Articles | Volume 13, issue 12
https://doi.org/10.5194/essd-13-5879-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-5879-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A harmonized global land evaporation dataset from model-based products covering 1980–2017
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Guojie Wang
CORRESPONDING AUTHOR
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Tiexi Chen
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Shijie Li
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Daniel Fiifi Tawia Hagan
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Giri Kattel
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Department of Infrastructure Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
Department of Hydraulic Engineering, Tshinghua University, Beijing, 100084, China
Jian Peng
Department of Remote Sensing, Helmholtz Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
Remote Sensing Centre for Earth System Research, Leipzig University, Talstr. 35, 04103 Leipzig, Germany
Tong Jiang
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Buda Su
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
Related authors
Shijie Li, Guojie Wang, Chenxia Zhu, Jiao Lu, Waheed Ullah, Daniel Fiifi Tawia Hagan, Giri Kattel, and Jian Peng
Hydrol. Earth Syst. Sci., 26, 3691–3707, https://doi.org/10.5194/hess-26-3691-2022, https://doi.org/10.5194/hess-26-3691-2022, 2022
Short summary
Short summary
We found that the precipitation variability dominantly controls global evapotranspiration (ET) in dry climates, while the net radiation has substantial control over ET in the tropical regions, and vapor pressure deficit (VPD) impacts ET trends in boreal mid-latitude climate. The critical role of VPD in controlling ET trends is particularly emphasized due to its influence in controlling the carbon–water–energy cycle.
Zanpin Xing, Xiaojun Li, Frédéric Frappart, Gabrielle De Lannoy, Thomas Jagdhuber, Jian Peng, Lei Fan, Hongliang Ma, Karthikeyan Lanka, Xiangzhuo Liu, Mengjia Wang, Lin Zhao, Yongqin Liu, and Jean-Pierre Wigneron
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-728, https://doi.org/10.5194/essd-2025-728, 2026
Preprint under review for ESSD
Short summary
Short summary
Satellite observations of Earth's land surface are important for tracking soil and vegetation water. We use data from the Soil Moisture and Ocean Salinity satellite to build a new product that cleans the raw microwave signal and yields more reliable estimates of soil moisture and vegetation water content. Tests against ground stations and other satellites show that the new record exceeds existing products and can support applications such as drought, freeze–thaw, and carbon monitoring.
Xin Chen, Tiexi Chen, Xiaodong Li, Yuanfang Chai, Shengjie Zhou, Renjie Guo, and Jie Dai
Biogeosciences, 21, 4285–4300, https://doi.org/10.5194/bg-21-4285-2024, https://doi.org/10.5194/bg-21-4285-2024, 2024
Short summary
Short summary
We provide an ensemble-model-based GPP dataset (ERF_GPP) that explains 85.1 % of the monthly variation in GPP across 170 sites, which is higher than other GPP estimate models. In addition, ERF_GPP improves the phenomenon of “high-value underestimation and low-value overestimation” in GPP estimation to some extent. Overall, ERF_GPP provides a more reliable estimate of global GPP and will facilitate further development of carbon cycle research.
Zhenjie Li, Buda Su, Jinlong Huang, Peni Hausia Havea, Runhong Xu, Cheng Jing, Yu Gong, and Tong Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1169, https://doi.org/10.5194/egusphere-2024-1169, 2024
Preprint archived
Short summary
Short summary
Use the soil zero-degree layer as an index to investigate the changes in permafrost and the active layer thickness. The observed and projected permafrost and active layer thickness were estimated by the summer, revealed that the active layer thickness is deeper in summer across the Qinghai-Tibetan Plateau. The active layer thickness was increased of 53.9 % during observed period, and it will continue to increase in the future.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Zhen Yu, Jing Liu, and Giri Kattel
Earth Syst. Sci. Data, 14, 5179–5194, https://doi.org/10.5194/essd-14-5179-2022, https://doi.org/10.5194/essd-14-5179-2022, 2022
Short summary
Short summary
We developed a 5 km annual nitrogen (N) fertilizer use dataset in China, covering the period from 1952 to 2018. We found that previous FAO-data-based N fertilizer products overestimated the N use in low, but underestimated in high, cropland coverage areas in China. The new dataset has improved the spatial distribution and corrected the existing biases, which is beneficial for biogeochemical cycle simulations in China, such as the assessment of greenhouse gas emissions and food production.
Shijie Li, Guojie Wang, Chenxia Zhu, Jiao Lu, Waheed Ullah, Daniel Fiifi Tawia Hagan, Giri Kattel, and Jian Peng
Hydrol. Earth Syst. Sci., 26, 3691–3707, https://doi.org/10.5194/hess-26-3691-2022, https://doi.org/10.5194/hess-26-3691-2022, 2022
Short summary
Short summary
We found that the precipitation variability dominantly controls global evapotranspiration (ET) in dry climates, while the net radiation has substantial control over ET in the tropical regions, and vapor pressure deficit (VPD) impacts ET trends in boreal mid-latitude climate. The critical role of VPD in controlling ET trends is particularly emphasized due to its influence in controlling the carbon–water–energy cycle.
Tiexi Chen, Renjie Guo, Qingyun Yan, Xin Chen, Shengjie Zhou, Chuanzhuang Liang, Xueqiong Wei, and Han Dolman
Biogeosciences, 19, 1515–1525, https://doi.org/10.5194/bg-19-1515-2022, https://doi.org/10.5194/bg-19-1515-2022, 2022
Short summary
Short summary
Currently people are very concerned about vegetation changes and their driving factors, including natural and anthropogenic drivers. In this study, a general browning trend is found in Syria during 2001–2018, indicated by the vegetation index. We found that land management caused by social unrest is the main cause of this browning phenomenon. The mechanism initially reported here highlights the importance of land management impacts at the regional scale.
Xikun Wei, Guojie Wang, Donghan Feng, Zheng Duan, Daniel Fiifi Tawia Hagan, Liangliang Tao, Lijuan Miao, Buda Su, and Tong Jiang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-418, https://doi.org/10.5194/essd-2021-418, 2021
Preprint withdrawn
Short summary
Short summary
In this study, we use the deep learning (DL) method to generate the temperature data for the global land (except Antartica) at higher spatial resolution (0.5 degree) based on 31 different CMIP6 Earth system model(ESM). Our methods can perform bias correction, spatial downscaling and data merging simultaneously. The merged data have a remarkably better quality compared with the individual ESMs in terms of both spatial dimension and time dimension.
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021, https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Short summary
Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system, for which a long-term SM product with high quality is urgently needed. In situ observations are generally treated as the true value to systematically evaluate five SM products, including one remote sensing product and four reanalysis data sets during 1981–2013. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.
Ewan Pinnington, Javier Amezcua, Elizabeth Cooper, Simon Dadson, Rich Ellis, Jian Peng, Emma Robinson, Ross Morrison, Simon Osborne, and Tristan Quaife
Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021, https://doi.org/10.5194/hess-25-1617-2021, 2021
Short summary
Short summary
Land surface models are important tools for translating meteorological forecasts and reanalyses into real-world impacts at the Earth's surface. We show that the hydrological predictions, in particular soil moisture, of these models can be improved by combining them with satellite observations from the NASA SMAP mission to update uncertain parameters. We find a 22 % reduction in error at a network of in situ soil moisture sensors after combining model predictions with satellite observations.
Cited articles
Aires, F.: Combining Datasets of Satellite-Retrieved Products. Part I:
Methodology and Water Budget Closure, J. Hydrometeorol., 15, 1677–1691, https://doi.org/10.1175/JHM-D-13-0148.1, 2014.
Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater, J., de
Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim driven ISBA land surface
model simulations: which one performs better? Hydrol. Earth Syst. Sc., 22,
3515–3532, https://doi.org/10.5194/hess-22-3515-2018, 2018.
Andam-Akorful, S. A., Ferreira, V. G., Awange, J. L., Forootan, E., and He,
X. F.: Multi-model and multi-sensor estimations of evapotranspiration over
the Volta Basin, West Africa, Int. J. Climatol., 35, 3132–3145,
https://doi.org/10.1002/joc.4198, 2015.
Baik, J., Park, J., Ryu, D., and Choi, M.: Geospatial blending to improve
spatial mapping of precipitation with high spatial resolution by merging
satellite-based and ground-based data, Hydrol. Process., 30, 2789–2803, https://doi.org/10.1002/hyp.10786, 2016.
Baik, J., Liaqat, U. W., and Choi, M.: Assessment of satellite- and
reanalysis-based evapotranspiration products with two blending approaches
over the complex landscapes and climates of Australia, Agr. Forest
Meteorol., 263, 388–398, https://doi.org/10.1016/j.agrformet.2018.09.007, 2018.
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25∘ global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017.
Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro,
R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W.,
Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S.,
Labow, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D., and Suarez,
M.: MERRA-2: Initial evaluation of the climate, Technical Report Series on
Global Modeling and Data Assimilation, NASA/TM-2015-104606/Vol.43, 1–153, 2015.
Bosilovich, M. G., Robertson, F., Takacs, L., Molod, A., and Mocko, D.:
Atmospheric water balance and variability in the MERRA-2 reanalysis, J.
Climate, 30, 1177–1196, https://doi.org/10.1175/JCLI-D-16-0338.1, 2017.
Burnett, M. W., Quetin, G. R., and Konings, A. G.: Data-driven estimates of evapotranspiration and its controls in the Congo Basin, Hydrol. Earth Syst. Sci., 24, 4189–4211, https://doi.org/10.5194/hess-24-4189-2020, 2020.
Cheema, M. J. M. and Bastiaanssen, W. G. M.: Local calibration of remotely
sensed rainfall from the TRMM satellite for different periods and spatial
scales in the Indus Basin, Int. J. Remote Sens., 33, 2603–2627,
https://doi.org/10.1080/01431161.2011.617397, 2012.
Crowhurst, D., Dadson, S., Peng, J., and Washington, R.: Contrasting
controls on Congo Basin evaporation at the two rainfall peaks, Clim. Dynam.,
56, 1609–1624, https://doi.org/10.1007/s00382-020-05547-1, 2020.
Dembélé, M., Ceperley, N., Zwart, S. J., Salvadore, E., Mariethoz, G., and
Schaefl, B.: Potential of satellite and reanalysis evaporation datasets for
hydrological modelling under various model calibration strategies, Adv.
Water Resour., 143, 103667, https://doi.org/10.1016/j.advwatres.2020.103667, 2020.
Duan, Z. and Bastiaanssen, W. G. M.: First results from Version 7 TRMM 3B43
precipitation product in combination with a new downscaling-calibration
procedure, Remote Sens. Environ., 131, 1–13, https://doi.org/10.1016/j.rse.2012.12.002, 2013.
Ershadi, A., McCabe, M. F., Evans, J. P., Chaney, N. W., and Wood, E. F.:
Multi-site evaluation of terrestrial evaporation models using FLUXNET data,
Agr. Forest Meteorol., 187, 46–61, https://doi.org/10.1016/j.agrformet.2013.11.008, 2014.
Feng, F., Li, X., Yao, Y., Liang, S., Chen, J., Zhao, X., Jia, K., Pinter,
K., and McCaughey, J. H.: An empirical orthogonal function-based algorithm
for estimating terrestrial latent heat flux from eddy covariance,
meteorological and satellite observations, PloS ONE, 11, e0160150, https://doi.org/10.1371/journal.pone.0160150, 2016.
Feng, T., Su, T., Ji, F., Zhi, R., and Han, Z.: Temporal characteristics of
actual evapotranspiration over China under global warming, J. Geophys.
Res.-Atmos., 123, 5845–5858, https://doi.org/10.1029/2017JD028227, 2018.
Foken, T., Wimmer, F., Mauder, M., Thomas, C., and Liebethal, C.: Some aspects of the energy balance closure problem, Atmos. Chem. Phys., 6, 4395–4402, https://doi.org/10.5194/acp-6-4395-2006, 2006.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., and Kim, G.-K.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate.,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Giorgi, F. and Mearns, L. O.: Calculation of average, uncertainty range,
and reliability of regional climate changes from AOGCM simulations via the
“reliability ensemble averaging” (REA) method, J. Climate, 15,1141–1158, https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2, 2002.
Gomis-Cebollaa, J., Jimeneza, J. C., Sobrinoa, J. A., Corbarib, C., and
Mancini, M.: Intercomparison of remote-sensing based evapotranspiration
algorithms over amazonian forests, Int. J. Appl. Earth Obs., 80, 280–294, https://doi.org/10.1016/j.jag.2019.04.009, 2019.
Goya, M. R. and Harmsen, E. W.: Evapotranspiration
principles and applications for water management, Apple Academic Press, New York, 628 pp., https://doi.org/10.1201/b15779, 2013.
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., and
Strachan, I. B.: Hyperspectral vegetation indices and novel algorithms for
predicting green LAI of crop canopies: Modeling and validation in the
context of precision agriculture, Remote Sens. Environ., 90, 337–352,
https://doi.org/10.1016/j.rse.2003.12.013, 2004.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, J. R., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, de
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hirschi, M., Seneviratne, S. I., Alexandrov, V., Boberg, F., Boroneant, C.,
Christensen, O. B., Formayer, H., Orlowsky, B., and Stepanek, P.:
Observational evidence for soil-moisture impact on hot extremes in
southeastern Europe, Nat. Geosci., 4, 17–21,
https://doi.org/10.1038/NGEO1032, 2011.
Hobeichi, S., Abramowitz, G., Evans, J., and Ukkola, A.: Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate, Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018, 2018.
Huang, S., Tang, L., Hupy, J. P., Wang, Y., and Shao, G.: A commentary
review on the use of normalized difference vegetation index (NDVI) in the
era of popular remote sensing, J. Forestry Res., 32, 1–6,
https://doi.org/10.1007/s11676-020-01155-1, 2021.
Jiménez, C., Prigent, C., Mueller, B., Seneviratne, S. I., McCabe, M. F.,
Wood, E. F., Rossow, W. B., Balsamo, G., Betts, A. K., Dirmeyer, P. A.,
Fisher, J. B., Jung, M., Kanamitsu, M., Reichle, R. H., Reichstein, M.,
Rodell, M., Sheffield, J., Tu, K., and Wang, K.: Global intercomparison of
12 land surface heat flux estimates, J. Geophys. Res., 116, D02102, https://doi.org/10.1029/2010JD014545, 2011.
Jiménez, C., Martens, B., Miralles, D. M., Fisher, J. B., Beck, H. E., and Fernández-Prieto, D.: Exploring the merging of the global land evaporation WACMOS-ET products based on local tower measurements, Hydrol. Earth Syst. Sci., 22, 4513–4533, https://doi.org/10.5194/hess-22-4513-2018, 2018.
Joiner, J., Yoshida, Y., Vasilkov, A. P., Schaefer, K., Jung, M., Guanter,
L., Zhang, Y., Garrity, S., Middleton, E. M., Huemmrich, K. F., Gu, L., and
Marchesini, L. B.: The seasonal cycle of satellite chlorophyll fluorescence
observations and its relationship to vegetation phenology and ecosystem
atmosphere carbon exchange, Remote Sens. Environ., 152, 375–391,
https://doi.org/10.1016/j.rse.2014.06.022, 2014.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J.,
Goulden, M. L., Bonan, G., Cescatti, A., Chen, J. Q., de Jeu, R., Dolman, A.
J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball,
J., Law, B. E., Montagnani, L., Mu, Q. Z., Mueller, B., Oleson, K., Papale,
D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N.,
Weber, U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline
in the global land evapotranspiration trend due to limited moisture supply,
Nature, 467, 951–954, https://doi.org/10.1038/nature09396, 2010.
Khan, M. S., Waqas, U., Baik, J., and Choi, M.: Stand-alone uncertainty
characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using
an extended triple collocation approach, Agr. Forest Meteorol., 252, 256–268, https://doi.org/10.1016/j.agrformet.2018.01.022, 2018.
Kim, H., Parinussa, R., Konings, A. G., Wagner, W., Cosh, M. H., Lakshmi,
V., Zohaib, M., and Choi, M.: Global-scale assessment and combination of
SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products, Remote
Sens. Environ., 204, 260–275, https://doi.org/10.1016/j.rse.2017.10.026, 2018.
Kim, S., Parinussa, R. M., Liu, Y. Y., Johnson, F. M., and Sharma, A.: A
framework for combining multiple soil moisture retrievals based on
maximizing temporal correlation, Geophys. Res. Lett., 42, 6662–6670, https://doi.org/10.1002/2015GL064981, 2015.
Koster, R. D., Suárez, M. J., Ducharne, A., Stieglitz, M., and Kumar P.:
A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure, J. Geophys. Res., 105, 24809–24822, https://doi.org/10.1029/2000JD900327, 2000.
Liaqat, U. W. and Choi, M.: Surface energy fluxes in the Northeast Asia
ecosystem: SEBS and METRIC models using Landsat satellite images. Agr.
Forest Meteorol., 214–215, 60–79, https://doi.org/10.1016/j.agrformet.2015.08.245, 2015.
Liaqat, U. W., Choi, M., and Awan, U. K.: Spatio-temporal distribution of
actual evapotranspiration in the Indus Basin Irrigation System, Hydrol.
Process., 29, 2613–2627, https://doi.org/10.1002/hyp.10401, 2015.
Liu, C., Shu, S., and Gao, W.: Improved sensible and latent heat flux
estimation of community land model by using ensemble Kalman filter
assimilation, Proc. SPIE, 8869, 886917,
https://doi.org/10.1117/12.2021713, 2013.
Liu, W., Wang, L., Zhou, J., Li, Y., Sun, F., Fu, G., Li, X., and Sang, Y.
F.: A worldwide evaluation of basin-scale evapotranspiration estimates
against the water balance method, J. Hydrol., 538, 82–95, https://doi.org/10.1016/j.jhydrol.2016.04.006, 2016.
Liu, Y. Y., de Jeu, R. A. M., McCabe, M. F., Evans, J. P., and van Dijk, A.
I. J. M.: Global long-term passive microwave satellite-based retrievals of
vegetation optical depth, Geophys. Res. Lett., 38, L18402,
https://doi.org/10.1029/2011GL048684, 2011.
Lu, J., Wang, G., Chen, T., Li, S., Hagan, F. T. D., Kattel, G., Peng, J.,
Jiang, T., and Su, B.: A Harmonized Global Land Evaporation Dataset from
Reanalysis Products Covering 1980–2017, Zenodo [data set],
https://doi.org/10.5281/zenodo.4595941, 2021.
Lu, X., Liu, Z., An, S., Miralles, D. G., Maes, W., Liu, Y., and Tang, J.:
Potential of solar-induced chlorophyll fluorescence to estimate
transpiration in a temperate forest, Agr. Forest Meteorol., 252, 75–87, https://doi.org/10.1016/j.agrformet.2018.01.017, 2018.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Martens, B., Schumacher, D. L., Wouters, H., Muñoz-Sabater, J., Verhoest, N. E. C., and Miralles, D. G.: Evaluating the land-surface energy partitioning in ERA5, Geosci. Model Dev., 13, 4159–4181, https://doi.org/10.5194/gmd-13-4159-2020, 2020.
McCabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel, D., and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016, 2016.
Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H., and Dolman, A. J.: Magnitude and variability of land evaporation and its components at the global scale, Hydrol. Earth Syst. Sci., 15, 967–981, https://doi.org/10.5194/hess-15-967-2011, 2011.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, 2016.
Monteith, J. L.: Evaporation and the Environment, Sym. Soc. Exp. Biol., 19,
205–234, 1965.
Mu, Q., Zhao, M., and Steven, W.: Improvements to a MODIS global terrestrial
evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Mueller, B. and Seneviratne, S. I.: Hot days induced by precipitation
deficits at the global scale, P. Natl. Acad. Sci. USA, 109, 12398–12403, https://doi.org/10.1073/pnas.1204330109, 2012.
Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M.,
Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J. B., Guo, Z., Jung, M.,
Maignan, F., McCabe, M. F., Reichle, R., Reichstein, M., Rodell, M.,
Sheffield, J., Teuling, A. J., Wang, K., Wood, E. F., and Zhang, Y.:
Evaluation of global observations-based evapotranspiration datasets and IPCC
AR4 simulations, Geophys. Res. Lett., 38, L06402,
https://doi.org/10.1029/2010GL046230, 2011.
Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I.: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, 2013.
Munier, S., Aires, F., Schlaffer, S., Prigent, C., Papa, F., Maisongrande,
P., and Pan, M.: Combining data sets of satellite-retrieved products for
basin-scale water balance study: 2. Evaluation on the Mississippi Basin and
closure correction model, J. Geophys. Res.-Atmos., 119, 12100–12116, https://doi.org/10.1002/2014JD021953, 2014.
Opoku-Duah, S., Donoghue, D. N. M., and Burt, T. P.: Intercomparison of
evapotranspiration over the Savannah Volta Basin in West Africa using remote
sensing data, Sensors, 8, 2736–2761, https://doi.org/10.3390/s8042736, 2008.
Peng, J., Loew, A., Chen, X., Ma, Y., and Su, Z.: Comparison of satellite-based evapotranspiration estimates over the Tibetan Plateau, Hydrol. Earth Syst. Sci., 20, 3167–3182, https://doi.org/10.5194/hess-20-3167-2016, 2016.
Peng, J., Kharbouche, S., Muller, J.-P., Danne, O., Blessing, S., Giering, R., Gobron, N., Ludwig, R., Muller, B., Leng, G., Lees, T., and Dadson, S.: Influences of leaf area index and albedo on estimating energy fluxes with HOLAPS framework, J. Hydrol., 580, 124245, https://doi.org/10.1016/j.jhydrol.2019.124245, 2020.
Pinzon, J. E. and Tucker, C. J.: A non-stationary 1981–2012 AVHRR NDVI3g
time series, Remote Sens., 6, 6929–6960, https://doi.org/10.3390/rs6086929, 2014.
Pipunic, R. C., Walker, J. P., and Western, A. Assimilation of remotely
sensed data for improved latent and sensible heat flux prediction: A
comparative synthetic study, Remote Sens. Environ., 112, 1295–1305, https://doi.org/10.1016/j.rse.2007.02.038, 2008.
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat
flux and evaporation using large-scale parameters, Mon. Weather Rev., 100,
81–92, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka,
Y., and Flynn, C. J.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I:
System Description and Data Assimilation Evaluation, J. Climate, 30,
6823–6850, https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.
Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S. P., and
Partyka, G. S.: Land surface precipitation in MERRA-2, J. Climate, 30,
1643–1664, https://doi.org/10.1175/JCLI-D-16-0570.1, 2017.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Schuttemeyer, D., Schillings, C., Moene, A. F., and de Bruin, H. A. R.:
Satellite-based actual evapotranspiration over drying semi-arid terrain in
West Africa, J. Appl. Meteorol. Clim., 46, 97–111,
https://doi.org/10.1175/JAM2444.1, 2007.
Seneviratne, S. I.: Climate science: Historical drought trends revisited,
Nature, 491, 338–339, https://doi.org/10.1038/491338a, 2012.
Seneviratne, S. I., Lüthi, D., Litschi, M., and Schär, C.:
Land-atmosphere coupling and climate change in Europe, Nature, 443, 205–209,
https://doi.org/10.1038/nature05095, 2006.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B.,
Lehner, I., Orlowsky, B., and Teuling, A. J.: Investigating soil
moisture-climate interactions in a changing climate: A review, Earth-Sci.
Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Shan, N., Ju, W., Migliavacca, M., Martini, D., Guanter, L., Chen, J.,
Goulas, Y., and Zhang, Y.: Modeling canopy conductance and transpiration
from solar-induced chlorophyll fluorescence, Agr. Forest Meteorol., 268,
189–201, https://doi.org/10.1016/j.agrformet.2019.01.031, 2019.
Sheffield, J. and Wood, E. F.: Characteristics of global and regional
drought, 1950–2000: Analysis of soil moisture data from off-line simulation
of the terrestrial hydrologic cycle, J. Geophys. Res., 112, D17115, https://doi.org/10.1029/2006JD008288, 2007.
Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land surface
modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global
drought over the past 60 years, Nature, 491, 435–438, https://doi.org/10.1038/nature11575, 2012.
Wang, W., Cui, W., Wang, X., and Chen, X.: Evaluation of GLDAS-1 and GLDAS-2
forcing data and Noah model simulations over China at the monthly scale, J.
Hydrometeorol., 17, 2815–2833, https://doi.org/10.1175/JHM-D-15-0191.1, 2016.
Xu, S., Wu, C., Wang, L., Gonsamo, A., Shen, Y., and Niu, Z.: A new
satellite-based monthly precipitation downscaling algorithm with
non-stationary relationship between precipitation and land surface
characteristics, Remote Sens. Environ., 162, 119–140,
https://doi.org/10.1016/j.rse.2015.02.024, 2015.
Xu, Y., Gao, X., and Giorgi, F.: Upgrades to the reliability ensemble
averaging method for producing probabilistic climate-change projections,
Clim. Res., 41, 61–81, https://doi.org/10.3354/cr00835, 2010.
Yang, Z., Zhang, Q., Yang, Y., Hao, X., and Zhang, H.: Evaluation of
evapotranspiration models over semi-arid and semi-humid areas of China,
Hydrol. Process., 30, 4292–4313, https://doi.org/10.1002/hyp.10824, 2016.
Yao, Y., Liang, S., Li, X., Hong, Y., Fisher, J., Zhang, N., Chen, J.,
Cheng, J., Zhao, S., Zhang, X., Jiang, B., Sun, L., Jia, K., Wang, K., Chen,
Y., Mu, Q., and Feng, F.: Bayesian multimodel estimation of global
terrestrial latent heat flux from eddy covariance, meteorological, and
satellite observations, J. Geophys. Res.-Atmos., 119, 4521–4545,
https://doi.org/10.1002/2013JD020864, 2014.
Yao, Y., Liang, S., Li, X., Liu, S., Chen, J., Zhang, X., Jia, K., Xie, X.,
Munier, S., Liu, M., Yu, J., Lindroth, A., Varlagin, A., Raschi, A.,
Noormets, A., Pio, C., Wohlfahrt, G., Sun, G., Domec, J. C., Montagnani, L.,
Lund, M., Eddy, M., Blanken, P. D., Grünwald, T., Wolf, S., and
Magliulo, V.: Assessment and simulation of global terrestrial latent heat
flux by synthesis of CMIP5 climate models and surface eddy covariance
observations. Agr. Forest Meteorol., 223, 151–167,
https://doi.org/10.1016/j.agrformet.2016.03.016, 2016.
Yao, Y., Liang, S., Li, X., Chen, J., Liu, S., Jia, K., Zhang, X., Xiao, Z.,
Fisher, J. B., Mu, Q., Pan, M., Liu, M., Cheng, J., Jiang, B., Xie, X.,
Grnwald, T., Bernhofer, C., and Roupsard, O.: Improving global terrestrial
evapotranspiration estimation using support vector machine by integrating
three process-based algorithms, Agr. Forest Meteorol., 242, 55–74,
https://doi.org/10.1016/j.agrformet.2017.04.011, 2017a.
Yao, Y., Liang, S., Li, X., Zhang, Y., Chen, J., Jia, K., Zhang, X., Fisher,
J., Wang, X., Zhang, L., Xu, J., Shao, C., Posee, G., Li, Y., Magliulo, V.,
Varlagin, A., Moors, E. J., Boike, J., Macfarlane, C., Kato, T., Buchmann,
N., Billesbach, D. P., Berimger, J., Wolf, S., Papuga, S. A., Wohlfahrt, G.,
Montagnani, L., Ardö, J., Paul-Limoges, E., Emmel, C., Hörtnagl, L.,
Sachs, T., Gruening, C., Gioli, B., López-Ballesteros, A., Steinbrecher,
R., and Gielen, B.: Estimation of high-resolution terrestrial
evapotranspiration from Landsat data using a simple Taylor skill fusion
method, J. Hydrol., 553, 508–526,
https://doi.org/10.1016/j.jhydrol.2017.08.013, 2017b.
Yilmaz, M. T., Crow, W. T., Anderson, M. C., and Hain, C.: An objective
methodology for merging satellite-and model-based soil moisture products,
Water Resour. Res., 48, W11502,
https://doi.org/10.1029/2011WR011682, 2012.
Zhu, G., Li, X., Zhang, K., Ding, Z., Han, T., Ma, J., Huang, C., He, J.,
and Ma, T.: Multi model ensemble prediction of terrestrial
evapotranspiration across north China using Bayesian model averaging,
Hydrol. Process., 30, 2861–2879,
https://doi.org/10.1002/hyp.10832, 2016.
Short summary
This study has combined three existing land evaporation (ET) products to obtain a single framework of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25° to define the global proxy ET with lower uncertainties. The merged product is the best at capturing dynamics over different locations and times among all data sets. The merged product performed well over a range of vegetation cover scenarios and also captured the trend of land evaporation over different areas well.
This study has combined three existing land evaporation (ET) products to obtain a single...
Altmetrics
Final-revised paper
Preprint