of artificial intelligence has shown promising results in a wide variety of fields including hydrological modeling. However, developing and testing hydrological models with artificial intelligence techniques require expertise from diverse fields. In this study, we developed an open-source framework based upon the python programming language to simplify the process of the development of hydrological models of time series data using machine learning.
Ather Abbas, Sangsoo Baek, Norbert Silvera, Bounsamay Soulileuth, Yakov Pachepsky, Olivier Ribolzi, Laurie Boithias, and Kyung Hwa Cho
Hydrol. Earth Syst. Sci., 25, 6185–6202, https://doi.org/10.5194/hess-25-6185-2021, https://doi.org/10.5194/hess-25-6185-2021, 2021
Short summary
Short summary
Correct estimation of fecal indicator bacteria in surface waters is critical for public health. Process-driven models and recently data-driven models have been applied for water quality modeling; however, a systematic comparison for simulation of E. coli is missing in the literature. We compared performance of process-driven (HSPF) and data-driven (LSTM) models for E. coli simulation. We show that LSTM can be an alternative to process-driven models for estimation of E. coli in surface waters.
Gerald Dicen, Floriane Guillevic, Surya Gupta, Pierre-Alexis Chaboche, Katrin Meusburger, Pierre Sabatier, Olivier Evrard, and Christine Alewell
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-509, https://doi.org/10.5194/essd-2024-509, 2024
Preprint under review for ESSD
Short summary
Short summary
Fallout radionuclides such as 137Cs and 239+240Pu are considered as critical tools in various environmental research. Here, we compiled reference soil data on these fallout radionuclides from the literature to build a comprehensive database. Using this database, we determined the distribution and sources of 137Cs and 239+240Pu. We also demonstrated how the database can be used to identify the environmental factors that influence their distribution using a machine-learning algorithm.
Thomas Chalaux-Clergue, Rémi Bizeul, Pedro V. G. Batista, Núria Martínez-Carreras, J. Patrick Laceby, and Olivier Evrard
SOIL, 10, 109–138, https://doi.org/10.5194/soil-10-109-2024, https://doi.org/10.5194/soil-10-109-2024, 2024
Short summary
Short summary
Sediment source fingerprinting is a relevant tool to support soil conservation and watershed management in the context of accelerated soil erosion. To quantify sediment source contribution, it requires the selection of relevant tracers. We compared the three-step method and the consensus method and found very contrasted trends. The divergences between virtual mixtures and sample prediction ranges highlight that virtual mixture statistics are not directly transferable to actual samples.
Anthony Foucher, Sergio Morera, Michael Sanchez, Jhon Orrillo, and Olivier Evrard
Hydrol. Earth Syst. Sci., 27, 3191–3204, https://doi.org/10.5194/hess-27-3191-2023, https://doi.org/10.5194/hess-27-3191-2023, 2023
Short summary
Short summary
The current research investigated, as a representative study case, the sediment accumulated in the Poechos Reservoir (located on the west coast of northern Peru) for retrospectively reconstructing the impact on sediment dynamics (1978–2019) of extreme phases of the El Niño–Southern Oscillation, land cover changes after humid periods and agricultural expansion along the riverine system.
Olivier Evrard, Thomas Chalaux-Clergue, Pierre-Alexis Chaboche, Yoshifumi Wakiyama, and Yves Thiry
SOIL, 9, 479–497, https://doi.org/10.5194/soil-9-479-2023, https://doi.org/10.5194/soil-9-479-2023, 2023
Short summary
Short summary
Twelve years after the nuclear accident that occurred in Fukushima in March 2011, radioactive contamination remains a major concern in north-eastern Japan. The Japanese authorities completed an unprecedented decontamination programme. The central objective was to not expose local inhabitants to excessive radioactive doses. At the onset of the full reopening of the Difficult-to-Return Zone in 2023, the current review provides an update of a previous synthesis published in 2019.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
Ather Abbas, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho
Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, https://doi.org/10.5194/gmd-15-3021-2022, 2022
Short summary
Short summary
The field of artificial intelligence has shown promising results in a wide variety of fields including hydrological modeling. However, developing and testing hydrological models with artificial intelligence techniques require expertise from diverse fields. In this study, we developed an open-source framework based upon the python programming language to simplify the process of the development of hydrological models of time series data using machine learning.
Ather Abbas, Sangsoo Baek, Norbert Silvera, Bounsamay Soulileuth, Yakov Pachepsky, Olivier Ribolzi, Laurie Boithias, and Kyung Hwa Cho
Hydrol. Earth Syst. Sci., 25, 6185–6202, https://doi.org/10.5194/hess-25-6185-2021, https://doi.org/10.5194/hess-25-6185-2021, 2021
Short summary
Short summary
Correct estimation of fecal indicator bacteria in surface waters is critical for public health. Process-driven models and recently data-driven models have been applied for water quality modeling; however, a systematic comparison for simulation of E. coli is missing in the literature. We compared performance of process-driven (HSPF) and data-driven (LSTM) models for E. coli simulation. We show that LSTM can be an alternative to process-driven models for estimation of E. coli in surface waters.
Virginie Sellier, Oldrich Navratil, John Patrick Laceby, Cédric Legout, Anthony Foucher, Michel Allenbach, Irène Lefèvre, and Olivier Evrard
SOIL, 7, 743–766, https://doi.org/10.5194/soil-7-743-2021, https://doi.org/10.5194/soil-7-743-2021, 2021
Short summary
Short summary
Open-cast mining increases soil erosion and transfer of sediment in river systems. Providing a methodology to better understand the sediment dynamic of these catchments is essential to manage this pollution. In this study, different tracers such as elemental geochemistry or colour properties were tested to trace and quantify the mining source contributions to the sediment inputs in the Thio River catchment, one of the first areas exploited for nickel mining in New Caledonia (i.e. since 1880).
Anthony Foucher, Pierre-Alexis Chaboche, Pierre Sabatier, and Olivier Evrard
Earth Syst. Sci. Data, 13, 4951–4966, https://doi.org/10.5194/essd-13-4951-2021, https://doi.org/10.5194/essd-13-4951-2021, 2021
Short summary
Short summary
Sediment archives provide a powerful and unique tool for reconstructing the trajectory and the resilience of terrestrial and aquatic ecosystems facing major environmental changes. Establishing an age depth–model is the first prerequisite of any paleo-investigation. This study synthesizes the distribution of two radionuclides classically used to this aim, providing a worldwide reference to help the scientific community reach a consensus for dating recent sedimentary archives.
Olivier Evrard, Caroline Chartin, J. Patrick Laceby, Yuichi Onda, Yoshifumi Wakiyama, Atsushi Nakao, Olivier Cerdan, Hugo Lepage, Hugo Jaegler, Rosalie Vandromme, Irène Lefèvre, and Philippe Bonté
Earth Syst. Sci. Data, 13, 2555–2560, https://doi.org/10.5194/essd-13-2555-2021, https://doi.org/10.5194/essd-13-2555-2021, 2021
Short summary
Short summary
This dataset provides an original compilation of radioactive dose rates and artificial radionuclide activities in sediment deposited after floods in the rivers draining the main radioactive pollution plume in Fukushuma, Japan, between November
2011 and November 2020. In total, 782 sediment samples collected from 27 to 71 locations during 16 fieldwork campaigns were analysed. This provides a unique post-accidental dataset to better understand the environmental fate of radionuclides.
Kahina Djaoudi, France Van Wambeke, Aude Barani, Nagib Bhairy, Servanne Chevaillier, Karine Desboeufs, Sandra Nunige, Mohamed Labiadh, Thierry Henry des Tureaux, Dominique Lefèvre, Amel Nouara, Christos Panagiotopoulos, Marc Tedetti, and Elvira Pulido-Villena
Biogeosciences, 17, 6271–6285, https://doi.org/10.5194/bg-17-6271-2020, https://doi.org/10.5194/bg-17-6271-2020, 2020
André-Marie Dendievel, Brice Mourier, Alexandra Coynel, Olivier Evrard, Pierre Labadie, Sophie Ayrault, Maxime Debret, Florence Koltalo, Yoann Copard, Quentin Faivre, Thomas Gardes, Sophia Vauclin, Hélène Budzinski, Cécile Grosbois, Thierry Winiarski, and Marc Desmet
Earth Syst. Sci. Data, 12, 1153–1170, https://doi.org/10.5194/essd-12-1153-2020, https://doi.org/10.5194/essd-12-1153-2020, 2020
Short summary
Short summary
Polychlorinated biphenyl indicators (ΣPCBi) from sediment cores, bed and flood deposits, suspended particulate matter, and dredged sediments along the major French rivers (1945–2018) are compared with socio-hydrological drivers. ΣPCBi increased from 1945 to the 1990s due to urban and industrial emissions. It gradually decreased with the implementation of regulations. Specific ΣPCBi fluxes reveal the amount of PCB-polluted sediment transported by French rivers to European seas over 40 years.
Olivier Evrard, J. Patrick Laceby, and Atsushi Nakao
SOIL, 5, 333–350, https://doi.org/10.5194/soil-5-333-2019, https://doi.org/10.5194/soil-5-333-2019, 2019
Short summary
Short summary
The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 resulted in the contamination of Japanese landscapes with radioactive fallout. The objective of this review is to provide an overview of the decontamination strategies and their potential effectiveness in Japan. Overall, we believe it is important to synthesise the remediation lessons learnt following the FDNPP nuclear accident, which could be fundamental if radioactive fallout occurred somewhere on Earth in the future.
Chandrashekhar Deshmukh, Frédéric Guérin, Axay Vongkhamsao, Sylvie Pighini, Phetdala Oudone, Saysoulinthone Sopraseuth, Arnaud Godon, Wanidaporn Rode, Pierre Guédant, Priscia Oliva, Stéphane Audry, Cyril Zouiten, Corinne Galy-Lacaux, Henri Robain, Olivier Ribolzi, Arun Kansal, Vincent Chanudet, Stéphane Descloux, and Dominique Serça
Biogeosciences, 15, 1775–1794, https://doi.org/10.5194/bg-15-1775-2018, https://doi.org/10.5194/bg-15-1775-2018, 2018
Short summary
Short summary
Based on an intense monitoring of CO2 concentrations and organic and inorganic carbon in the reservoir, in the rivers upstream and downstream, and of CO2 emissions from the drawdown area, we confirmed the importance of the flooded stock of organic matter as a source of C fueling emissions and we show that the drawdown area contributes, depending on the year, from 50 to 75 % of total annual gross emissions in the flat and shallow Nam Theun 2 Reservoir.
Guillaume Lacombe, Olivier Ribolzi, Anneke de Rouw, Alain Pierret, Keoudone Latsachak, Norbert Silvera, Rinh Pham Dinh, Didier Orange, Jean-Louis Janeau, Bounsamai Soulileuth, Henri Robain, Adrien Taccoen, Phouthamaly Sengphaathith, Emmanuel Mouche, Oloth Sengtaheuanghoung, Toan Tran Duc, and Christian Valentin
Hydrol. Earth Syst. Sci., 20, 2691–2704, https://doi.org/10.5194/hess-20-2691-2016, https://doi.org/10.5194/hess-20-2691-2016, 2016
Short summary
Short summary
Laos and Vietnam have switched from net forest loss to net forest expansion between 1990 and 2015. Based on long-term field measurements of land use, river flows, and weather data, we demonstrate that forest expansion can have extreme, yet opposite, impacts on water resources, depending on how the newly established tree-based cover is managed. The conversion of annual crops to teak plantations in Laos or to naturally regrowing forests in Vietnam led to increased and decreased flows, respectively.
J. Patrick Laceby, Caroline Chartin, Olivier Evrard, Yuichi Onda, Laurent Garcia-Sanchez, and Olivier Cerdan
Hydrol. Earth Syst. Sci., 20, 2467–2482, https://doi.org/10.5194/hess-20-2467-2016, https://doi.org/10.5194/hess-20-2467-2016, 2016
Short summary
Short summary
Characterizing rainfall erosivity in the Fukushima fallout-impacted region is important for predicting radiocesium behavior. The majority of rainfall (60 %) and rainfall erosivity (86 %) occurs between June and October. Tropical cyclones contribute 22 % of the precipitation though 44 % of the rainfall erosivity. Understanding the rainfall regime and the influence of tropical cyclones is important managing radiocesium transfers in contaminated catchments in the Fukushima prefecture.
Maha Deeb, Michel Grimaldi, Thomas Z. Lerch, Anne Pando, Agnès Gigon, and Manuel Blouin
SOIL, 2, 163–174, https://doi.org/10.5194/soil-2-163-2016, https://doi.org/10.5194/soil-2-163-2016, 2016
Short summary
Short summary
This paper addresses the evolution of engineered soils (i.e., Technosols). The formation of such soils begins with proportional mixing of urban waste. Technosols are particularly well suited for investigating the role of organisms in soil function development. This is because they provide a controlled environment where the soil development can be monitored over time.
Organisms and their interaction with parent materials positively affect the structure of Technosols.
E. Gourdin, S. Huon, O. Evrard, O. Ribolzi, T. Bariac, O. Sengtaheuanghoung, and S. Ayrault
Biogeosciences, 12, 1073–1089, https://doi.org/10.5194/bg-12-1073-2015, https://doi.org/10.5194/bg-12-1073-2015, 2015
Short summary
Short summary
The origin and dynamics of particulate organic matter were studied in a 11.6km² catchment (northern Laos) during the first erosive flood of the 2012 rainy season. Upstream suspended sediments mainly originated from cultivated soils labelled by their C3 vegetation cover. In contrast, channel banks with C4 vegetation supplied significant quantities of sediment to the river downstream. Swamps located along the main stream acted as sediment filters and controlled the composition of suspended POM.
H. Lepage, O. Evrard, Y. Onda, I. Lefèvre, J. P. Laceby, and S. Ayrault
SOIL Discuss., https://doi.org/10.5194/soild-1-401-2014, https://doi.org/10.5194/soild-1-401-2014, 2014
Revised manuscript not accepted
Related subject area
Hydrology
Lena River biogeochemistry captured by a 4.5-year high-frequency sampling program
CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany
Observational partitioning of water and CO2 fluxes at National Ecological Observatory Network (NEON) sites: a 5-year dataset of soil and plant components for spatial and temporal analysis
CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
HANZE v2.1: an improved database of flood impacts in Europe from 1870 to 2020
A Copernicus-based evapotranspiration dataset at 100 m spatial resolution over four Mediterranean basins
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps
CAMELS-INDIA: hydrometeorological time series and catchment attributes for 472 catchments in Peninsular India
Satellite-based near-real-time global daily terrestrial evapotranspiration estimates
Multivariate characterisation of a blackberry–alder agroforestry system in South Africa: hydrological, pedological, dendrological and meteorological measurements
SHIFT: a spatial-heterogeneity improvement in DEM-based mapping of global geomorphic floodplains
First comprehensive stable isotope dataset of diverse water units in a permafrost-dominated catchment on the Qinghai–Tibet Plateau
Rainfall erosivity mapping in mainland China using 1-minute precipitation data from densely distributed weather stations
LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland
High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020
Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
A hydrogeomorphic dataset for characterizing catchment hydrological behavior across the Tibetan Plateau
A synthesis of Global Streamflow Characteristics, Hydrometeorology, and Catchment Attributes (GSHA) for large sample river-centric studies
FOCA: a new quality-controlled database of floods and catchment descriptors in Italy
Dams in the Mekong: a comprehensive database, spatiotemporal distribution, and hydropower potentials
A global dataset of the shape of drainage systems
An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
HERA: a high-resolution pan-European hydrological reanalysis (1950–2020)
BCUB - A large sample ungauged basin attribute dataset for British Columbia, Canada
Flood simulation with the RiverCure approach: the open dataset of the 2016 Águeda flood event
GloLakes: water storage dynamics for 27 000 lakes globally from 1984 to present derived from satellite altimetry and optical imaging
AltiMaP: altimetry mapping procedure for hydrography data
CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland
The use of GRDC gauging stations for calibrating large-scale hydrological models
A long-term dataset of simulated epilimnion and hypolimnion temperatures in 401 French lakes (1959–2020)
GTWS-MLrec: global terrestrial water storage reconstruction by machine learning from 1940 to present
A global 5 km monthly potential evapotranspiration dataset (1982–2015) estimated by the Shuttleworth–Wallace model
A gridded dataset of consumptive water footprints, evaporation, transpiration, and associated benchmarks related to crop production in China during 2000–2018
Hydro-PE: gridded datasets of historical and future Penman–Monteith potential evaporation for the United Kingdom
A global streamflow indices time series dataset for large-sample hydrological analyses on streamflow regime (until 2022)
Soil water retention and hydraulic conductivity measured in a wide saturation range
A high-frequency, long-term data set of hydrology and sediment yield: the alpine badland catchments of Draix-Bléone Observatory
Geospatial dataset for hydrologic analyses in India (GHI): a quality-controlled dataset on river gauges, catchment boundaries and hydrometeorological time series
Lake-TopoCat: a global lake drainage topology and catchment database
Three years of soil moisture observations by a dense cosmic-ray neutron sensing cluster at an agricultural research site in north-east Germany
A long-term monthly surface water storage dataset for the Congo basin from 1992 to 2015
A global database of historic glacier lake outburst floods
Past and future discharge and stream temperature at high spatial resolution in a large European basin (Loire basin, France)
Res-CN (Reservoir dataset in China): hydrometeorological time series and landscape attributes across 3254 Chinese reservoirs
An ensemble of 48 physically perturbed model estimates of the 1∕8° terrestrial water budget over the conterminous United States, 1980–2015
The UKSCAPE-G2G river flow and soil moisture datasets: Grid-to-Grid model estimates for the UK for historical and potential future climates
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Einara Zahn and Elie Bou-Zeid
Earth Syst. Sci. Data, 16, 5603–5624, https://doi.org/10.5194/essd-16-5603-2024, https://doi.org/10.5194/essd-16-5603-2024, 2024
Short summary
Short summary
Quantifying water and CO2 exchanges through transpiration, evaporation, net photosynthesis, and soil respiration is essential for understanding how ecosystems function. We implemented five methods to estimate these fluxes over a 5-year period across 47 sites. This is the first dataset representing such large spatial and temporal coverage of soil and plant exchanges, and it has many potential applications, such as examining the response of ecosystems to weather extremes and climate change.
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024, https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
Short summary
This study presented new annual maps of irrigated cropland in China from 2000 to 2020 (CIrrMap250). These maps were developed by integrating remote sensing data, irrigation statistics and surveys, and an irrigation suitability map. CIrrMap250 achieved high accuracy and outperformed currently available products. The new irrigation maps revealed a clear expansion of China’s irrigation area, with the majority (61%) occurring in the water-unsustainable regions facing severe to extreme water stress.
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data, 16, 5145–5170, https://doi.org/10.5194/essd-16-5145-2024, https://doi.org/10.5194/essd-16-5145-2024, 2024
Short summary
Short summary
Knowledge about past natural disasters can help adaptation to their future occurrences. Here, we present a dataset of 2521 riverine, pluvial, coastal, and compound floods that have occurred in 42 European countries between 1870 and 2020. The dataset contains available information on the inundated area, fatalities, persons affected, or economic loss and was obtained by extensive data collection from more than 800 sources ranging from news reports through government databases to scientific papers.
Paulina Bartkowiak, Bartolomeo Ventura, Alexander Jacob, and Mariapina Castelli
Earth Syst. Sci. Data, 16, 4709–4734, https://doi.org/10.5194/essd-16-4709-2024, https://doi.org/10.5194/essd-16-4709-2024, 2024
Short summary
Short summary
This paper presents the Two-Source Energy Balance evapotranspiration (ET) product driven by Copernicus Sentinel-2 and Sentinel-3 imagery together with ERA5 climate reanalysis data. Daily ET maps are available at 100 m spatial resolution for the period 2017–2021 across four Mediterranean basins: Ebro (Spain), Hérault (France), Medjerda (Tunisia), and Po (Italy). The product is highly beneficial for supporting vegetation monitoring and sustainable water management at the river basin scale.
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024, https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
Short summary
Nitrogen (N) and phosphorus (P) contamination of water bodies is a long-term issue due to the long history of N and P inputs to the environment and their persistence. Here, we introduce a long-term and high-resolution dataset of N and P inputs from wastewater (point sources) for Germany, combining data from different sources and conceptual understanding. We also account for uncertainties in modelling choices, thus facilitating robust long-term and large-scale water quality studies.
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-374, https://doi.org/10.5194/essd-2024-374, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In this study, we present a dataset for the Dischma catchment in eastern Switzerland, which represents a typical high-alpine watershed in the European Alps. Accurate monitoring and reliable forecasting of snow and water resources in such basins are crucial for a wide range of applications. Our dataset is valuable for improving physics-based snow, land-surface, and hydrological models, with potential applications in similar high-alpine catchments.
Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner
Earth Syst. Sci. Data, 16, 4311–4323, https://doi.org/10.5194/essd-16-4311-2024, https://doi.org/10.5194/essd-16-4311-2024, 2024
Short summary
Short summary
Global water resource monitoring is crucial due to climate change and population growth. This study presents a hand-labeled dataset of 100 PlanetScope images for surface water detection, spanning diverse biomes. We use this dataset to evaluate two state-of-the-art mapping methods. Results highlight performance variations across biomes, emphasizing the need for diverse, independent validation datasets to enhance the accuracy and reliability of satellite-based surface water monitoring techniques.
Nikunj K. Mangukiya, Kanneganti Bhargav Kumar, Pankaj Dey, Shailza Sharma, Vijaykumar Bejagam, Pradeep P. Mujumdar, and Ashutosh Sharma
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-379, https://doi.org/10.5194/essd-2024-379, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We introduce CAMELS-INDIA (Catchment Attributes and MEteorology for Large-sample Studies – India), which provides daily hydrometeorological time series and static catchment attributes representing location, topography, climate, hydrological signatures, land-use, land cover, soil, geology, and anthropogenic influences for 472 catchments in peninsular India, to foster large-sample hydrological studies in India and promote the inclusion of Indian catchments in global hydrological research.
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024, https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Short summary
Timely global terrestrial evapotranspiration (ET) data are crucial for water resource management and drought forecasting. This study introduces the VISEA algorithm, which integrates satellite data and shortwave radiation to provide daily 0.05° gridded near-real-time ET estimates. By employing a vegetation index–temperature method, this algorithm can estimate ET without requiring additional data. Evaluation results demonstrate VISEA's comparable accuracy with accelerated data availability.
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024, https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
Short summary
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a sustainable land use option which protects natural resources and biodiversity. Introducing trees into agricultural systems can positively affect water resources, soil characteristics, biomass and microclimate. We studied an AFS in South Africa in a multidisciplinary approach to assess the different influences and present the resulting dataset consisting of water, soil, tree and meteorological variables.
Kaihao Zheng, Peirong Lin, and Ziyun Yin
Earth Syst. Sci. Data, 16, 3873–3891, https://doi.org/10.5194/essd-16-3873-2024, https://doi.org/10.5194/essd-16-3873-2024, 2024
Short summary
Short summary
We develop a globally applicable thresholding scheme for DEM-based floodplain delineation to improve the representation of spatial heterogeneity. It involves a stepwise approach to estimate the basin-level floodplain hydraulic geometry parameters that best respect the scaling law while approximating the global hydrodynamic flood maps. A ~90 m resolution global floodplain map, the Spatial Heterogeneity Improved Floodplain by Terrain analysis (SHIFT), is delineated with demonstrated superiority.
Yuzhong Yang, Qingbai Wu, Xiaoyan Guo, Lu Zhou, Helin Yao, Dandan Zhang, Zhongqiong Zhang, Ji Chen, and Guojun Liu
Earth Syst. Sci. Data, 16, 3755–3770, https://doi.org/10.5194/essd-16-3755-2024, https://doi.org/10.5194/essd-16-3755-2024, 2024
Short summary
Short summary
We present the temporal data of stable isotopes in different waterbodies in the Beiluhe Basin in the hinterland of the Qinghai–Tibet Plateau (QTP) produced between 2017 and 2022. In this article, the first detailed stable isotope data of 359 ground ice samples are presented. This first data set provides a new basis for understanding the hydrological effects of permafrost degradation on the QTP.
Yueli Chen, Yun Xie, Xingwu Duan, and Minghu Ding
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-195, https://doi.org/10.5194/essd-2024-195, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Rainfall erosivity map is crucial for identifying key areas of water erosion. Due to the limited historical precipitation data, there are certain biases in rainfall erosivity estimates in China. This study develops a new rainfall erosivity map for mainland China using 1-minute precipitation data from 60,129 weather stations, revealing that areas exceeding 4000 MJ·mm·ha−1·h−1·yr−1 of annual rainfall erosivity mainly concentrated in the southern China and southern Tibetan Plateau.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological time series, including observed streamflow and basin characteristics, for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets and additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Chengcheng Hou, Yan Li, Shan Sang, Xu Zhao, Yanxu Liu, Yinglu Liu, and Fang Zhao
Earth Syst. Sci. Data, 16, 2449–2464, https://doi.org/10.5194/essd-16-2449-2024, https://doi.org/10.5194/essd-16-2449-2024, 2024
Short summary
Short summary
To fill the gap in the gridded industrial water withdrawal (IWW) data in China, we developed the China Industrial Water Withdrawal (CIWW) dataset, which provides monthly IWWs from 1965 to 2020 at a spatial resolution of 0.1°/0.25° and auxiliary data including subsectoral IWW and industrial output value in 2008. This dataset can help understand the human water use dynamics and support studies in hydrology, geography, sustainability sciences, and water resource management and allocation in China.
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024, https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Short summary
Nature-based solutions (NBSs), such as green roofs, have appeared as relevant solutions to mitigate urban heat islands. The evapotranspiration (ET) process allows NBSs to cool the air. To improve our knowledge about ET assessment, this paper presents some experimental measurement campaigns carried out during three consecutive summers. Data are available for three different (large, small, and point-based) spatial scales.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Ziyun Yin, Peirong Lin, Ryan Riggs, George H. Allen, Xiangyong Lei, Ziyan Zheng, and Siyu Cai
Earth Syst. Sci. Data, 16, 1559–1587, https://doi.org/10.5194/essd-16-1559-2024, https://doi.org/10.5194/essd-16-1559-2024, 2024
Short summary
Short summary
Large-sample hydrology (LSH) datasets have been the backbone of hydrological model parameter estimation and data-driven machine learning models for hydrological processes. This study complements existing LSH studies by creating a dataset with improved sample coverage, uncertainty estimates, and dynamic descriptions of human activities, which are all crucial to hydrological understanding and modeling.
Pierluigi Claps, Giulia Evangelista, Daniele Ganora, Paola Mazzoglio, and Irene Monforte
Earth Syst. Sci. Data, 16, 1503–1522, https://doi.org/10.5194/essd-16-1503-2024, https://doi.org/10.5194/essd-16-1503-2024, 2024
Short summary
Short summary
FOCA (Italian FlOod and Catchment Atlas) is the first systematic collection of data on Italian river catchments. It comprises geomorphological, soil, land cover, NDVI, climatological and extreme rainfall catchment attributes. FOCA also contains 631 peak and daily discharge time series covering the 1911–2016 period. Using this first nationwide data collection, a wide range of applications, in particular flood studies, can be undertaken within the Italian territory.
Wei Jing Ang, Edward Park, Yadu Pokhrel, Dung Duc Tran, and Ho Huu Loc
Earth Syst. Sci. Data, 16, 1209–1228, https://doi.org/10.5194/essd-16-1209-2024, https://doi.org/10.5194/essd-16-1209-2024, 2024
Short summary
Short summary
Dams have burgeoned in the Mekong, but information on dams is scattered and inconsistent. Up-to-date evaluation of dams is unavailable, and basin-wide hydropower potential has yet to be systematically assessed. We present a comprehensive database of 1055 dams, a spatiotemporal analysis of the dams, and a total hydropower potential of 1 334 683 MW. Considering projected dam development and hydropower potential, the vulnerability and the need for better dam management may be highest in Laos.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Jingyu Lin, Peng Wang, Jinzhu Wang, Youping Zhou, Xudong Zhou, Pan Yang, Hao Zhang, Yanpeng Cai, and Zhifeng Yang
Earth Syst. Sci. Data, 16, 1137–1149, https://doi.org/10.5194/essd-16-1137-2024, https://doi.org/10.5194/essd-16-1137-2024, 2024
Short summary
Short summary
Our paper provides a repository comprising over 330 000 observations encompassing daily, weekly, and monthly records of surface water quality spanning the period 1980–2022. It included 18 distinct indicators, meticulously gathered at 2384 monitoring sites, ranging from inland locations to coastal and oceanic areas. This dataset will be very useful for researchers and decision-makers in the fields of hydrology, ecological studies, climate change, policy development, and oceanography.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, and Luc Feyen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-41, https://doi.org/10.5194/essd-2024-41, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This article presents a reanalysis of Europe's rivers streamflow for the period 1950–2020, using a state-of-the-art hydrological simulation framework. The dataset, called HERA (Hydrological European ReAnalysis), uses detailed information about the landscape, climate, and human activities to estimate river flow. HERA can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources, flood and drought risks.
Daniel Kovacek and Steven Weijs
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-508, https://doi.org/10.5194/essd-2023-508, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We made a dataset for British Columbia describing the terrain, soil, land cover, and climate of over 1 million watersheds. The attributes are often used in hydrology because they are related to the water cycle. The data is meant to be used for water resources problems that can benefit from lots of basins and their attributes. The data and instructions needed to build the dataset from scratch are freely available. The permanent home for the data is https://doi.org/10.5683/SP3/JNKZVT.
Ana M. Ricardo, Rui M. L. Ferreira, Alberto Rodrigues da Silva, Jacinto Estima, Jorge Marques, Ivo Gamito, and Alexandre Serra
Earth Syst. Sci. Data, 16, 375–385, https://doi.org/10.5194/essd-16-375-2024, https://doi.org/10.5194/essd-16-375-2024, 2024
Short summary
Short summary
Floods are among the most common natural disasters responsible for severe damages and human losses. Agueda.2016Flood, a synthesis of locally sensed data and numerically produced data, allows complete characterization of the flood event that occurred in February 2016 in the Portuguese Águeda River. The dataset was managed through the RiverCure Portal, a collaborative web platform connected to a validated shallow-water model.
Jiawei Hou, Albert I. J. M. Van Dijk, Luigi J. Renzullo, and Pablo R. Larraondo
Earth Syst. Sci. Data, 16, 201–218, https://doi.org/10.5194/essd-16-201-2024, https://doi.org/10.5194/essd-16-201-2024, 2024
Short summary
Short summary
The GloLakes dataset provides historical and near-real-time time series of relative (i.e. storage change) and absolute (i.e. total stored volume) storage for more than 27 000 lakes worldwide using multiple sources of satellite data, including laser and radar altimetry and optical remote sensing. These data can help us understand the influence of climate variability and anthropogenic activities on water availability and system ecology over the last 4 decades.
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024, https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Short summary
As satellite technology advances, there is an incredible amount of remotely sensed data for observing terrestrial water. Satellite altimetry observations of water heights can be utilized to calibrate and validate large-scale hydrodynamic models. However, because large-scale models are discontinuous, comparing satellite altimetry to predicted water surface elevation is difficult. We developed a satellite altimetry mapping procedure for high-resolution river network data.
Marvin Höge, Martina Kauzlaric, Rosi Siber, Ursula Schönenberger, Pascal Horton, Jan Schwanbeck, Marius Günter Floriancic, Daniel Viviroli, Sibylle Wilhelm, Anna E. Sikorska-Senoner, Nans Addor, Manuela Brunner, Sandra Pool, Massimiliano Zappa, and Fabrizio Fenicia
Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, https://doi.org/10.5194/essd-15-5755-2023, 2023
Short summary
Short summary
CAMELS-CH is an open large-sample hydro-meteorological data set that covers 331 catchments in hydrologic Switzerland from 1 January 1981 to 31 December 2020. It comprises (a) daily data of river discharge and water level as well as meteorologic variables like precipitation and temperature; (b) yearly glacier and land cover data; (c) static attributes of, e.g, topography or human impact; and (d) catchment delineations. CAMELS-CH enables water and climate research and modeling at catchment level.
Peter Burek and Mikhail Smilovic
Earth Syst. Sci. Data, 15, 5617–5629, https://doi.org/10.5194/essd-15-5617-2023, https://doi.org/10.5194/essd-15-5617-2023, 2023
Short summary
Short summary
We address an annoying problem every grid-based hydrological model must solve to compare simulated and observed river discharge. First, station locations do not fit the high-resolution river network. We update the database with stations based on a new high-resolution network. Second, station locations do not work with a coarser grid-based network. We use a new basin shape similarity concept for station locations on a coarser grid, reducing the error of assigning stations to the wrong basin.
Najwa Sharaf, Jordi Prats, Nathalie Reynaud, Thierry Tormos, Rosalie Bruel, Tiphaine Peroux, and Pierre-Alain Danis
Earth Syst. Sci. Data, 15, 5631–5650, https://doi.org/10.5194/essd-15-5631-2023, https://doi.org/10.5194/essd-15-5631-2023, 2023
Short summary
Short summary
We present a regional long-term (1959–2020) dataset (LakeTSim) of daily epilimnion and hypolimnion water temperature simulations in 401 French lakes. Overall, less uncertainty is associated with the epilimnion compared to the hypolimnion. LakeTSim is valuable for providing new insights into lake water temperature for assessing the impact of climate change, which is often hindered by the lack of observations, and for decision-making by stakeholders.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Shanlei Sun, Zaoying Bi, Jingfeng Xiao, Yi Liu, Ge Sun, Weimin Ju, Chunwei Liu, Mengyuan Mu, Jinjian Li, Yang Zhou, Xiaoyuan Li, Yibo Liu, and Haishan Chen
Earth Syst. Sci. Data, 15, 4849–4876, https://doi.org/10.5194/essd-15-4849-2023, https://doi.org/10.5194/essd-15-4849-2023, 2023
Short summary
Short summary
Based on various existing datasets, we comprehensively considered spatiotemporal differences in land surfaces and CO2 effects on plant stomatal resistance to parameterize the Shuttleworth–Wallace model, and we generated a global 5 km ensemble mean monthly potential evapotranspiration (PET) dataset (including potential transpiration PT and soil evaporation PE) during 1982–2015. The new dataset may be used by academic communities and various agencies to conduct various studies.
Wei Wang, La Zhuo, Xiangxiang Ji, Zhiwei Yue, Zhibin Li, Meng Li, Huimin Zhang, Rong Gao, Chenjian Yan, Ping Zhang, and Pute Wu
Earth Syst. Sci. Data, 15, 4803–4827, https://doi.org/10.5194/essd-15-4803-2023, https://doi.org/10.5194/essd-15-4803-2023, 2023
Short summary
Short summary
The consumptive water footprint of crop production (WFCP) measures blue and green evapotranspiration of either irrigated or rainfed crops in time and space. A gridded monthly WFCP dataset for China is established. There are four improvements from existing datasets: (i) distinguishing water supply modes and irrigation techniques, (ii) distinguishing evaporation and transpiration, (iii) consisting of both total and unit WFCP, and (iv) providing benchmarks for unit WFCP by climatic zones.
Emma L. Robinson, Matthew J. Brown, Alison L. Kay, Rosanna A. Lane, Rhian Chapman, Victoria A. Bell, and Eleanor M. Blyth
Earth Syst. Sci. Data, 15, 4433–4461, https://doi.org/10.5194/essd-15-4433-2023, https://doi.org/10.5194/essd-15-4433-2023, 2023
Short summary
Short summary
This work presents two new Penman–Monteith potential evaporation datasets for the UK, calculated with the same methodology applied to historical climate data (Hydro-PE HadUK-Grid) and an ensemble of future climate projections (Hydro-PE UKCP18 RCM). Both include an optional correction for evaporation of rain that lands on the surface of vegetation. The historical data are consistent with existing PE datasets, and the future projections include effects of rising atmospheric CO2 on vegetation.
Xinyu Chen, Liguang Jiang, Yuning Luo, and Junguo Liu
Earth Syst. Sci. Data, 15, 4463–4479, https://doi.org/10.5194/essd-15-4463-2023, https://doi.org/10.5194/essd-15-4463-2023, 2023
Short summary
Short summary
River flow is experiencing changes under the impacts of climate change and human activities. For example, flood events are occurring more often and are more destructive in many places worldwide. To deal with such issues, hydrologists endeavor to understand the features of extreme events as well as other hydrological changes. One key approach is analyzing flow characteristics, represented by hydrological indices. Building such a comprehensive global large-sample dataset is essential.
Tobias L. Hohenbrink, Conrad Jackisch, Wolfgang Durner, Kai Germer, Sascha C. Iden, Janis Kreiselmeier, Frederic Leuther, Johanna C. Metzger, Mahyar Naseri, and Andre Peters
Earth Syst. Sci. Data, 15, 4417–4432, https://doi.org/10.5194/essd-15-4417-2023, https://doi.org/10.5194/essd-15-4417-2023, 2023
Short summary
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
Sebastien Klotz, Caroline Le Bouteiller, Nicolle Mathys, Firmin Fontaine, Xavier Ravanat, Jean-Emmanuel Olivier, Frédéric Liébault, Hugo Jantzi, Patrick Coulmeau, Didier Richard, Jean-Pierre Cambon, and Maurice Meunier
Earth Syst. Sci. Data, 15, 4371–4388, https://doi.org/10.5194/essd-15-4371-2023, https://doi.org/10.5194/essd-15-4371-2023, 2023
Short summary
Short summary
Mountain badlands are places of intense erosion. They deliver large amounts of sediment to river systems, with consequences for hydropower sustainability, habitat quality and biodiversity, and flood hazard and river management. Draix-Bleone Observatory was created in 1983 to understand and quantify sediment delivery from such badland areas. Our paper describes how water and sediment fluxes have been monitored for almost 40 years in the small mountain catchments of this observatory.
Gopi Goteti
Earth Syst. Sci. Data, 15, 4389–4415, https://doi.org/10.5194/essd-15-4389-2023, https://doi.org/10.5194/essd-15-4389-2023, 2023
Short summary
Short summary
Data on river gauging stations, river basin boundaries and river flow paths are critical for hydrological analyses, but existing data for India's river basins have limited availability and reliability. This work fills the gap by building a new dataset. Data for 645 stations in 15 basins of India were compiled and checked against global data sources; data were supplemented with additional information where needed. This dataset will serve as a reliable building block in hydrological analyses.
Md Safat Sikder, Jida Wang, George H. Allen, Yongwei Sheng, Dai Yamazaki, Chunqiao Song, Meng Ding, Jean-François Crétaux, and Tamlin M. Pavelsky
Earth Syst. Sci. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023, https://doi.org/10.5194/essd-15-3483-2023, 2023
Short summary
Short summary
We introduce Lake-TopoCat to reveal detailed lake hydrography information. It contains the location of lake outlets, the boundary of lake catchments, and a wide suite of attributes that depict detailed lake drainage relationships. It was constructed using lake boundaries from a global lake dataset, with the help of high-resolution hydrography data. This database may facilitate a variety of applications including water quality, agriculture and fisheries, and integrated lake–river modeling.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Benjamin M. Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Frederic Frappart, Stephane Calmant, Omid Elmi, Ayan Santos Fleischmann, Melanie Becker, Mohammad J. Tourian, Rômulo A. Jucá Oliveira, and Sly Wongchuig
Earth Syst. Sci. Data, 15, 2957–2982, https://doi.org/10.5194/essd-15-2957-2023, https://doi.org/10.5194/essd-15-2957-2023, 2023
Short summary
Short summary
The surface water storage (SWS) in the Congo River basin (CB) remains unknown. In this study, the multi-satellite and hypsometric curve approaches are used to estimate SWS in the CB over 1992–2015. The results provide monthly SWS characterized by strong variability with an annual mean amplitude of ~101 ± 23 km3. The evaluation of SWS against independent datasets performed well. This SWS dataset contributes to the better understanding of the Congo basin’s surface hydrology using remote sensing.
Natalie Lützow, Georg Veh, and Oliver Korup
Earth Syst. Sci. Data, 15, 2983–3000, https://doi.org/10.5194/essd-15-2983-2023, https://doi.org/10.5194/essd-15-2983-2023, 2023
Short summary
Short summary
Glacier lake outburst floods (GLOFs) are a prominent natural hazard, and climate change may change their magnitude, frequency, and impacts. A global, literature-based GLOF inventory is introduced, entailing 3151 reported GLOFs. The reporting density varies temporally and regionally, with most cases occurring in NW North America. Since 1900, the number of yearly documented GLOFs has increased 6-fold. However, many GLOFs have incomplete records, and we call for a systematic reporting protocol.
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Youjiang Shen, Karina Nielsen, Menaka Revel, Dedi Liu, and Dai Yamazaki
Earth Syst. Sci. Data, 15, 2781–2808, https://doi.org/10.5194/essd-15-2781-2023, https://doi.org/10.5194/essd-15-2781-2023, 2023
Short summary
Short summary
Res-CN fills a gap in a comprehensive and extensive dataset of reservoir-catchment characteristics for 3254 Chinese reservoirs with 512 catchment-level attributes and significantly enhanced spatial and temporal coverage (e.g., 67 % increase in water level and 225 % in storage anomaly) of time series of reservoir water level (data available for 20 % of 3254 reservoirs), water area (99 %), storage anomaly (92 %), and evaporation (98 %), supporting a wide range of applications and disciplines.
Hui Zheng, Wenli Fei, Zong-Liang Yang, Jiangfeng Wei, Long Zhao, Lingcheng Li, and Shu Wang
Earth Syst. Sci. Data, 15, 2755–2780, https://doi.org/10.5194/essd-15-2755-2023, https://doi.org/10.5194/essd-15-2755-2023, 2023
Short summary
Short summary
An ensemble of evapotranspiration, runoff, and water storage is estimated here using the Noah-MP land surface model by perturbing model parameterization schemes. The data could be beneficial for monitoring and understanding the variability of water resources. Model developers could also gain insights by intercomparing the ensemble members.
Alison L. Kay, Victoria A. Bell, Helen N. Davies, Rosanna A. Lane, and Alison C. Rudd
Earth Syst. Sci. Data, 15, 2533–2546, https://doi.org/10.5194/essd-15-2533-2023, https://doi.org/10.5194/essd-15-2533-2023, 2023
Short summary
Short summary
Climate change will affect the water cycle, including river flows and soil moisture. We have used both observational data (1980–2011) and the latest UK climate projections (1980–2080) to drive a national-scale grid-based hydrological model. The data, covering Great Britain and Northern Ireland, suggest potential future decreases in summer flows, low flows, and summer/autumn soil moisture, and possible future increases in winter and high flows. Society must plan how to adapt to such impacts.
Cited articles
Abbas, A., Baek, S., Silvera, N., Soulileuth, B., Pachepsky, Y., Ribolzi, O., Boithias, L., and Cho, K. H.: In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models, Hydrol. Earth Syst. Sci., 25, 6185–6202, https://doi.org/10.5194/hess-25-6185-2021, 2021.
Abbas, A., Boithias, L., Pachepsky, Y., Kim, K., Chun, J. A., and Cho, K. H.: AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods, Geosci. Model Dev., 15, 3021–3039, https://doi.org/10.5194/gmd-15-3021-2022, 2022.
Arias, M. E., Cochrane, T. A., Kummu, M., Lauri, H., Holtgrieve, G. W.,
Koponen, J., and Piman, T.: Impacts of hydropower and climate change on
drivers of ecological productivity of Southeast Asia's most important
wetland, Ecol. Model., 272, 252–263,
https://doi.org/10.1016/j.ecolmodel.2013.10.015, 2014.
Boithias, L., Choisy, M., Souliyaseng, N., Jourdren, M., Quet, F., Buisson,
Y., Thammahacksa, C., Silvera, N., Latsachack, K., Sengtaheuanghoung, O.,
Pierret, A., Rochelle-Newall, E., Becerra, S., and Ribolzi, O.: Hydrological
regime and water shortage as drivers of the seasonal incidence of diarrheal
diseases in a tropical montane environment, PLoS Negl. Trop. Dis., 10,
e0005195, https://doi.org/10.1371/journal.pntd.0005195, 2016.
Boithias, L., Ribolzi, O., Lacombe, G., Thammahacksa, C., Silvera, N.,
Latsachack, K., Soulileuth, B., Viguier, M., Auda, Y., Robert, E., Evrard,
O., Huon, S., Pommier, T., Zouiten, C., Sengtaheuanghoung, O., and
Rochelle-Newall, E.: Quantifying the effect of overland flow on Escherichia coli pulses
during floods: Use of a tracer-based approach in an erosion-prone tropical
catchment, J. Hydrol., 594, 125935,
https://doi.org/10.1016/j.jhydrol.2020.125935, 2021a.
Boithias, L., Auda, Y., Audry, S., Bricquet, J., Chanhphengxay, A., Chaplot,
V., de Rouw, A., Henry des Tureaux, T., Huon, S., Janeau, J., Latsachack,
K., Le Troquer, Y., Lestrelin, G., Maeght, J., Marchand, P., Moreau, P.,
Noble, A., Pando-Bahuon, A., Phachomphon, K., Phanthavong, K., Pierret, A.,
Ribolzi, O., Riotte, J., Robain, H., Rochelle-Newall, E., Sayavong, S.,
Sengtaheuanghoung, O., Silvera, N., Sipaseuth, N., Soulileuth, B.,
Souliyavongsa, X., Sounyaphong, P., Tasaketh, S., Thammahacksa, C.,
Thiebaux, J., Valentin, C., Vigiak, O., Viguier, M., and Xayyathip, K.: The
Multiscale TROPIcal CatchmentS critical zone observatory M-TROPICS dataset
II: land use, hydrology and sediment production monitoring in Houay Pano,
northern Lao PDR, Hydrol. Process., 35, e14126,
https://doi.org/10.1002/hyp.14126, 2021b.
Causse, J., Billen, G., Garnier, J., Henri-des-Tureaux, T., Olasa, X.,
Thammahacksa, C., Latsachak, K. O., Soulileuth, B., Sengtaheuanghoung, O.,
Rochelle-Newall, E., and Ribolzi, O.: Field and modelling studies of
Escherichia coli loads in tropical streams of montane agro-ecosystems, J. Hydro-Environ.
Res., 9, 496–507, https://doi.org/10.1016/j.jher.2015.03.003, 2015.
Chaplot, V. and Poesen, J.: Sediment, soil organic carbon and runoff
delivery at various spatial scales, Catena, 88, 46–56,
https://doi.org/10.1016/j.catena.2011.09.004, 2012.
Exley, J. L. R., Liseka, B., Cumming, O., and Ensink, J. H. J.: The
Sanitation Ladder, What Constitutes an Improved Form of Sanitation?,
Environ. Sci. Technol., 49, 1086–1094, https://doi.org/10.1021/es503945x,
2015.
Global Water Forum: Basins under pressure: the Mekong basin, 47 pp., 2015.
Hecht, J. S., Lacombe, G., Arias, M. E., Dang, T. D., and Piman, T.:
Hydropower dams of the Mekong River basin: A review of their hydrological
impacts, J. Hydrol., 568, 285–300,
https://doi.org/10.1016/j.jhydrol.2018.10.045, 2019.
Kim, M., Boithias, L., Cho, K. H., Silvera, N., Thammahacksa, C.,
Latsachack, K., Rochelle-Newall, E., Sengtaheuanghoung, O., Pierret, A.,
Pachepsky, Y. A., and Ribolzi, O.: Hydrological modeling of Fecal Indicator
Bacteria in a tropical mountain catchment, Water Res., 119, 102–113,
https://doi.org/10.1016/j.watres.2017.04.038, 2017.
Kim, M., Boithias, L., Cho, K. H., Sengtaheuanghoung, O., and Ribolzi, O.:
Modeling the Impact of Land Use Change on Basin-scale Transfer of Fecal
Indicator Bacteria: SWAT Model Performance, J. Environ. Qual., 47,
1115–1122, https://doi.org/10.2134/jeq2017.11.0456, 2018.
Kondolf, G. M., Rubin, Z. K., and Minear, J. T.: Dams on the Mekong:
Cumulative sediment starvation, Water Resour. Res., 50, 5158–5169,
https://doi.org/10.1002/2013WR014651, 2014.
Lao Statistics Bureau: Results of Population and Housing Census 2015 – The
4th Population and Housing Census (PHC), 282 pp., 2015.
Le Meur, M., Le Phu, V., and Nicolas, G.: What Is the Future of the Lower
Mekong Basin Struggling against Human Activities? A Review, in: River Deltas
– Recent Advances, IntechOpen, https://doi.org/10.5772/intechopen.95010,
2021.
Liechti, N., Zimmermann, R. E., Zopfi, J., Robinson, M. T., Pierret, A.,
Ribolzi, O., Rattanavong, S., Davong, V., Newton, P. N., Wittwer, M., and
Dance, D. A. B.: Whole-Genome Assemblies of 16 Burkholderia pseudomallei Isolates from Rivers in
Laos, Microbiol. Resour. Announc., 10, e01226-20, https://doi.org/10.1128/MRA.01226-20,
2021.
Lyon, S. W., King, K., Polpanich, O., and Lacombe, G.: Assessing hydrologic
changes across the Lower Mekong Basin, J. Hydrol. Reg. Stud., 12, 303–314,
https://doi.org/10.1016/j.ejrh.2017.06.007, 2017.
MA: Millennium Ecosystem Assessment, Ecosystems and Human Well-being:
Synthesis, Island Press/World Resources Institute, Washington DC, 155 pp., 2005.
MRC: The flow of the Mekong, Mekong River Commission Management Information
Booklet Series No. 2, 12 pp., 2009.
Nakhle, P., Boithias, L., Pando-Bahuon, A., Thammahacksa, C., Gallion, N.,
Sounyafong, P., Silvera, N., Latsachack, K., Soulileuth, B.,
Rochelle-Newall, E. J., Marcangeli, Y., Pierret, A., and Ribolzi, O.: Decay
Rate of Escherichia coli in a Mountainous Tropical Headwater Wetland, Water, 13, 2068,
https://doi.org/10.3390/w13152068, 2021a.
Nakhle, P., Ribolzi, O., Boithias, L., Rattanavong, S., Auda, Y., Sayavong,
S., Zimmermann, R., Soulileuth, B., Pando, A., Thammahacksa, C.,
Rochelle-Newall, E., Santini, W., Martinez, J. M., Gratiot, N., and Pierret,
A.: Effects of hydrological regime and land use on in-stream Escherichia coli concentration
in the Mekong basin, Lao PDR, Sci. Rep., 11, 3460,
https://doi.org/10.1038/s41598-021-82891-0, 2021b.
Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., and Hyndman, D.:
A Review of the Integrated Effects of Changing Climate, Land Use, and Dams
on Mekong River Hydrology, Water, 10, 266,
https://doi.org/10.3390/w10030266, 2018.
Ribolzi, O., Cuny, J., Sengsoulichanh, P., Mousquès, C., Soulileuth, B.,
Pierret, A., Huon, S., and Sengtaheuanghoung, O.: Land Use and Water Quality
Along a Mekong Tributary in Northern Lao P.D.R., Environ. Manage., 47,
291–302, https://doi.org/10.1007/s00267-010-9593-0, 2011.
Ribolzi, O., Rochelle-Newall, E., Dittrich, S., Auda, Y., Newton, P. N.,
Rattanavong, S., Knappik, M., Soulileuth, B., Sengtaheuanghoung, O., Dance,
D. A. B., and Pierret, A.: Land use and soil type determine the presence of
the pathogen Burkholderia pseudomallei in tropical rivers, Environ. Sci. Pollut. Res., 23,
7828–7839, https://doi.org/10.1007/s11356-015-5943-z, 2016a.
Ribolzi, O., Evrard, O., Huon, S., Rochelle-Newall, E., Henri-des-Tureaux,
T., Silvera, N., Thammahacksac, C., and Sengtaheuanghoung, O.: Use of
fallout radionuclides (7Be, 210Pb) to estimate resuspension of Escherichia coli from
streambed sediments during floods in a tropical montane catchment, Environ.
Sci.Pollut. Res., 23, 3427–3435,
https://doi.org/10.1007/s11356-015-5595-z, 2016b.
Ribolzi, O., Evrard, O., Huon, S., de Rouw, A., Silvera, N., Latsachack, K.
O., Soulileuth, B., Lefèvre, I., Pierret, A., Lacombe, G.,
Sengtaheuanghoung, O., and Valentin, C.: From shifting cultivation to teak
plantation: effect on overland flow and sediment yield in a montane tropical
catchment, Sci. Rep., 7, 3987, https://doi.org/10.1038/s41598-017-04385-2,
2017.
Ribolzi, O., Boithias, L., Thammahacksa, C., Silvera, N., Pando-Bahuon, A.,
Sengtaheuanghoung, O., Sipaseuth, N., Latsachack, K., Soulileuth, B.,
Sounyafong, P., Khampaseuth, X., and Pierret, A.: Escherichia coli concentrations and
physico-chemical measurements (2011–2021) at the outlet of six catchments of
the Mekong river basin, northern Lao PDR, DataSuds, V3 [data set],
https://doi.org/10.23708/1YZQHH, 2021a.
Ribolzi, O., Boithias, L., Thammahacksa, C., Rochelle-Newall, E.,
Pando-Bahuon, A., Silvera, N., Sengtaheuanghoung, O., Sipaseuth, N., and
Pierret, A.: Escherichia coli concentrations and physico-chemical measurements (2011–2021)
at the outlet of the Houay Pano catchment, northern Lao PDR, DataSuds, V3 [data set],
https://doi.org/10.23708/EWOYNK, 2021b.
Ribolzi, O., Zimmermann, R., Thammahacksa, C., Rattanavong, S., Oliva, P.,
Sengtaheuanghoung, O., and Pierret, A.: Escherichia coli concentrations and physico-chemical
measurements at the outlet of 29 catchments of the Mekong river basin, Lao
PDR, during dry and rainy seasons (2016), DataSuds, V3 [data set],
https://doi.org/10.23708/ZRSBM4, 2021c.
Ribolzi, O., Causse, J., Thammahacksa, C., Latsachack, K., Huon, S.,
Henry-Des-Tureaux, T., Sengtaheuanghoung, O., Sipaseuth, N., and Pierret,
A.: Escherichia coli concentrations and physico-chemical measurements (2011) along a
cross-sectional profile of the Nam Khan river, Mekong river basin, northern
Lao PDR, DataSuds, V3 [data set], https://doi.org/10.23708/RNY0LD, 2022.
Rochelle-Newall, E., Nguyen, T. M. H., Le, T. P. Q., Sengtaheuanghoung, O.,
and Ribolzi, O.: A short review of fecal indicator bacteria in tropical
aquatic ecosystems: knowledge gaps and future directions, Front. Microbiol.,
6, 308, https://doi.org/10.3389/fmicb.2015.00308, 2015.
Rochelle-Newall, E. J., Ribolzi, O., Viguier, M., Thammahacksa, C., Silvera,
N., Latsachack, K., Dinh, R. P., Naporn, P., Sy, H. T., Soulileuth, B.,
Hmaimum, N., Sisouvanh, P., Robain, H., Janeau, J.-L., Valentin, C.,
Boithias, L., and Pierret, A.: Effect of land use and hydrological processes
on Escherichia coli concentrations in streams of tropical, humid headwater catchments, Sci.
Rep., 6, 32974, https://doi.org/10.1038/srep32974, 2016.
Sabo, J. L., Ruhi, A., Holtgrieve, G. W., Elliott, V., Arias, M. E., Ngor,
P. B., Räsänen, T. A., and Nam, S.: Designing river flows to improve
food security futures in the Lower Mekong Basin, Science, 358, eaao1053,
https://doi.org/10.1126/science.aao1053, 2017.
Santini, W., Camenen, B., Le Coz, J., Vauchel, P., Guyot, J.-L., Lavado, W., Carranza, J., Paredes, M. A., Pérez Arévalo, J. J., Arévalo, N., Espinoza Villar, R., Julien, F., and Martinez, J.-M.: An index concentration method for suspended load monitoring in large rivers of the Amazonian foreland, Earth Surf. Dynam., 7, 515–536, https://doi.org/10.5194/esurf-7-515-2019, 2019.
Shrestha, B., Maskey, S., Babel, M. S., van Griensven, A., and Uhlenbrook,
S.: Sediment related impacts of climate change and reservoir development in
the Lower Mekong River Basin: a case study of the Nam Ou Basin, Lao PDR,
Climatic Change, 149, 13–27, https://doi.org/10.1007/s10584-016-1874-z,
2018.
Tong, Y., Yao, R., He, W., Zhou, F., Chen, C., Liu, X., Lu, Y., Zhang, W.,
Wang, X., Lin, Y., and Zhou, M.: Impacts of sanitation upgrading to the
decrease of fecal coliforms entering into the environment in China, Environ.
Res., 149, 57–65, https://doi.org/10.1016/j.envres.2016.05.009, 2016.
USGS: Dissolved oxygen: U.S. Geological Survey Techniques and Methods, book
9, chap. A6.2, version 2.0., 48 pp., https://doi.org/10.3133/tm9A6.2, 2006.
Vos, T., Lim, S. S., Abbafati, C., Abbas, K. M., Abbasi, M., Abbasifard, M.,
Abbasi-Kangevari, M., Abbastabar, H., Abd-Allah, F., Abdelalim, A.,
Abdollahi, M., Abdollahpour, I., Abo lhassani, H., Aboyans, V., Abrams, E.
M., Abreu, L. G., Abrigo, M. R. M., Abu-Raddad, L. J., Abushouk, A. I.,
Acebedo, A., Ackerman, I. N., Adabi, M., Adamu, A. A., Adebayo, O. M.,
Adekanmbi, V., Adelson, J. D., Adetokunboh, O. O., Adham, D., Afshari, M.,
Afshin, A., Agardh, E. E., Agarwal, G., Agesa, K. M., Aghaali, M., Aghamir,
S. M. K., Agrawal, A., Ahmad, T., Ahmadi, A., Ahmadi, M., Ahmadieh, H.,
Ahmadpour, E., Akalu, T. Y., Akinyemi, R. O., Akinyemiju, T., Akombi, B.,
Al-Aly, Z., Alam, K., Alam, N., Alam, S., Alam, T., Alanzi, T. M.,
Albertson, S. B., Alcalde-Rabanal, J. E., Alema, N. M., Ali, M., Ali, S.,
Alicandro, G., Alijanzadeh, M., Alinia, C., Alipour, V., Aljunid, S. M.,
Alla, F., Allebeck, P., Almasi-Hashiani, A., Alonso, J., Al-Raddadi, R. M.,
Altirkawi, K. A., Alvis-Guzman, N., Alvis-Zakzuk, N. J., Amini, S.,
Amini-Rarani, M., Aminorroaya, A., Amiri, F., Amit, A. M. L., Amugsi, D. A.,
Amul, G. G. H., Anderlini, D., Andrei, C. L., Andrei, T., Anjomshoa, M.,
Ansari, F., Ansari, I., Ansari-Moghaddam, A., Antonio, C. A. T., Antony, C.
M., Antriyandarti, E., Anvari, D., Anwer, R., Arabloo, J., Arab-Zozani, M.,
Aravkin, A. Y., Ariani, F., Ärnlöv, J., Aryal, K. K., Arzani, A.,
Asadi-Aliabadi, M., Asadi-Pooya, A. A., Asghari, B., Ashbaugh, C., et al.:
Global burden of 369 diseases and injuries in 204 countries and territories,
1990–2019: a systematic analysis for the Global Burden of Disease Study
2019, The Lancet, 396, 1204–1222,
https://doi.org/10.1016/S0140-6736(20)30925-9, 2020.
WLE: Dataset on the Dams of the Irrawaddy, Mekong, Red and Salween River Basins, Vientiane, Lao PDR: CGIAR Research Program on Water, Land and Ecosystems – Greater Mekong, https://wle-mekong.cgiar.org/maps/, last access: 21 June 2022.
Zimmermann, R. E., Ribolzi, O., Pierret, A., Rattanavong, S., Robinson, M.
T., Newton, P. N., Davong, V., Auda, Y., Zopfi, J., and Dance, D. A. B.:
Rivers as carriers and potential sentinels for Burkholderia pseudomallei in Laos, Sci. Rep., 8, 8674,
https://doi.org/10.1038/s41598-018-26684-y, 2018.
Short summary
Fecal pathogens in surface waters may threaten human health, especially in developing countries. The Escherichia coli (E. coli) database is organized in three datasets and includes 1602 records from 31 sampling stations located within the Mekong River basin in Lao PDR. Data have been used to identify the drivers of E. coli dissemination across tropical catchments, including during floods. Data may be further used to interpret new variables or to map the health risk posed by fecal pathogens.
Fecal pathogens in surface waters may threaten human health, especially in developing countries....
Altmetrics
Final-revised paper
Preprint