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Abstract. Land evaporation (ET) plays a crucial role in the hydrological and energy cycle. However, the widely
used model-based products, even though helpful, are still subject to great uncertainties due to imperfect model
parameterizations and forcing data. The lack of available observed data has further complicated estimation.
Hence, there is an urgency to define the global proxy land ET with lower uncertainties for climate-induced hy-
drology and energy change. This study has combined three existing model-based products – the fifth-generation
ECMWF reanalysis (ERA5), Global Land Data Assimilation System Version 2 (GLDAS2), and the second
Modern-Era Retrospective analysis for Research and Applications (MERRA-2) – to obtain a single framework
of a long-term (1980–2017) daily ET product at a spatial resolution of 0.25◦. Here, we use the reliability en-
semble averaging (REA) method, which minimizes errors using reference data, to combine the three products
over regions with high consistencies between the products using the coefficient of variation (CV). The Global
Land Evaporation Amsterdam Model Version 3.2a (GLEAM3.2a) and flux tower observation data were selected
as the data for reference and evaluation, respectively. The results showed that the merged product performed
well over a range of vegetation cover scenarios. The merged product also captured the trend of land evaporation
over different areas well, showing the significant decreasing trend in the Amazon Plain in South America and
Congo Basin in central Africa and the increasing trend in the east of North America, west of Europe, south of
Asia and north of Oceania. In addition to demonstrating a good performance, the REA method also success-
fully converged the models based on the reliability of the inputs. The resulting REA data can be accessed at
https://doi.org/10.5281/zenodo.4595941 (Lu et al., 2021).

1 Introduction

Land evaporation plays an important role in the exchange of
energy, water and carbon in the terrestrial biosphere, hydro-
sphere and atmosphere. It is one of the dominant components
of land water and the energy budget, as well as a key driver of
drought episodes (Seneviratne, 2012; Sheffield et al., 2012).

Therefore, it is important to quantify the spatial and temporal
patterns of land evaporation. In addition, it is used to estimate
water requirements for irrigation by agricultural and water
resource management groups. The strength of the hydrolog-
ical cycle determines water availability and affects the cli-
mate system in a variety of ways (Mueller et al., 2013). Apart
from hydrological applications, land evaporation change is
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also related to air temperature change and extreme high tem-
perature conditions (Seneviratne et al., 2006, 2010; Hirschi
et al., 2011; Mueller and Seneviratne, 2012). It is apparent
that land evaporation is regarded as the intermediate variable
of soil moisture affecting air temperature. Thus, it could be
inferred that the uncertainty in land evaporation estimation
will introduce adverse errors into various aspects, which cre-
ates the need for a global proxy evaporation (ET) dataset with
lower uncertainties.

Since the land surface is more heterogeneous than the
ocean, it is difficult to estimate land evaporation accurately
due to huge uncertainties resulting from complex land–
atmosphere feedback processes. In addition, a major chal-
lenge remains to be addressed; that is, there is no direct signal
describing land evaporation that has been remotely detected.
Recently, solar-induced chlorophyll fluorescence (SIF) has
been discovered as an emerging technique to observe the
photosynthetic processes of vegetation by quantifying the
emission of fluorescent radiation (Joiner et al., 2014). Re-
motely sensed SIF has potential to empirically track the vari-
ation in canopy-level transpiration (Lu et al., 2018; Shan et
al., 2019). However, satellite observations relating to sur-
face temperature, soil moisture or vegetation coverage data
can be combined with traditional flux formulas as an alter-
native method to derive global estimates at different tem-
poral and spatial scales (Monteith, 1965; Priestley and Tay-
lor, 1972). The available terrestrial ET datasets have widely
varying estimates and even opposite long-term trends, indi-
cating the existence of non-negligible uncertainties. Further,
satellite-based land evaporation products show great discrep-
ancies when compared with latent heat flux from flux tow-
ers (Jiménez et al., 2011; Mueller et al., 2011; McCabe et
al., 2016; Peng et al., 2016, 2020). Although latent heat flux
is widely used as a benchmark for assessing the quality of
land ET datasets, flux tower data are unevenly distributed
around the world, only densely in some regions of North
America, Europe and Oceania (as shown in Fig. 1a). On ac-
count of these reasons, an alternative product is developed
which leverages the strengths of widely used existing model-
based ET products.

In previous studies, far from hindering the use of these
land evaporation datasets, differences among the products
have been capable of facilitating research into the best
merging methods to obtain datasets with lower uncertain-
ties (Jiménez et al., 2018). Due to differences in algorithms
and the calibration coefficient, the simulated results can have
greater discrepancies. Obtaining the land evaporation with
relatively high precision has been achieved when various
methods have been combined. Although this may not neces-
sarily lead to a better prediction ability of land evaporation
and increased understanding of physical processes, uncer-
tainties can be reduced by the integration of multiple remote
sensing products (Jung et al., 2010; Mueller et al., 2013) and
more complex data-merging methods (Yao et al., 2014). The
effectiveness of hydrometeorological monitoring can be im-

proved by accurate quantification and further reduction in
the uncertainty in water cycle variables, especially land ET.
Therefore, a variety of merging techniques have been intro-
duced and applied to water cycle variables such as soil mois-
ture and precipitation in recent years. Least-squares (Yilmaz
et al., 2012) and maximization r (Kim et al., 2015, 2018)
techniques were proposed for merging satellite soil moisture
products. In regard to precipitation data merging, a geograph-
ically weighted regression algorithm (Xu et al., 2015), con-
ditional merging (Baik et al., 2016), geographical difference
analysis (Cheema and Bastiaanssen, 2012), geographic ra-
tio analysis (Duan and Bastiaanssen, 2013) and the Multi-
Source Weighted-Ensemble Precipitation (MSWEP) method
(Beck et al., 2017) have been widely used. As for land ET,
several relevant studies have evolved through simple aver-
aging to complex methods including the weighted average
(Hobeichi et al., 2018); reproducing flux observations com-
bined with the original land evaporation product (Yao et
al., 2017a); or seeking consistency between land evapora-
tion and water-cycle-related products such as precipitation,
runoff and land water storage (Aires et al., 2014; Munier et
al., 2014). Various data-merging methods, such as Kalman
filtering algorithms (Pipunic et al., 2008; Liu et al., 2013),
Bayesian model averaging (BMA) and empirical orthogo-
nal functions (EOFs), can improve regional ET estimation
by merging multiple ET products (Yao et al., 2014, 2016;
Feng et al., 2016; Zhu et al., 2016). Since land ET is a com-
plex variable coupling energy, hydrology and the carbon bud-
get, it is difficult to accurately determine the optimal condi-
tional density function in BMA that determines the perfor-
mance of the method (Yao et al., 2014). Simultaneously, the
methods’ complexity affects the efficiency of calculating the
weight of an individual dataset, which limits their wide ap-
plication. Simple averaging (SA) (Ershadi et al., 2014) and
simple Taylor skill score (STS) merging (Yao et al., 2017b)
have been adopted for global ET merging. However, SA as-
sumes the same uncertainty in each dataset, which is actually
unreasonable, and the STS is highly dependent on the accu-
racy of individual datasets, which makes it highly quality-
demanding for the datasets involved in the merging process.
Khan et al. (2018) analyzed the sources of uncertainties for
three different ET products using the triple collocation (TC)
method, which estimates the random error standard devia-
tions for three datasets of the same variable according to sta-
tistical relations and provides an uncorrelated absolute and
relative error structure among datasets. Lastly, Jiménez et
al. (2018) proposed an error variance unweighted merging
method with the local weights deduced according to the vari-
ance of the differences between the outliers of the flux tower
and simulated land evaporation. The above merging meth-
ods effectively reduce the uncertainties in simulations by es-
timating the weight of multiple products to generate reliable
merged products (Zhu et al., 2016). However, previous stud-
ies have mostly focused on the evaluation of ET simulation at
regional scales and in regional landscapes (Yang et al., 2016).
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Figure 1. (a) Spatial distribution of 181 in situ flux EC sites across the world and (b) the number of sites for different time spans. See
Sect. 2.1.5 for definitions of the abbreviations used in (a).

Compared with the simple averaging method, the reliabil-
ity ensemble averaging (REA) method extracts the most reli-
able information from each model by minimizing the impact
of “outliers” or underperforming models, subsequently re-
ducing the uncertainty range in simulated changes, and also
stands out in terms of computational efficiency (Giorgi and
Mearns, 2002). These standards including the bias in the sim-
ulated ET from the reference and the distance of the simu-
lated ET from the ensemble average are regional rather than
global, as most models tend to show anomalous behavior or
poor performance from one region to another. The the REA
method also produces a quantitative measure of reliability,
indicating that the simulations need to meet both criteria in
order to improve the overall reliability of simulation changes.
On the one hand, REA method considers model performance,
that is, the ability of models to reproduce current climate,
which is defined by the difference between the simulation
and observation. On the other hand, the model convergence,
a factor to measure the reliability of the models, is taken
into consideration as well. This is the distance between the
changes in the given model and that of the ensemble aver-
age. The REA method has been widely used for meteorolog-
ical variables such as precipitation and temperature. Giorgi

and Mearns (2002) used the REA method to integrate the
average seasonal temperature and precipitation of 22 land
regions in the world under two emission scenarios simu-
lated by nine atmosphere–ocean circulation models in the
late 21st century. However, there are few studies on the appli-
cation of area-averaged grid-scale merging of long-sequence
model-based land evaporation data. This study aims to de-
velop a long-term high-quality global land ET product us-
ing merging technology. Merging multiple single datasets is
expected to reduce the uncertainties in land ET effectively.
The merged product can provide a basis for water cycle re-
search and global water resources management. Hence, sys-
tematic and in-depth studies on land evaporation merging are
urgently needed.

2 Data and methods

2.1 Data types

Three widely used land ET datasets were selected for
merging, including the fifth-generation ECMWF reanalysis
(ERA5; Hersbach et al., 2020), the second Modern-Era Ret-
rospective analysis for Research and Applications (MERRA-
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2; Gelaro et al., 2017), and Global Land Data Assimila-
tion System Version 2 ET (GLDAS2; Sheffield and Wood,
2007). The differences in spatial and temporal resolution
among the ET products were rescaled to a daily timescale
and 0.25◦, with the time span from 1980 to 2017. The Global
Land Evaporation Amsterdam Model (GLEAM; Miralles et
al., 2011) was used for the reference data due to its relative
independence from other datasets participating in the merg-
ing process. Ideally, in situ data would be the first choice
to be used as the reference data for the merging. However,
these point-scale datasets are very scarce globally and only
representative of their immediate locations. Therefore, area-
averaged grid-scale estimates offer a better alternative at
this scale. Additionally, GLEAM is not a complex terres-
trial model as found in the land models of ERA5, MERRA-2
and GLDAS but a set of algorithms dedicated to estimating
terrestrial evaporation using retrieved satellite observations
including soil moisture, vegetation optical depth and snow–
water equivalent and is a multi-source precipitation product
that relies on only radiation and temperature inputs from re-
analysis products (Martens et al., 2017). As such GLEAM
offers a higher level of independence than the other prod-
ucts. Eddy covariance (EC) ET was used to evaluate the
merged product compared with other datasets involved in the
merging process. Monthly GIMMS NDVI3g data with a spa-
tial resolution of 0.25◦ from Global Inventory Modeling and
Mapping Studies (GIMMS) were used to study how the qual-
ity of land evaporation datasets changes with vegetation in
our study (Pinzon and Tucker, 2014), with the time span from
1982 to 2014, and is available from https://data.tpdc.ac.cn/
en/data/c6113f70-884a-4716-98e3-933421c57f25/ (last ac-
cess: 11 December 2021). The spatial and temporal resolu-
tions of these ET datasets are shown in Table 1 and are briefly
described below.

2.1.1 Global Land Evaporation Amsterdam Model
(GLEAM) ET

GLEAM algorithm estimates land evaporation mainly based
on the parameterized physical process. Stress conditions are
parameterized as a function of dynamic vegetation infor-
mation and available water in the root zone. In addition,
the detailed parameterization of forest interception is one of
its key features. Canopy interception loss, a component of
land evaporation, is calculated by the daily precipitation us-
ing the parameters describing canopy storage, canopy cover-
age, and the average precipitation and evaporation rate un-
der saturated canopy conditions. It uses extensive indepen-
dent remote sensing observations such as snow–water equiv-
alent, vegetation optical depth and soil moisture as the ba-
sis for calculating land evaporation and its different com-
ponents, including transpiration, bare-soil evaporation, inter-
ception loss, open-water evaporation and sublimation sepa-
rately (Priestley and Taylor, 1972). The empirical parameters
contained in this algorithm such as the evaporation stress fac-

tor, the latent heat of evaporation and the slope of the sat-
urated water vapor–temperature curve have been obtained
from findings in different fields. On a global scale, GLEAM
has been validated with the observations obtained from a
eddy covariance instrument, indicating that it can be used to
describe terrestrial ET in different ecosystems (Miralles et
al., 2011). In addition, GLEAM is a long-sequence dataset
predominantly based on remote sensing observations and,
on occasion, reanalysis data. GLEAM is unlike traditional
land models, such as those found in ERA5, MERRA-2 and
GLDAS, in that it is driven by satellite observations to obtain
evaporation estimates. The version of GLEAM here relies
very little on reanalysis datasets (only the radiation and tem-
perature of ERA-Interim). Therefore, GLEAM has the most
independence relative to the model-based products and is se-
lected for the reference data due to its relative independence.
The version of the dataset used in this study is 3.2a, which
spans a 38-year period through 1980 to 2017, gridded with
0.25◦. It is available from https://www.gleam.eu/ (last access:
11 December 2021).

2.1.2 The fifth-generation ECMWF reanalysis (ERA5)
ET

Following ERA-15, ERA-40 and ERA-Interim, the fifth gen-
eration of ECMWF reanalysis data ERA5 has been re-
leased, which is envisioned to replace ERA-Interim reanal-
ysis (Hersbach et al., 2020). Compared with ERA-Interim,
some of the key climatic information of ERA5 has been im-
proved. The most updated version of the Earth system model
and data assimilation techniques used at ECMWF have been
applied in ERA5, including more sophisticated parameteri-
zation of geophysical processes in comparison to the previ-
ous versions used in ERA-Interim. ERA5 covers from 1979
to the near-real-time period (on a regular basis); moreover,
the temporal and spatial resolutions have been improved in
ERA5, from 6-hourly in ERA-Interim to hourly and from
79 to 31 km in the horizontal dimension and 60 to 137 in
vertical levels. ERA5 has a better balance of global precip-
itation and evaporation (Albergel et al., 2018). Martens et
al. (2020) evaluated surface energy partitioning in ERA5, es-
pecially including latent heat fluxes using different reference
datasets and modeling tools, with the analysis showing that
there are lower absolute biases in the surface latent heat flux
of ERA5 than of ERA-Interim, though ERA5 still appears
to overestimate the latent heat flux in most catchments. It is
available from https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5/ (last access: 11 December 2021).

2.1.3 The second Modern-Era Retrospective analysis
for Research and Applications (MERRA-2) ET

MERRA-2 (Gelaro et al., 2017) is an advanced atmospheric
reanalysis dataset, which absorbs a mass of satellite data,
including new observation types such as hyperspectral ra-
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Table 1. Summary of ET datasets involved in merging.

Name ET schemes/land surface Spatial Temporal Time span Reference
schemes resolution resolution

(degrees)

GLEAM3.2a Priestley–Taylor 0.25× 0.25 daily 1980–2017 Miralles et al. (2011),
Martens et al. (2017)

ERA5 Integrated Forecast System (IFS) 0.25× 0.25 1 h 1980–2017 Hersbach et al. (2020)

MERRA-2 GEOS-5 0.625× 0.5 daily 1980–2017 Gelaro et al. (2017)

GLDAS2.0 and Noah 0.25× 0.25 3 h 1980–1999 and Sheffield and Wood (2007)
GLDAS2.1 2000–2017

diation, microwaves and aerosols. MERRA-2 is unique in
modern reanalysis datasets in that it contains aerosol data as-
similation (Randles et al., 2017). Like ERA5, it combines
satellite and more traditional weather observations with sim-
ulated atmospheric behavior, making an attempt to obtain
the optimal possible estimation of the Earth system state.
MERRA-2 is the second version of MERRA, which has un-
dergone several major upgrades, including an observation-
based precipitation bias correction (Reichle et al., 2017).
The land surface model used in MERRA-2 is the Catch-
ment Land Surface Model (Koster et al., 2000), where land
evaporation is calculated as part of the energy balance at the
land surface. Hourly data with a 0.625× 0.5◦ spatial res-
olution are provided by the Goddard Earth Sciences Data
and Information Service Center (DISC). Daily data from
1980 to 2017 have been used in this study. The accuracy
of MERRA-2 has been widely evaluated (Bosilovich et
al., 2015; Gelaro et al., 2017), including water cycle vari-
ability and the global water balance (Bosilovich et al., 2017).
It is available from https://goldsmr4.gesdisc.eosdis.nasa.gov/
data/MERRA2/M2T1NXLND.5.12.4/ (last access: 11 De-
cember 2021).

2.1.4 Global Land Data Assimilation System ET
(GLDAS) ET

GLDAS is a global high-resolution land modeling system
based on the North American Land Data Assimilation
System (NLDAS). In order to generate better land surface
products in different land surface models (LSMs), GLDAS
generates the optimal field of surface state and flux by
absorbing satellite and surface observation data, taking
advantage of advanced land surface modeling (Rodell et
al., 2004). Different LSMs are used including Mosaic,
Noah, the Community Land Model (CLM) and the Variable
Infiltration Capacity (VIC) model, where only Noah has
continued being updated until now. Recently, there has
been more and more evidence to show that GLDAS1.0 has
serious discontinuities due to forcing data such as large
precipitation and temperature errors in 1996 and 2000–2005

(Wang et al., 2016). Therefore, both daily and monthly
land evaporation data of GLDAS2 combined with Noah
LSM (GLDAS2–Noah) have been used in this study, whose
spatial resolution is 0.25◦× 0.25◦. GLDAS2 includes two
datasets, specifically GLDAS2.0 and GLDAS2.1, where
the simulations start from 1948 in GLDAS2.0 and 2000
in GLDAS2.1. The product is simulated with the Prince-
ton University meteorological forcing dataset (PUMFD),
which has been corrected with observation-based products
during the period of 1948–2010 (Sheffield et al., 2006).
The time periods of 1980 to 1999 for GLDAS2.0 and
2000 to 2017 for GLDAS2.1 are selected in this study.
Details of forcing data and a description of the model
are available at https://disc.gsfc.nasa.gov/information?
page=1&project=GRACE-DA-DM,FLDAS,GLDAS,
NEWS,NLDAS,NCA-LDAS&keywords=hydrology (last
access: 11 December 2021). The data are available
from https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/
GLDAS_NOAH025_3H.2.0/ (last access: 11 December
2021) and https://hydro1.gesdisc.eosdis.nasa.gov/data/
GLDAS/GLDAS_NOAH025_3H.2.1/ (last access: 11 De-
cember 2021).

2.1.5 Eddy covariance (EC) ET

Latent heat flux (LE) from 181 effective flux towers across
the world is used to evaluate the performance of multi-
ple datasets with different estimates and is available from
http://fluxnet.fluxdata.org/ (last access: 11 December 2021).
Eddy covariance is a widely used energy flux measurement
method that provides continuous measurement of the inter-
change of water and energy (Mu et al., 2011). Measurements
are masked with the provided quality flags in the dataset
archives. Since there is minimal impact of ground-measured
ET on days with strong precipitation on the verification re-
sults (Fig. S1 in the Supplement), data on these days are not
excluded in order to retain more site data. Figure 1 shows that
the data availability of in situ data occurs over different pe-
riods. The data cover the period of 1992–2014, including at
least 1 year of reliable data. As shown in Fig. 1b, the periods
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vary from 1 to 19 years, with 14, 32, 32, 13 and 9 sites re-
porting 1, 2, 3, 4 and 5 years of data, respectively, accounting
for 55 % of the sites. Ideally, a fair evaluation of the products
could be made if the availability of the datasets fully over-
lapped. However, here, the limited overlapping times avail-
able of the in situ datasets make their use quite inconsistent.
Nonetheless, they are still useful since they offer an objective
evaluation source. As such no filtering was applied to select
specific data apart from the quality control applied. The ob-
served land evaporation is calculated by latent heat flux in
the following equation:

ET=
LE

λ
, (1)

where λ is the conversion factor with a fixed value of
2.45 MJ kg−1. The flux towers are located in 11 land cover
types including 17 cropland (CRO), 23 deciduous broadleaf
forest (DBF), 1 deciduous needleleaf forest (DNF), 13 ever-
green broadleaf forest (EBF), 42 evergreen needleleaf forest
(ENF), 34 grassland (GRA), 9 mixed forest (MF), 9 open
shrubland (OSH), 8 savanna (SAV), 19 permanent wetland
(WET) and 6 woody savanna (WSA) sites. In the rest of the
paper, the different land cover types listed, which are rep-
resentative of different ecosystem types, will be simply re-
ferred to as ecosystems.

2.2 Methods

In this study, we investigated whether more accurate ET re-
sults could be obtained through the weighted combination
of ERA5, GLDAS and MERRA-2 estimation. Ideally, the
weight assigned to each product should be based on an ac-
curate description of the uncertainty during the merging pro-
cess. Therefore, the three datasets have been weighted with
respect to GLEAM, and the performance of the merged ET
products has been studied at the selected sites. A set of
weights need to be defined for the weighted combination of
three products, usually based on the individual uncertainty
in each product. The simplest strategy used in previous stud-
ies has been to assume that all three products have the same
uncertainty; thus the merged product is a simple average of
each product. A more detailed strategy used in this study is
to weigh the products based on their uncertainties. The ex-
pected goal is to develop a product that minimizes root mean
square deviation (RMSD), which we call optimal in the con-
text of our merging strategy.

2.2.1 Coefficient of variation

The coefficient of variation (CV), also known as the relative
standard deviation in probability theory and statistics, is used
to evaluate the consistency of multiple sets of reanalysis ET
data. It is a statistic to measure the degree of variation in the
data. The consistency decreases with an increase in the CV.

It is calculated from the following equation:

CV=
S

x
× 100%, (2)

where S represents the standard deviation and x represents
the average of multiple sets of reanalysis ET data in each
pixel.

This approach is superior to standard deviation in terms of
evaluating consistency and can eliminate the influence of dif-
ferent units and/or the average on the degree of variation in
two or more data points. In this paper, multiple sets of reanal-
ysis land evaporation data are blended into a single product
based on their performance and convergence criteria.

2.2.2 Reliability ensemble averaging

The reliability ensemble averaging (REA) method (Giorgi
and Mearns, 2002; Xu et al., 2010) was used to combine
multiple sets of model-based ET data into a single prod-
uct. Two reliability criteria were considered in the method:
model performance and model convergence, in other words,
the model’s performance in reproducing the current climate
and the convergence of simulated values between models.

In our REA method, the average ET is given by a weighted
average of all the ensemble members.

ẼT= Ã(ET)=

∑
i

RiETi∑
i

Ri
, (3)

where Ã represents the REA and Ri represents the model
reliability factor defined as

Ri =
[
(RB,i)m× (RD,i)n

][1/(m×n)]

=

{[
εET

abs(BET,i)

]m[
εET

abs(DET,i)

]n}[1/(m×n)]
. (4)

The merging is extended to pixels rather than just taking
place at the flux tower level, based on the selection of the
independent GLEAM as the reference to compensate for the
limited EC-measured ET. RB,i and RD,i in Eq. (4) are mea-
sures of the model performance and convergence criteria, re-
spectively. RB,i is a factor to measure the reliability of the
model through the bias (BET,i) between the simulated ET and
the reference; that is, the larger the bias, the lower the relia-
bility of the model. RD,i is a factor to measure the reliability
in the aspect of the distance (DET,i) between the simulated
ET and the ensemble average; that is, the higher the distance,
the lower the reliability of the model.

The parametersm and n in Eq. (4) are used to measure the
relative importance of the two criteria. In this work, assum-
ing the importance of the two criteria is equal, m and n were
both assigned the value of 1. However, if the two criteria are
given different weights, they may be different. The parameter
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ε in Eq. (4) is a measure of natural variability in 38-year ET.
In order to calculate ε, we estimated moving averages after
linearly detrending the 38-year time series data in each pixel.
Then, the differences between the maximum and minimum
of the moving averages are computed as ε. In addition, when
B and D are less than ε, RB and RD are set to 1. In essence,
Eq. (4) indicates that the model is reliable when the bias and
the distance from the ensemble average are within the lim-
its of natural variability, where RB = RD = R = 1. With the
bias or distance growing, the reliability of a given model de-
creases.

However, the performance of a dataset varies across all
time points in a certain region, with some time points per-
forming better and some worse. This will be taken into ac-
count in the next release of the data.

The specific merging steps are as follows:

Step 1. Select the best climatology according to the root
mean square deviation (RMSD) between each dataset
and EC-measured ET.

Step 2. Calculate the anomalies of each dataset partici-
pating in the merging and the reference data.

Step 3. Merge the anomalies.

Step 4. Add the best climatology to the merged anoma-
lies to obtain the final merged product.

2.2.3 Validation criteria

The error metrics of the Pearson correlation coefficient (r),
root mean square deviation (RMSD) and unbiased root mean
square deviation (ubRMSD) were used to verify the blending
product. The statistic values are defined as follows:

r =

n∑
i=1

(Mi −M)(refi − ref)√
n∑
i=1

(Mi −M)2

√
n∑
i=1

(refi − ref)2

, (5)

RMSD=

√√√√n−1
n∑
i=1

(Mi − refi)2, (6)

BIAS= n−1
n∑
i=1

(Mi − refi), (7)

ubRMSD=
√

RMSD2
−BIAS2, (8)

where n represents the sample size and Mi and refi repre-
sent multiple sets of reanalysis ET data and reference data,
respectively, at time i.M and ref represent the average ofMi

and refi .

3 Results and discussion

The consistency of the three datasets has been illustrated in
Fig. 2, where Fig. 2a–c show the differences in land evapora-
tion between each dataset and the mean of the three products.
In the high latitudes of the Northern Hemisphere, GLDAS2–
Noah ET is more than 20 % higher than the mean of the three
products and ERA5 ET is almost the same as the mean, while
MERRA-2 ET is more than 20 % lower than the mean. In the
middle latitudes, ERA5 ET is more than 20 % higher than
the ensemble mean, while GLDAS2–Noah ET is more than
20 % lower than it. As for MERRA-2 ET, there are a few ar-
eas with values higher than the mean of the three products.
In the western part of South America and parts of Oceania
in the Southern Hemisphere, ERA5 ET is higher than the
mean of the three products while GLDAS2–Noah is lower
than it, with MERRA-2 showing no significant difference.
In these regions, the three datasets are significantly different,
indicating that the estimation of land evaporation is of great
uncertainty and low consistency. In order to reduce the risk
of inaccuracy in land evaporation merging, the CV is used to
select regions with high consistency. The CV analysis aims
to evaluate the relative systematic differences between the
three model products. Since it does not take the reference
data into account, it does not directly translate into the merg-
ing scheme. Nonetheless, it serves as an added check to ob-
tain optimum consistencies in the merging process for higher
skill in the merged data. Not surprisingly, in the north of
North America, west of South America, and desert regions of
mid-latitude Africa and Asia, the CV is above 0.8, indicating
relatively low consistency and high risk; thus these regions
are excluded from the merging region. In essence, these ex-
cluded areas are concentrated in hyper-arid areas where some
methods for estimating land evaporation are not applicable
(Goya and Harmsen, 2013). If the data we used for merging
are highly different from each other and none of them are
close to the reference data, merging in these regions does not
make sense. For the overall reliability of the merged product,
we excluded these areas that might be highly uncertain.

The spatial distribution of weights has been depicted in
Fig. 3, representing the contribution of each dataset to the
merged product. It is not difficult to find that the weights are
within the scope of 0.3–0.35 in most regions, indicating that
the contributions of the three datasets in these regions are
basically the same. In the Amazon Plain near the Equator,
the Congo Basin and the border between Oceania and Asia,
the weights of multiple datasets vary greatly. The weights of
MERRA-2 ET in these regions are below 0.3, while ERA5
ET and GLDAS2–Noah ET are above 0.35, indicating that
MERRA-2 ET contributed less than the other two datasets
in these regions. GLDAS2–Noah ET is found to contribute
greatly to the Amazon Plain and the border between Ocea-
nia and Asia, while in the Congo Basin ERA5 contributes
the most. Zonally banded weight of the three datasets are
presented in Fig. 3a–c. Three curves are shown in Fig. 3d,
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Figure 2. (a–c) The percentage of the difference between ERA5,
GLDAS2–Noah and MERRA-2 and average of the three datasets.
(d) Variable coefficient of the three datasets.

which describe the contributions of each dataset at differ-
ent latitudes. Obviously, the contribution of MERRA-2 ET
is less than that of the other two datasets near the Equator;
further, GLDAS2–Noah ET contributes slightly more than
ERA5 ET. In the high latitudes of the Northern Hemisphere,
the difference in contributions among the three datasets is
greatest where the contribution of ERA5 ET is the highest. In
the Southern Hemisphere, south of 40◦ S, MERRA-2 makes
a higher contribution than the other two datasets, with little
difference in the contribution of the three datasets in other
regions.

The latitudinal distribution of the multiyear mean land
evaporation of five products is shown in Fig. 4a. General con-
sistency in the spatial pattern is shown in spite of differences
in intensity. However, large differences appear in the interan-

nual variation in these products (Fig. 4b), though the long-
term trends generally show good consistency. Anomalies for
all datasets are shown in Fig. 4b. The comparison reveals
similar temporal variations in these datasets over most pe-
riods. The land evaporation time series of all datasets reach
their low ebb between 2000 and 2005. Most of them peak
between 2010 and 2011, except for MERRA-2 ET in 1981
and ERA5 ET in 1998. It is conspicuous that the fluctuations
in the merged product and four individual datasets are rela-
tively small in the first half of the 38 years, while in the sec-
ond half, relatively large fluctuations could be observed from
all datasets except ERA5 ET. The merged product as well as
four individual datasets shows significant decreasing trends
from 1997 to 2002 and increasing trends from 2002 to 2010.
Figure 4b also shows that the differences between REA and
the other products vary with time in their interannual varia-
tion. That is, the errors are not stationary. Nonetheless, their
long-term trends generally show good consistency. The obvi-
ous differences between the probability density distributions
of multiple datasets are clearly visible. In general, the consis-
tency between the merged product and GLEAM ET is better,
which may be greatly related to GLEAM as the reference
data in the merging process. Due to the discrepancies in the
driving data and calculation formulations for land evapora-
tion, anomalies vary from data to data.

Figure 5a–e show the scatter diagrams of multiple datasets
and station-observed data at a daily scale. More points are
found concentrated above the 1 : 1 line, which makes it clear
that land evaporation is somewhat overestimated. Among
the five datasets, the correlation coefficient between REA
and station-observed data is the highest, reaching 0.72, fol-
lowed by ERA5; the other three datasets are basically the
same. Therefore, the correlation coefficient is significantly
improved through REA data merging, indicating more con-
sistent changes between REA and station-observed data.
Similarly, as for RMSD, REA is the smallest, only 0.91 mm.
Therefore, the deviation between the REA data-merging
product and station-observed data is significantly reduced
compared with other data, indicating that the accuracy is
greatly improved. The Taylor chart in Fig. 5f describes the
ratio of the standard deviation, correlation coefficient and
unbiased root mean square deviation between five datasets
and station-observed data on a daily scale, with the ratio
of standard deviation representing the ratio between each
dataset and station-observed data. The ratio of standard devi-
ation of REA is the smallest, nearly 1, indicating almost the
same with station-observed data and the smallest fluctuation
among all datasets considered. The ubRMSD values of mul-
tiple datasets are slightly smaller than the RMSD while the
rank of them remains the same; specifically REA< ERA5<
GLEAM3.2a< GLDAS2–Noah<MERRA-2. The correla-
tion coefficient between REA and station-observed data is
the highest; meanwhile the ratios of standard deviation,
RMSD and ubRMSD are the lowest, indicating that REA
performs optimally under all assessment criteria.
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Figure 3. (a–c) Spatial distribution of weights and (d) latitudinal distribution of weights.

Figure 6 verifies the quality of multiple land evapora-
tion datasets at a monthly scale based on station-observed
data. The correlation coefficient between these datasets and
station-observed data on a monthly scale is higher than that
on a daily scale, with REA the highest, reaching 0.77. Among
the five datasets, the RMSD between REA and station-
observed data is the smallest, only 23.94 mm. It can be seen
from the Taylor chart that the ratio of standard deviation of
each dataset on a monthly scale is larger than that on a daily
scale, indicating the increase in fluctuation. Like the daily
scale, REA performs optimally under all assessment criteria.

Verification of ET products from different ecosystems has
been conducted in order to further evaluate their perfor-
mances. Table 2 describes quantitatively the performances
of the ET products in 11 ecosystem types of site on a daily
scale from two indicators, r and RMSD. The values in bold
print indicate the best performance of the four products. The
results demonstrate that no individual product performs best
across all ecosystems. For 42 ENF, 34 GRA, 9 OSH and 8
SAV sites, REA has a higher r and lower RMSD than in-
dividual products. For 23 DBF and 13 EBF sites, REA has
an optimal r or RMSD, specifically with the highest r of

0.77 and second-lowest RMSD of 1.07 mm d−1 for DBF and
the lowest RMSD of 1.08 mm d−1 and the second-highest of
0.65 for EBF. REA performs worse than at least one indi-
vidual product at 63 other sites. Specifically, REA has an r
of 0.60, lower than ERA5, and an RMSD of 1.38 mm d−1,
higher than GLEAM and ERA5 at 17 CRO sites. For 1 DNF
site, REA has an r of 0.80 and an RMSD of 0.62 mm d−1,
lower and higher, respectively, than ERA5. For 9 MF sites,
REA has an r of 0.74, lower than ERA5 and MERRA-2, and
an RMSD of 1.12 mm d−1, higher than ERA5. For 19 WET
sites, REA has an r of 0.46 and an RMSD of 1.59 mm d−1,
lower and higher, respectively, than ERA5 and GLDAS.
For 6 WSA sites, REA has an r of 0.70 and an RMSD of
1.13 mm d−1, lower and higher, respectively, than GLEAM.
Generally, ERA5, MERRA-2, GLEAM and REA show the
best performance in four (including CRO, DNF, EBF and
WET), two (GRA and MF), one (WSA) and five (DBF, ENF,
GRA, OSH and SAV) ecosystems, respectively, in terms of
r . Based on RMSD, both ERA5 and REA performed the best
in five ecosystems (with the former including DBF, DNF,
EBF, MF and WET and the latter including EBF, ENF, GRA,
OSH and SAV). REA does not perform the best across all
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Figure 4. (a) Latitudinal distribution of mean land evaporation from five datasets, (b) time series (1980–2017) and (c) probability distribution
of annual land evaporation anomalies from five ET products. The bandwidth of the kernel smoothing window was set to 10.

Table 2. The verification results including r and RMSD between daily ground-measured ET and daily ET from different products in different
ecosystems. Values in bold indicate the highest quality.

Ecosystem type ERA5 MERRA-2 GLDAS GLEAM REA

r RMSD r RMSD r RMSD r RMSD r RMSD

CRO 0.66 1.24 0.55 1.42 0.60 1.48 0.60 1.22 0.60 1.38
DBF 0.76 1.06 0.71 1.23 0.74 1.19 0.67 1.16 0.77 1.07
DNF 0.81 0.55 0.73 0.75 0.77 0.73 0.64 0.75 0.80 0.62
EBF 0.72 1.08 0.61 1.59 0.58 1.36 0.70 1.11 0.65 1.08
ENF 0.66 1.03 0.66 1.21 0.67 1.05 0.66 1.04 0.73 0.88
GRA 0.72 1.05 0.77 1.11 0.70 1.09 0.73 0.96 0.77 0.94
MF 0.77 1.05 0.79 1.37 0.70 1.23 0.70 1.12 0.74 1.12
OSH 0.43 1.00 0.47 0.92 0.46 0.96 0.33 1.15 0.50 0.88
SAV 0.61 1.23 0.62 1.40 0.63 1.22 0.58 1.25 0.66 1.16
WET 0.57 1.40 0.44 1.66 0.47 1.56 0.52 1.44 0.46 1.59
WSA 0.68 1.24 0.63 1.46 0.64 1.17 0.72 1.11 0.70 1.13
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Figure 5. (a–e) Scatterplots and (f) Taylor diagrams of daily ground-measured ET and ET from different products. Linear fits are plotted in
blue, and the 1 : 1 line is depicted. The correlation coefficients (r) have passed the 5 % significance test.

Figure 6. (a–e) Scatterplots and (f) Taylor diagrams of monthly ground-measured ET and ET from different products. Linear fits are plotted
in blue, and the 1 : 1 line is depicted. The correlation coefficients (r) have passed the 5 % significance test.

ecosystems; however, it avoids the worst performance in any
ecosystem. Taylor diagram results of daily ground-measured
ET and ET from the different products in 11 ecosystems are
in the Supplement (Fig. S2).

Similarly to Table 2, Table 3 shows the performance of ET
products in different ecosystems on a monthly scale. Com-
pared with the daily scale, the performance of each prod-
uct has changed, among which all of the r values become
higher. REA has a higher r and lower RMSD than individ-
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Table 3. The verification results including r and RMSD between monthly ground-measured ET and monthly ET from different products in
different ecosystems. Values in bold indicate the highest quality.

Ecosystem type ERA5 MERRA-2 GLDAS GLEAM REA

r RMSD r RMSD r RMSD r RMSD r RMSD

CRO 0.71 31.84 0.58 38.33 0.64 39.59 0.66 30.85 0.73 31.14
DBF 0.84 26.61 0.77 32.40 0.83 30.27 0.75 28.43 0.86 26.17
DNF 0.93 10.62 0.84 18.63 0.91 18.96 0.85 14.92 0.91 11.01
EBF 0.81 25.85 0.71 40.32 0.69 32.21 0.84 22.79 0.78 27.06
ENF 0.74 25.01 0.72 31.69 0.76 25.38 0.76 24.24 0.76 23.91
GRA 0.77 27.11 0.83 28.59 0.77 26.54 0.81 22.06 0.77 27.53
MF 0.83 27.57 0.85 37.98 0.75 32.90 0.79 27.71 0.83 26.99
OSH 0.45 25.34 0.51 23.39 0.52 23.75 0.27 32.57 0.53 24.54
SAV 0.65 32.05 0.65 38.08 0.67 31.88 0.59 34.33 0.68 31.45
WET 0.61 38.30 0.46 46.92 0.49 43.78 0.55 40.38 0.64 37.35
WSA 0.73 33.71 0.68 38.54 0.72 28.62 0.77 28.12 0.73 34.49

ual products at 23 DBF, 42 ENF, 8 SAV and 19 WET sites.
It has an optimal r or RMSD at 17 CRO, 9 MF and 9 OSH
sites. At the other 64 sites, REA has a worse performance
than at least one individual product. For 1 DNF site, REA
has a lower r and higher RMSD than ERA5. For 13 EBF
sites, REA has a lower r and higher RMSD than GLEAM
and ERA5. For 34 GRA sites, ERA5 has an r of 0.77, lower
than MERRA-2 and GLEAM, and an RMSD of 27.53 mm
per month, higher than GLEAM, ERA5 and GLDAS. For
6 WSA sites, REA has an r of 0.73, lower than GLEAM, and
an RMSD of 34.49 mm d−1, higher than GLEAM, GLDAS
and ERA5. Similarly to the daily scale, REA does not have a
better performance than any individual product in all ecosys-
tems but is superior to at least one individual one. Similarly,
the Taylor charts of monthly ground-measured ET and ET
from the different products in 11 ecosystems are in the Sup-
plement (Fig. S3).

In addition to different ecosystems, seasonal validation has
been carried out to try to find out how each ET product per-
forms in different seasons. Table 4 shows the performance
of five ET products in different seasons on a daily scale.
In general, REA has a better performance than individual
products in autumn and winter, while in spring and sum-
mer it has a worse performance than ERA5. The r of REA
for all seasons varies from 0.44 to 0.79, which remains opti-
mal. In spring and summer, its r is as high as ERA5, and its
RMSD is second only to the best-performing ERA5. In ad-
dition, MERRA-2, GLDAS and GLEAM perform similarly.
In terms of the whole year, the r of all products is higher
in winter and lower in summer than in other seasons. Simi-
larly, RMSD is the highest in summer and the lowest in win-
ter, which is mainly caused by the large variation and abso-
lute value of land ET in summer. The Taylor charts of daily
ground-measured ET and ET from the different products in
four seasons are in the Supplement (Fig. S4).

Compared with the daily scale, the performance of REA
varies greatly in different seasons at the monthly scale (Ta-
ble 5). In spring and summer, REA performs better than all
individual products, while in autumn, REA has an r of 0.72,
higher than individual products and an RMSD of 23.59 mm
per month, slightly lower than ERA5. In winter, REA has
an r of 0.85, higher than MERRA-2 and GLDAS and an
RMSD of 18.35 mm d−1, lower than MERRA-2. Like the
daily scale, the performance of all products is still better in
winter and worse in summer. Although the performances of
REA at the daily and monthly scales vary in each season, the
r is always higher than those of individual products except in
winter, indicating the high consistency of variation in REA
with the observations. Also, the Taylor charts of monthly
ground-measured ET and ET from the different products in
four seasons are in the Supplement (Fig. S5). Tables 4 and
5 demonstrate that the errors, in both the REA and the other
products, vary across different time points, suggesting a non-
stationarity of the uncertainties.

Previous studies have shown that there is a close relation-
ship between the quality of land evaporation and vegetation
(Miralles et al., 2016). The correlation coefficients between
multiple datasets and station-observed data under different
vegetation conditions (0.3 to 0.9) are compared in order to
understand how the quality of these datasets changes with
vegetation. The results show that the quality of all datasets
first increases and then decreases with the increase in vegeta-
tion density, with the highest quality captured when the nor-
malized difference vegetation index (NDVI) is around 0.55.
It is worth noting that all datasets are in a good quality range
with a correlation of more than 0.6 when the NDVI is be-
tween 0.4 and 0.7. It is well known that vegetation index sat-
uration poses potential issues. Generally speaking, the NDVI
is likely to become saturated over a dense canopy for forested
areas and becomes saturated rapidly for vegetation with a
nearly closed canopy (Liu et al., 2011). Based on the analysis
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Table 4. The verification results including r and RMSD between daily ground-measured ET and daily ET from different products in different
seasons. Values in bold indicate the highest quality.

Season ERA5 MERRA-2 GLDAS GLEAM REA

r RMSD r RMSD r RMSD r RMSD r RMSD

MAM 0.63 1.12 0.62 1.44 0.58 1.21 0.57 1.19 0.63 1.15
JJA 0.44 1.45 0.41 1.77 0.42 1.69 0.40 1.47 0.44 1.47
SON 0.64 0.96 0.61 0.93 0.60 0.93 0.60 0.91 0.65 0.84
DJF 0.78 0.77 0.75 0.83 0.74 0.77 0.76 0.77 0.79 0.70

Table 5. The verification results including r and RMSD between monthly ground-measured ET and monthly ET from different products in
different seasons. Values in bold indicate the highest quality.

Season ERA5 MERRA-2 GLDAS GLEAM REA

r RMSD r RMSD r RMSD r RMSD r RMSD

MAM 0.69 28.93 0.68 39.04 0.65 30.54 0.63 30.69 0.71 28.51
JJA 0.42 37.67 0.38 48.15 0.41 44.89 0.40 37.26 0.45 36.71
SON 0.71 23.66 0.67 23.08 0.66 22.58 0.72 20.41 0.72 23.59
DJF 0.85 18.18 0.84 19.24 0.84 17.14 0.86 16.52 0.85 18.35

of hyperspectral data, it is found that there is an obvious satu-
ration problem in the relationship between the leaf area index
(LAI) and NDVI; that is, when the LAI exceeds 2, the NDVI
asymptotically reaches the saturation level (Haboudane et
al., 2004). When biomass reaches a certain level, the NDVI
is not sensitive to changes in biomass (Huang et al., 2021).
Dynamic vegetation is not used in these models, resulting in
lower data quality with dense vegetation. Therefore, vegeta-
tion index saturation at a high NDVI results in a decrease in
the quality of these datasets at high vegetation density. As
shown in Fig. 7, the quality of each dataset is relatively low
and shows a rapid decline with the increase in vegetation den-
sity when the NDVI is greater than 0.7, the case of optimal
conditions for vegetation growth. In addition, a lot of remote
sensing data have been used in GLEAM, such as satellite
soil moisture, which are not of high quality when the veg-
etation density is high, affecting the quality of the final out-
put. Further, errors in GLEAM will affect the merged product
because GLEAM acts as the reference dataset. The merged
product demonstrates the ability to capture land evaporation
dynamics in a wide range of vegetation densities, which per-
forms best in all datasets when the NDVI ranges from 0.34
to 0.75.

There are unique advantages and limitations of the existing
land ET datasets for specific land cover types; however, few
are globally suitable for meteorology and hydrology. Spe-
cific land cover classifications are assigned for each model,
leading to the use of land cover classification from differ-
ent sources bringing about discrepancies in the estimation of
land ET. In different climatic regions, the performances of
land ET products vary from the model responses. Feng et
al. (2018) analyzed correlation between land ET estimated

Figure 7. Evaluation over different vegetation densities (NDVI) of
the merged product based on the correlation coefficient with station-
observed data.

based on the Budyko hypothesis and reanalysis ET products,
with results showing that great problems existed in MERRA-
2 when describing annual variation and the long-term trend
of land ET in China, mainly due to the higher variance am-
plitude of MERRA-2 than that of other reanalysis products.
Further, great uncertainty was captured in semiarid, semihu-
mid and humid regions according to MERRA-2. However,
Dembélé et al. (2020) found that MERRA-2 was still one
of the best datasets in estimating land ET in the Volta River
basin from 2003 to 2012 despite its low spatial resolution,
which was probably due to the compensation of high tem-
poral resolution for low spatial resolution. In contrast, ERA5
ET behaved poorly in the region. Baik et al. (2018) studied
the uncertainty in four widely used ET products (GLDAS2,
GLEAM, MOD16 and MERRA) on the dry continent of
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Australia during 2005–2014, finding a good consistency of
GLDAS2 on arable land. GLEAM performed well in forest
and savanna, while GLDAS2 showed the highest correlation
in farmland, grassland and shrubland. However, GLDAS2
and GLEAM ET were found to be overestimated in most
climatic regions and land cover classifications. The differ-
ence between model input variables can effectively explain
the difference between estimated ET (Yao et al., 2017b).
Specifically for Amazon tropical forests, MERRA-2 tended
to overestimate daily net radiation and incident solar radi-
ation, while GLDAS2 tended to overestimate daily radiation
and underestimate incident solar radiation (Gomis-Cebolla et
al., 2019).

Figure 8 depicts the spatial distribution of annual land
evaporation, which seems to be relatively consistent in the
five datasets. The regions with high land evaporation are
found concentrated near the Equator, generally in very wet
regions, including the Amazon Plain in the north of South
America, the Congo Basin in central Africa and the border
between Asia and Oceania, where the rainfall is usually over
1000 mm yr−1. Extremely low land evaporation is found to
be concentrated in very dry desert and permafrost regions, in-
cluding the Sahara and Arabian Desert in the north of Africa;
the Taklimakan, Turkish, Iranian and Indian deserts in central
Asia; and the permafrost regions in the north of North Amer-
ica and Eurasia, where the rainfall is under 200 mm yr−1. In
comparison with REA, the measurements of MERRA-2 and
GLDAS2–Noah are found to be significantly higher in the
very wet regions near the Equator and basically the same in
other regions, while GLEAM3.2a measurements are slightly
lower in the very wet equatorial regions and significantly
lower in the very dry regions of central Asia and the west of
North America. The spatial distributions of ERA5 and REA
are found to be the most consistent.

Figure 9 depicts the variation trends of multiple datasets
during 1980–2017, where GLDAS2–Noah has not been
calculated for comparison due to two datasets including
GLDAS-Noah2.0 and GLDAS-Noah2.1 used throughout the
period. Merged products shows that land evaporation signif-
icantly decreases in the Amazon Plain in South America and
Congo Basin in central Africa, while it increases over almost
all the rest of the world covering the east of North Amer-
ica, west of Europe, south of Asia and north of Oceania. The
reduction trend in the Amazon is observed in all datasets,
with MERRA-2 showing the most significant and intense
one. The decreasing trend in the Congo Basin is detected in
ERA5 and MERRA-2, while an opposite one is observed in
GLEAM3.2a. Burnett et al. (2020) found the Congo Basin
had become sunnier and less humid in recent years through
the analysis of environmental data. In general, GLEAM ET
is fairly close to land ET in tropical Africa (Schuttemeyer
et al., 2007; Opoku-Duah et al., 2008; Andam-Akorful et
al., 2015; Liu et al., 2016), while MERRA-2 ET has the max-
imum temporal variability over the Congo Basin (Burnett et
al., 2020; Crowhurst et al., 2020). The increase in the east

of North America, west of Europe and south of Asia is de-
tectable in all datasets. The increasing trend in the north of
Oceania is also detected in GLEAM3.2a and MERRA-2 but
not in ERA5.

Varying degrees of uncertainties exist in models based
on satellites according to their theories, structural assump-
tions and parameterization of the inputs. These limitations
are mainly affected by changes in landscape, climatic and
hydrological conditions (Xu et al., 2015). Changes in envi-
ronmental conditions and extensive vegetation types in re-
gional and global ET estimation can lead to great uncertain-
ties in ET products (Yilmaz et al., 2012; Liaqat and Choi,
2015; Liaqat et al., 2015; Khan et al., 2018). Apart from
a few ET products, at present, validation and analysis have
rarely been adopted to reduce uncertainties. Some research
has made some attempts to reduce the uncertainties in hydro-
logical applications (Zhu et al., 2016); so far no such perfor-
mance has been achieved. An emerging new technology, the
REA method, has the ability to combine different ET prod-
ucts (GLDAS, GLEAM, ERA5 and MERRA-2), is becoming
increasingly successful in resolving the issue of hydrological
uncertainties and holds greater significance for in-depth as-
sessment.

The uncertainties during the merging of ET products are
driven by various factors including input errors, the scaling
effect and the merging algorithm. Input errors are derived
from single ET product and EC ground measurements. EC
ground measurement determines the accuracy of the merged
ET products, as it is considered to be the “true” value used to
calibrate individual product, which persists in giving an error
of about 5 %–20 %. It is usually found to be relatively accu-
rate for ET acquisition (Foken et al., 2006). The uncertainties
from scaling effects are caused by the mismatch between the
spatial resolution of the model and the tower footprint. The
uncertainties in merging algorithms are caused by differential
calculations of the weight of each product. In addition, there
are other factors that lead to uncertainties. For example, un-
certainties in remote sensing and meteorological data may af-
fect the calculation of modeled ET. With regard to the model
estimation, some common modeling assumptions such as es-
timation of potential evaporation and shared inputs such as
surface radiation make ET estimates from models quite de-
pendent, making the predicted errors correlated (Jiménez et
al., 2018).

In general, reasonable information about hydrological
variables on a global scale can be extracted from satellite-
and reanalysis-based datasets, which is useful in regions
lacking sufficient observations (Kim et al., 2018). For the
discrepancy of the performances of reanalysis and satellite
data under different mechanisms, the merging method can
be used to verify the complementary strategy well to re-
flect the strengths of both. However, the complex structure
of these merging methods affects the efficiency of calculating
the weight and limits their wider application. In contrast, the
simplicity, computational efficiencies and reliable accuracy
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Figure 8. Spatial distribution of annual mean land evaporation for the period 1980–2017 (unit: mm).

Figure 9. Spatial distribution of linear trends of land evaporation for the period 1980–2017 (unit: mm per decade). Stippling indicates
statistically significant regions at a 95 % confidence level of the Mann–Kendall test.

of the REA method make it more preponderant when con-
sidering multi-source datasets (Giorgi and Mearns, 2002).
On the basis of previous studies, this study focuses on the
global performance of land ET merged products. To reduce
the complexity, we introduced the REA method to improve
land ET estimation and merged three reanalysis datasets pro-
duced by separate algorithms. This method considers not
only the performance of individual models but also the con-
vergence of models involved in the merging process. Com-

pared with individual products, an REA-merged ET product
is found to outperform them with significantly reduced root
mean square deviation (RMSD is 0.05–0.27 mm d−1 on av-
erage).

Compared with the widely used merging methods for land
ET, REA has certain advantages. Specifically, the simple av-
eraging (SA) method is the simplest among all the meth-
ods and depends on the assumption that the uncertainties are
the same for each dataset (Ershadi et al., 2014). However,
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this assumption lacks rationality in terms of the differences
between datasets. The REA method gives corresponding
weights according to the uncertainty in each dataset, mak-
ing up for this lack. Empirical orthogonal function (EOF)-
based methods introduce biases due to little to no distinction
between good and bad pixels in the reconstruction scheme
(Feng et al., 2016). In addition, the complexity of the EOF
method affects the calculation efficiency of the weights, re-
sulting in high calculation cost. The REA method easily ob-
tains the indicators used in the calculation of the weights,
which greatly improves the calculation efficiency. Further-
more, there is a higher efficiency of the REA method than
the commonly used machine-learning support vector ma-
chine (SVM) algorithms when the sample size is large (Yao
et al., 2017a). The simple Taylor skill score (STS) method
is highly dependent on the accuracy of the individual data,
with a high demand on the quality of individual datasets (Yao
et al., 2017b). The REA method depends on not only the
performance but also the convergence of the model, mak-
ing it less sensitive to the performance of individual datasets.
Since terrestrial ET is a complex variable coupled with en-
ergy, hydrology and the carbon budget, it is difficult to accu-
rately determine the optimal condition density function when
using the Bayesian model averaging (BMA) method (Yao
et al., 2014; Zhu et al., 2016), whereas the two indicators
adopted by the REA method, including the reliability and
convergence of the model, are easy to obtain by the devia-
tion between the simulated ET and the reference and the dis-
tance between the simulated ET and the ensemble average,
respectively. Therefore, the REA method possesses certain
reliability and high efficiency in terms of merging land ET.

However, the REA method only takes into considera-
tion the combination of and relationship between each prod-
uct and the reference dataset. Although the improvement in
the correlation coefficient is statistically significant, datasets
both participating in the merging process and used as the ref-
erence have not been improved substantially. Therefore, the
performance of the REA method is highly dependent on the
weight of individual dataset, which is calibrated with the ref-
erence data. Consequently, the results also demonstrate that
REA is more sensitive to higher qualities in GLEAM. As
a result, where GLEAM has lower qualities, REA tends to
have higher qualities. Meanwhile, they both have very sim-
ilar qualities, or even higher ones in REA, at regions where
GLEAM has higher correlations with and lower differences
from the in situ datasets (Fig S6). Thus REA is more sensi-
tive to the reference data where they are more reliable. Fu-
ture research needs to determine the physical mechanism of
the inherent error in each product and strengthen the global
quantification of ET products by combining the surface resid-
ual energy balance and water balance method without using
any reference dataset (Yao et al., 2017b; Baik et al., 2018).

4 Data availability

All data used in this study are freely available with the links
given in Sect. 2. A convenience copy of the merged global
land evaporation product available at the time this paper was
created has been registered with Zenodo and is available
at https://doi.org/10.5281/zenodo.4595941 (Lu et al., 2021).
Both daily and monthly datasets are provided.

5 Conclusion

In conclusion, we used the CV as an indicator to select
the merging regions with high data consistency, and the re-
gions with low consistency were excluded from the merg-
ing scope, including the north of North America, west of
South America, and desert regions of mid-latitude Africa and
Asia. We merged three land ET datasets, ERA5, GLDAS and
MERRA-2, using the REA method to generate a set of long-
sequence global daily ET data with a spatial resolution of
0.25◦ and a time span of 38 years. The quality of the merged
product is found to be significantly improved when compared
with the three individual datasets selected for merging. Av-
eraged global validations based on the correlation coefficient
and RMSD suggest that the merged product relatively has the
best skill to capture ET dynamics over different locations and
times among all datasets. Nonetheless, the results also indi-
cate that no one product performs best across all ecosystems
and timescales. Under different vegetation conditions when
the NDVI ranges from 0.34 to 0.75, the merged product can
capture land evaporation dynamics most accurately.

The spatial distribution of the merged product was found
to be highly consistent with the other four datasets, indicating
that the product successfully captures the spatial difference
in land ET effectively. In terms of variation trends of global
land ET, conclusions differ among numerous studies due to
uncertainties in the data used, and no agreement could be
reached. Our merged product shows that there is a significant
decreasing trend in the Amazon Plain in South America and
Congo Basin in central Africa and an increasing trend in the
east of North America, west of Europe, south of Asia and
north of Oceania. This is the first time we have used the REA
method more precisely in land ET data merging by avoiding
the errors likely to be generated by physical mechanisms.

Based on model weighting, the method of combining in-
formation into a new dataset reflects the uncertainty behind
climate change predictions, which should be explored in
depth. A simple and flexible framework is provided for ex-
ploration according to the REA method. As we expected, the
error was non-stationary. The weight of each day can be es-
timated by running a time window centered on the day for
making the weight change over time. Shorter time windows
produce more dynamic weights; nonetheless, the values may
be noisier due to fewer samples available to estimate variabil-
ity in the time series. Under the framework, cross-variable
merging can be realized; that is, multiple related variables
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can be included for weight calculation (Xu et al., 2010). In
future studies, the quality of merged products could be im-
proved by adopting an appropriate time window to calculate
the dynamic weight and considering more relevant variables
to further reduce the uncertainty in the merged product.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-13-5879-2021-supplement.
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