Articles | Volume 14, issue 5
https://doi.org/10.5194/essd-14-2369-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2369-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Concentrations and fluxes of suspended particulate matter and associated contaminants in the Rhône River from Lake Geneva to the Mediterranean Sea
Institut de Radioprotection et de Sureté Nucléaire (IRSN),
PSE-ENV, SRTE/LRTA, BP 3, 13115 Saint-Paul-lez-Durance, France
Alexandra Gruat
INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, Villeurbanne 69625,
France
Fabien Thollet
INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, Villeurbanne 69625,
France
Jérôme Le Coz
INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, Villeurbanne 69625,
France
Marina Coquery
INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, Villeurbanne 69625,
France
Matthieu Masson
INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, Villeurbanne 69625,
France
Aymeric Dabrin
INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, Villeurbanne 69625,
France
Olivier Radakovitch
Institut de Radioprotection et de Sureté Nucléaire (IRSN),
PSE-ENV, SRTE/LRTA, BP 3, 13115 Saint-Paul-lez-Durance, France
Jérôme Labille
Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, 13545
Aix-en-Provence, France
Jean-Paul Ambrosi
Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, 13545
Aix-en-Provence, France
Doriane Delanghe
Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, 13545
Aix-en-Provence, France
Patrick Raimbault
Aix Marseille Université, CNRS/INSU, Université de Toulon,
IRD, Mediterranean Institute of Oceanography (MIO), UM110, 13288 Marseille,
France
Related authors
Olivier Evrard, Caroline Chartin, J. Patrick Laceby, Yuichi Onda, Yoshifumi Wakiyama, Atsushi Nakao, Olivier Cerdan, Hugo Lepage, Hugo Jaegler, Rosalie Vandromme, Irène Lefèvre, and Philippe Bonté
Earth Syst. Sci. Data, 13, 2555–2560, https://doi.org/10.5194/essd-13-2555-2021, https://doi.org/10.5194/essd-13-2555-2021, 2021
Short summary
Short summary
This dataset provides an original compilation of radioactive dose rates and artificial radionuclide activities in sediment deposited after floods in the rivers draining the main radioactive pollution plume in Fukushuma, Japan, between November
2011 and November 2020. In total, 782 sediment samples collected from 27 to 71 locations during 16 fieldwork campaigns were analysed. This provides a unique post-accidental dataset to better understand the environmental fate of radionuclides.
Olivier Grandjouan, Flora Branger, Matthieu Masson, Benoit Cournoyer, Nicolas Robinet, Pauline Dusseux, Angélique Dominguez Lage, and Marina Coquery
EGUsphere, https://doi.org/10.5194/egusphere-2025-2234, https://doi.org/10.5194/egusphere-2025-2234, 2025
Short summary
Short summary
This study presents a novel approach aimed at using biogeochemical data from surface water to decompose streamwater flow into spatial and vertical contributions. A selection of tracers was used in a mixing model to estimate contributions at the outlet of a peri-urban catchment. Results provided a better understanding of hydrological processes in the catchment and demonstrated the potential of biogeochemical data to discriminate spatial contributions according to land use.
Mathieu Lucas, Michel Lang, Benjamin Renard, and Jérôme Le Coz
Hydrol. Earth Syst. Sci., 28, 5031–5047, https://doi.org/10.5194/hess-28-5031-2024, https://doi.org/10.5194/hess-28-5031-2024, 2024
Short summary
Short summary
The proposed flood frequency model accounts for uncertainty in the perception threshold S and the starting date of the historical period. Using a 500-year-long case study, inclusion of historical floods reduces the uncertainty in flood quantiles, even when only the number of exceedances of S is known. Ignoring threshold uncertainty leads to underestimated flood quantile uncertainty. This underlines the value of using a comprehensive framework for uncertainty estimation.
Jessica Marggraf, Guillaume Dramais, Jérôme Le Coz, Blaise Calmel, Benoît Camenen, David J. Topping, William Santini, Gilles Pierrefeu, and François Lauters
Earth Surf. Dynam., 12, 1243–1266, https://doi.org/10.5194/esurf-12-1243-2024, https://doi.org/10.5194/esurf-12-1243-2024, 2024
Short summary
Short summary
Suspended-sand fluxes in rivers vary with time and space, complicating their measurement. The proposed method captures the vertical and lateral variations of suspended-sand concentration throughout a river cross-section. It merges water samples taken at various positions throughout the cross-section with high-resolution acoustic velocity measurements. This is the first method that includes a fully applicable uncertainty estimation; it can easily be applied to any other study sites.
Jérôme Texier, Julio Gonçalvès, Thomas Stieglitz, Christine Vallet-Coulomb, Jérôme Labille, Vincent Marc, Angélique Poulain, and Philippe Dussouillez
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-239, https://doi.org/10.5194/hess-2023-239, 2024
Manuscript not accepted for further review
Short summary
Short summary
Understanding the relationship between rivers and alluvial aquifers is crucial, yet challenging. Through a combined approach of tracing and modeling in a French Rhône River site, we reveal significant insights. We quantify the impact of pumping on water flow and identify the primary water sources. Our findings aid sustainable water management in regions facing similar challenges, offering practical guidance for policymakers on groundwater use.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Malek Belgacem, Katrin Schroeder, Alexander Barth, Charles Troupin, Bruno Pavoni, Patrick Raimbault, Nicole Garcia, Mireno Borghini, and Jacopo Chiggiato
Earth Syst. Sci. Data, 13, 5915–5949, https://doi.org/10.5194/essd-13-5915-2021, https://doi.org/10.5194/essd-13-5915-2021, 2021
Short summary
Short summary
The Mediterranean Sea exhibits an anti-estuarine circulation, responsible for its low productivity. Understanding this peculiar character is still a challenge since there is no exact quantification of nutrient sinks and sources. Because nutrient in situ observations are generally infrequent and scattered in space and time, climatological mapping is often applied to sparse data in order to understand the biogeochemical state of the ocean. The dataset presented here partly addresses these issues.
Jérôme Le Coz, Guy D. Moukandi N'kaya, Jean-Pierre Bricquet, Alain Laraque, and Benjamin Renard
Proc. IAHS, 384, 25–29, https://doi.org/10.5194/piahs-384-25-2021, https://doi.org/10.5194/piahs-384-25-2021, 2021
Olivier Evrard, Caroline Chartin, J. Patrick Laceby, Yuichi Onda, Yoshifumi Wakiyama, Atsushi Nakao, Olivier Cerdan, Hugo Lepage, Hugo Jaegler, Rosalie Vandromme, Irène Lefèvre, and Philippe Bonté
Earth Syst. Sci. Data, 13, 2555–2560, https://doi.org/10.5194/essd-13-2555-2021, https://doi.org/10.5194/essd-13-2555-2021, 2021
Short summary
Short summary
This dataset provides an original compilation of radioactive dose rates and artificial radionuclide activities in sediment deposited after floods in the rivers draining the main radioactive pollution plume in Fukushuma, Japan, between November
2011 and November 2020. In total, 782 sediment samples collected from 27 to 71 locations during 16 fieldwork campaigns were analysed. This provides a unique post-accidental dataset to better understand the environmental fate of radionuclides.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Cited articles
AFNOR: NF ISO 10694: Soil quality – Determination of organic and total
carbon after dry combustion (elementary analysis), 7 p., 1995.
AFNOR: NF EN 872: Water quality – Determination of suspended solids – Method
by filtration through glass fibre filters, 14 p., 2005.
AFNOR: NF ISO 10694: Particle Size Analysis – Laser Diffraction Methods, 51
p., 2009.
Antonelli, C., Eyrolle, F., Rolland, B., Provansal, M., and Sabatier, F.:
Suspended sediment and 137Cs fluxes during the exceptional December 2003
flood in the Rhone River, southeast France, Geomorphology, 95, 350–360,
https://doi.org/10.1016/j.geomorph.2007.06.007, 2008.
Armijos, E., Crave, A., Espinoza, R., Fraizy, P., Santos, A. L. M. R. D.,
Sampaio, F., De Oliveira, E., Santini, W., Martinez, J. M., Autin, P.,
Pantoja, N., Oliveira, M., and Filizola, N.: Measuring and modeling vertical
gradients in suspended sediments in the Solimões/Amazon River, Hydrol.
Process., 31, 654–667, https://doi.org/10.1002/hyp.11059, 2017.
Cossa, D., Coquery, M., Nakhlé, K., Claisse, D., and Grisot, G.:
Mercure, Méthode d'analyse dans les sédiments, les boues et les
biotes, AQUAREF, 5 p., 2013.
Cossonnet, C., Neiva Marques, A. M., and Gurriaran, R.: Experience acquired
on environmental sample combustion for organically bound tritium
measurement, Appl. Radiat. Isot., 67, 809–811,
https://doi.org/10.1016/j.apradiso.2009.01.039, 2009.
Dabrin, A., Bégorre, C., Bretier, M., Dugué, V., Masson, M., Le
Bescond, C., Le Coz, J., and Coquery, M.: Reactivity of particulate element
concentrations: apportionment assessment of suspended particulate matter
sources in the Upper Rhône River, France, J. Soil. Sediment., 21,
1256–1274, https://doi.org/10.1007/s11368-020-02856-0, 2021.
Delile, H., Masson, M., Miège, C., Le Coz, J., Poulier, G., Le Bescond,
C., Radakovitch, O., and Coquery, M.: Hydro-climatic drivers of land-based
organic and inorganic particulate micropollutant fluxes: The regime of the
largest river water inflow of the Mediterranean Sea, Water Res., 185,
116067, https://doi.org/10.1016/j.watres.2020.116067, 2020.
Delmas, M., Cerdan, O., Cheviron, B., Mouchel, J. M., and Eyrolle, F.:
Sediment export from French rivers to the sea, Earth Surf. Proc.
Land., 37, 754–762, https://doi.org/10.1002/esp.3219, 2012.
Dugué, V., Walter, C., Andries, E., Launay, M., Le Coz, J., Camenen, B.,
and Faure, J. B.: Accounting for hydropower schemes' rules in the 1-D
hydrodynamic modeling of the Rhône River from Lake Geneva to the
Mediterranean sea, in: 36th IAHR World Congress, June–3 July, 2015, The Hague, the Netherlands, hal-02602195, 2015.
Eyrolle, F., Antonelli, C., Raimbault, P., Boullier, V., and Arnaud, M.:
SORA: a high frequency flux monitoring station at the lower Rhône River,
in: Proceedings of the 39th CIESM Congress, Venice, Italy, 10–14 May 2010, 2010.
Eyrolle, F., Lepage, H., Antonelli, C., Morereau, A., Cossonnet, C., Boyer,
P., and Gurriaran, R.: Radionuclides in waters and suspended sediments in
the Rhone River (France) – Current contents, anthropic pressures and
trajectories, Sci. Total Environ., 723, 137873,
https://doi.org/10.1016/j.scitotenv.2020.137873, 2020.
Eyrolle, F. F., Lepage, H., Copard, Y., Ducros, L. L., Claval, D., Saey, L.,
Cossonnet, C., Giner, F., and Mourier, D.: A brief history of origins and
contents of Organically Bound Tritium (OBT) and 14C in the sediments of the
Rhône watershed, Sci. Total Environ., 643, 40–51,
https://doi.org/10.1016/j.scitotenv.2018.06.074, 2018.
Horowitz, A. J.: An evaluation of sediment rating curves for estimating
suspended sediment concentrations for subsequent flux calculations, Hydrol.
Process., 17, 3387–3409, https://doi.org/10.1002/hyp.1299, 2003.
Horowitz, A. J.: Determining annual suspended sediment and
sediment-associated trace element and nutrient fluxes, Sci. Total Environ.,
400, 315–343, https://doi.org/10.1016/j.scitotenv.2008.04.022, 2008.
Horowitz, A. J.: Monitoring suspended sediments and associated chemical
constituents in urban environments: Lessons from the city of Atlanta,
Georgia, USA water quality monitoring program, J. Soil. Sediment., 9,
342–363, https://doi.org/10.1007/s11368-009-0092-y, 2009.
Horowitz, A. J., Elrick, K. A., and Smith, J. J.: Annual suspended sediment
and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio
Grande drainage basins, Hydrol. Process., 15, 1169–1207,
https://doi.org/10.1002/hyp.209, 2001.
Kiang, J. E., Gazoorian, C., McMillan, H., Coxon, G., Le Coz, J.,
Westerberg, I. K., Belleville, A., Sevrez, D., Sikorska, A. E.,
Petersen-Øverleir, A., Reitan, T., Freer, J., Renard, B., Mansanarez, V.,
and Mason, R.: A Comparison of Methods for Streamflow Uncertainty
Estimation, Water Resour. Res., 54, 7149–7176,
https://doi.org/10.1029/2018WR022708, 2018.
Launay, M., Dugué, V., Faure, J. B., Coquery, M., Camenen, B., and Le
Coz, J.: Numerical modelling of the suspended particulate matter dynamics in
a regulated river network, Sci. Total Environ., 665, 591–605,
https://doi.org/10.1016/j.scitotenv.2019.02.015, 2019.
Le Bescond, C., Thollet, F., Poulier, G., Gairoard, S., Lepage, H., Branger,
F., Jamet, L., Raidelet, N., Radakovitch, O., Dabrin, A., Coquery, M., and
Le Coz, J.: Des flux d'eau aux flux de matières en suspension et de
contaminants associés: gestion d'un réseau de stations
hydro-sédimentaires sur le Rhône, La Houille Blanche, 104, 63–70,
https://doi.org/10.1051/lhb/2018033, 2018.
Le Coz, J., Renard, B., Bonnifait, L., Le Boursicaud, R., Branger, F., and
Mansanarez, V.: Guide pratique de la méthode BaRatin pour l'analyse des
courbes de tarage et de leurs incertitudes, Irstea, 94 pp., hal-02601038, 2014.
Lefèvre, O., Bouisset, P., Germain, P., Barker, E., Kerlau, G., and Cagnat, X.: Self-absorption correction factor applied to 129I measurement by direct gamma-X spectrometry for Fucus serratus samples, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 506, 173–185, https://doi.org/10.1016/S0168-9002(03)01361-5, 2003.
Lepage, H., Masson, M., Delanghe, D., and Le Bescond, C.: Grain size
analyzers: results of an intercomparison study, SN Appl. Sci., 1, 1100,
https://doi.org/10.1007/s42452-019-1133-9, 2019.
Lepage, H., Launay, M., Le Coz, J., Angot, H., Miège, C., Gairoard, S.,
Radakovitch, O., and Coquery, M.: Impact of dam flushing operations on
sediment dynamics and quality in the upper Rhône River, France, J.
Environ. Manage., 255, 109886,
https://doi.org/10.1016/j.jenvman.2019.109886, 2020.
Lepage, H., Gruat, A., Thollet, F., Le Coz, J., Coquery, M., Masson, M.,
Dabrin, A., Radakovitch, O., Eyrolle, F., Labille, J., Ambrosi, J.-P.,
Delanghe, D., and Raimbault, P.: Concentrations and fluxes of suspended
particulate matters and associated contaminants in the Rhône River from
Lake Geneva to the Mediterranean Sea, Portail Data INRAE [data set],
https://doi.org/10.15454/RJCQZ7, 2021.
Lick, W.: Sediment and contaminant transport in surface waters, Sediment
Contam. Transp. Surf. Waters, 1, 1–399, https://doi.org/10.1201/9781420059885,
2008.
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.: River discharges of
water and nutrients to the Mediterranean and Black Sea: Major drivers for
ecosystem changes during past and future decades?, Prog. Oceanography, 80, 199–217,
https://doi.org/10.1016/j.pocean.2009.02.001, 2009.
Mansanarez, V., Le Coz, J., Renard, B., Lang, M., Pierrefeu, G., and
Vauchel, P.: Bayesian analysis of stage-fall-discharge rating curves and
their uncertainties, Water Resour. Res., 52, 7424–7443,
https://doi.org/10.1002/2016WR018916, 2016.
Martinez, J. M., Carretier, S., and Santos, R. V.: The hydrology,
geochemistry, and dynamics of South American great river systems, J. South
Am. Earth Sci., 44, 1–3, https://doi.org/10.1016/j.jsames.2013.01.003,
2013.
Masson, M., Angot, H., Le Bescond, C., Launay, M., Dabrin, A., Miège,
C., Le Coz, J., and Coquery, M.: Sampling of suspended particulate matter
using particle traps in the Rhône River: Relevance and
representativeness for the monitoring of contaminants, Sci. Total Environ.,
637–638, 538–549, https://doi.org/10.1016/j.scitotenv.2018.04.343, 2018.
Moatar, F., Meybeck, M., Raymond, S., Birgand, F., and Curie, F.: River flux
uncertainties predicted by hydrological variability and riverine material
behaviour, Hydrol. Process., 27, 3535–3546,
https://doi.org/10.1002/hyp.9464, 2013.
Mourier, B., Desmet, M., Van Metre, P. C., Mahler, B. J., Perrodin, Y.,
Roux, G., Bedell, J. P., Lefèvre, I., and Babut, M.: Historical records,
sources, and spatial trends of PCBs along the Rhône River (France), Sci.
Total Environ., 476–477, 568–576,
https://doi.org/10.1016/j.scitotenv.2014.01.026, 2014.
Navratil, O., Esteves, M., Legout, C., Gratiot, N., Nemery, J., Willmore,
S., and Grangeon, T.: Global uncertainty analysis of suspended sediment
monitoring using turbidimeter in a small mountainous river catchment, J.
Hydrol., 398, 246–259, https://doi.org/10.1016/j.jhydrol.2010.12.025, 2011.
Panagiotopoulos, C., Sempéré, R., Para, J., Raimbault, P., Rabouille, C., and Charrière, B.: The composition and flux of particulate and dissolved carbohydrates from the Rhone River into the Mediterranean Sea, Biogeosciences, 9, 1827–1844, https://doi.org/10.5194/bg-9-1827-2012, 2012.
Pont, D., Simonnet, J.-P., and Walter, A. V.: Medium-term Changes in
Suspended Sediment Delivery to the Ocean: Consequences of Catchment
Heterogeneity and River Management (Rhône River, France), Estuar. Coast.
Shelf Sci., 54, 1–18, https://doi.org/10.1006/ecss.2001.0829, 2002.
Poulier, G., Launay, M., Le Bescond, C., Thollet, F., Coquery, M., and Le
Coz, J.: Combining flux monitoring and data reconstruction to establish
annual budgets of suspended particulate matter, mercury and PCB in the
Rhône River from Lake Geneva to the Mediterranean Sea, Sci. Total
Environ., 658, 457–473, https://doi.org/10.1016/j.scitotenv.2018.12.075,
2019.
Psomiadis, D., Ghilardi, M., Demory, F., Delanghe-Sabatier, D., Bloemendal,
J., and Yiu, C.: Late Pleistocene to Mid-Holocene landscape reconstruction
in the western part of the Thessaloniki Plain, Greece: Evidence for
environmental changes, and implications for human occupation, Z.
Geomorphol., 58, 67–87, https://doi.org/10.1127/0372-8854/2013/S-00137,
2014.
Quinton, E., Maindron, A., and Plumejeaud, C.: Collec-Science v2.5.0,
Zenodo, https://doi.org/10.5281/zenodo.4277639, 2020.
Radakovitch, O., Roussiez, V., Ollivier, P., Ludwig, W., Grenz, C., and
Probst, J. L.: Input of particulate heavy metals from rivers and associated
sedimentary deposits on the Gulf of Lion continental shelf, Estuar. Coast.
Shelf Sci., 77, 285–295, https://doi.org/10.1016/j.ecss.2007.09.028, 2008.
Raimbault, P., Garcia, N., and Cerutti, F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean – evidence for long-term accumulation of organic matter in nitrogen-depleted waters, Biogeosciences, 5, 281–298, https://doi.org/10.5194/bg-5-281-2008, 2008.
Raimbault, P., Lagadec, V., and Garcia, N.: Water sample analyses – MOOSE –
Rhone river, SEDOO OMP,
https://doi.org/10.6096/MISTRALS-MOOSE.767, 2014.
Sadaoui, M., Ludwig, W., Bourrin, F., and Raimbault, P.: Controls, budgets
and variability of riverine sediment fluxes to the Gulf of Lions (NW
Mediterranean Sea), J. Hydrol., 540, 1002–1015,
https://doi.org/10.1016/j.jhydrol.2016.07.012, 2016.
Schulze, T., Ricking, M., Schröter-Kermani, C., Körner, A., Denner,
H.-D., Weinfurtner, K., Winkler, A., and Pekdeger, A.: The German
Environmental Specimen Bank – Sampling, processing, and archiving sediment
and suspended particulate matter, J. Soil. Sediment., 7, 361–367,
https://doi.org/10.1065/jss2007.08.248, 2007.
Sicre, M. A., Fernandes, M. B., and Pont, D.: Poly-aromatic hydrocarbon
(PAH) inputs from the Rhône River to the Mediterranean Sea in relation
with the hydrological cycle: Impact of floods, Mar. Pollut. Bull., 56,
1935–1942, https://doi.org/10.1016/j.marpolbul.2008.07.015, 2008.
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., and Green,
P.: Impact of humans on the flux of terrestrial sediment to the global
coastal ocean, Science, 308, 376–380,
https://doi.org/10.1126/science.1109454, 2005.
Thollet, F., Le Bescond, C., Lagouy, M., Gruat, A., Grisot, G., Le Coz, J.,
Coquery, M., Lepage, H., Gairoard, S., Gattacceca, J. C., Ambrosi, J.-P.,
Radakovitch, O., Dur, G., Richard, L., Giner, F., Eyrolle, F., Angot, H.,
Mourier, D., Bonnefoy, A., Dugué, V., Launay, M., Troudet, L., Labille,
J., and Kieffer, L.: Observatoire des sédiments du Rhône, OSR [data set], https://doi.org/10.17180/OBS.OSR, 2021.
US EPA: METHOD 7473: Mercury in Solids and Solutions by Thermal
Decomposition, Amalgamation and Atomic Absorption Spectrophotometry SW-846,
1–17, 2007.
Vihma, T., Uotila, P., Sandven, S., Pozdnyakov, D., Makshtas, A., Pelyasov, A., Pirazzini, R., Danielsen, F., Chalov, S., Lappalainen, H. K., Ivanov, V., Frolov, I., Albin, A., Cheng, B., Dobrolyubov, S., Arkhipkin, V., Myslenkov, S., Petäjä, T., and Kulmala, M.: Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX), Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, 2019.
Short summary
The dataset contains concentrations and fluxes of suspended particle matter (SPM) and several particle-bound contaminants along the Rhône River downstream of Lake Geneva. These data allow us to understand the dynamics and origins. They show the impact of flood events which mainly contribute to a decrease in the contaminant concentrations while fluxes are significant. On the contrary, concentrations are higher during low flow periods probably due to the increase of organic matter.
The dataset contains concentrations and fluxes of suspended particle matter (SPM) and several...
Altmetrics
Final-revised paper
Preprint