Articles | Volume 13, issue 6
https://doi.org/10.5194/essd-13-2487-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-13-2487-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Marine terraces of the last interglacial period along the Pacific coast of South America (1° N–40° S)
Roland Freisleben
CORRESPONDING AUTHOR
Institut für Geowissenschaften, Universität Potsdam, 14476
Potsdam, Germany
Julius Jara-Muñoz
Institut für Geowissenschaften, Universität Potsdam, 14476
Potsdam, Germany
Daniel Melnick
Instituto de Ciencias de la Tierra, TAQUACH, Universidad Austral de
Chile, Valdivia, Chile
Millennium Nucleus the Seismic Cycle along Subduction Zones,
Valdivia, Chile
José Miguel Martínez
Instituto de Ciencias de la Tierra, TAQUACH, Universidad Austral de
Chile, Valdivia, Chile
Millennium Nucleus the Seismic Cycle along Subduction Zones,
Valdivia, Chile
Manfred R. Strecker
Institut für Geowissenschaften, Universität Potsdam, 14476
Potsdam, Germany
Related authors
No articles found.
Sara Savi, Stefanie Tofelde, Andrew D. Wickert, Aaron Bufe, Taylor F. Schildgen, and Manfred R. Strecker
Earth Surf. Dynam., 8, 303–322, https://doi.org/10.5194/esurf-8-303-2020, https://doi.org/10.5194/esurf-8-303-2020, 2020
Short summary
Short summary
Fluvial deposits record changes in water and sediment supply. As such, they are often used to reconstruct the tectonic or climatic history of a basin. In this study we used an experimental setting to analyze how fluvial deposits register changes in water or sediment supply at a confluence zone. We provide a new conceptual framework that may help understanding the construction of these deposits under different forcings conditions, information crucial to correctly inferring the history of a basin.
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Bott, Oliver Heidbach, and Manfred R. Strecker
Solid Earth, 10, 785–807, https://doi.org/10.5194/se-10-785-2019, https://doi.org/10.5194/se-10-785-2019, 2019
Short summary
Short summary
Based on geophysical data integration and 3-D gravity modeling, we show that significant density heterogeneities are expressed as two large high-density bodies in the crust below the Sea of Marmara. The location of these bodies correlates spatially with the bends of the main Marmara fault, indicating that rheological contrasts in the crust may influence the fault kinematics. Our findings may have implications for seismic hazard and risk assessments in the Marmara region.
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Sippel, and Manfred R. Strecker
Solid Earth, 9, 139–158, https://doi.org/10.5194/se-9-139-2018, https://doi.org/10.5194/se-9-139-2018, 2018
Short summary
Short summary
We examined the thermal gradient as an index of the thermal field in the Atlantic. While the thermal anomaly in the South Atlantic should be equilibrated, the thermal disturbance in the North Atlantic causes thermal effects in the present day. Characteristics of the lithosphere ultimately determine the thermal field. The thermal gradient nonlinearly decreases with depth and varies significantly both laterally and with time, which has implications for methods of thermal history reconstruction.
Related subject area
Geosciences – Geology
Greenland Geothermal Heat Flow Database and Map (Version 1)
MIS 5e sea-level history along the Pacific coast of North America
A spectral library for laser-induced fluorescence analysis as a tool for rare earth element identification
Slope deformation, reservoir variation and meteorological data at the Khoko landslide, Enguri hydroelectric basin (Georgia), during 2016–2019
A standardized database of Marine Isotope Stage 5e sea-level proxies in southern Africa (Angola, Namibia and South Africa)
Database of global glendonite and ikaite records throughout the Phanerozoic
A status report on a section-based stratigraphic and palaeontological database – the Geobiodiversity Database
Lake and mire isolation data set for the estimation of post-glacial land uplift in Fennoscandia
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Daniel R. Muhs
Earth Syst. Sci. Data, 14, 1271–1330, https://doi.org/10.5194/essd-14-1271-2022, https://doi.org/10.5194/essd-14-1271-2022, 2022
Short summary
Short summary
The last interglacial period, known as marine isotope substage (MIS) 5e, was the last time in recent geologic history when sea level was substantially higher than present. It is an important time period to understand because climate models forecast a higher global sea level in the not-too-distant future. Geologic records of this high-sea stand (marine terraces, reefs) along the Pacific coast of North America are reviewed here with the identification of knowledge gaps where more work is needed.
Margret C. Fuchs, Jan Beyer, Sandra Lorenz, Suchinder Sharma, Axel D. Renno, Johannes Heitmann, and Richard Gloaguen
Earth Syst. Sci. Data, 13, 4465–4483, https://doi.org/10.5194/essd-13-4465-2021, https://doi.org/10.5194/essd-13-4465-2021, 2021
Short summary
Short summary
We present a library of high-resolution laser-induced fluorescence (LiF) reference spectra using the Smithsonian rare earth phosphate standards for electron microprobe analysis. With the recurring interest in rare earth elements (REEs), LiF may provide a powerful tool for their rapid and accurate identification. Applications of the spectral LiF library to natural materials such as rocks could complement the spectroscopy-based toolkit for innovative, non-invasive exploration technologies.
Alessandro Tibaldi, Federico Pasquaré Mariotto, Paolo Oppizzi, Fabio Luca Bonali, Nino Tsereteli, Levan Mebonia, and Johni Chania
Earth Syst. Sci. Data, 13, 3321–3335, https://doi.org/10.5194/essd-13-3321-2021, https://doi.org/10.5194/essd-13-3321-2021, 2021
Short summary
Short summary
Under a NATO project, we installed a monitoring system at the Khoko landslide facing the Enguri artificial reservoir (Greater Caucasus). During 2016–2019, we compare slope deformation with meteorological factors and variations in the water level of the reservoir. Our results indicate that the landslide displacements appear to be controlled by variations in hydraulic load and partially by rainfall.
J. Andrew G. Cooper and Andrew N. Green
Earth Syst. Sci. Data, 13, 953–968, https://doi.org/10.5194/essd-13-953-2021, https://doi.org/10.5194/essd-13-953-2021, 2021
Short summary
Short summary
A standardized database compiled to a common format is presented for indicators of sea level during the last interglacial from the southern African coast (Angola, Namibia and South Africa). These enable further analysis of the nature of the sea-level highstand and its regional variability.
Mikhail Rogov, Victoria Ershova, Oleg Vereshchagin, Kseniia Vasileva, Kseniia Mikhailova, and Aleksei Krylov
Earth Syst. Sci. Data, 13, 343–356, https://doi.org/10.5194/essd-13-343-2021, https://doi.org/10.5194/essd-13-343-2021, 2021
Short summary
Short summary
A database of a modern metastable cold-water mineral (ikaite) and its replacement mineral (glendonite) spanning 540 million years has been created to understand their distribution in space and time. A significant body of evidence suggests that glendonite occurrences are restricted mainly to cold-water settings; however they do not occur during every glaciation or cooling event reported from the Phanerozoic. This compilation improves our understanding of climatic conditions of the past.
Hong-He Xu, Zhi-Bin Niu, and Yan-Sen Chen
Earth Syst. Sci. Data, 12, 3443–3452, https://doi.org/10.5194/essd-12-3443-2020, https://doi.org/10.5194/essd-12-3443-2020, 2020
Short summary
Short summary
We introduce here a comprehensive database of stratigraphy and palaeontology biodiversity, the Geobiodiversity Database (GBDB). The GBDB collects and provides a big volume of fossil and stratum record data and aims to be more widely used by geoscientists and contribute to better quantitative research on palaeontology and stratigraphy, and furthermore, to a deeper understanding of the evolution of life and of Earth's history.
Jari Pohjola, Jari Turunen, and Tarmo Lipping
Earth Syst. Sci. Data, 12, 869–873, https://doi.org/10.5194/essd-12-869-2020, https://doi.org/10.5194/essd-12-869-2020, 2020
Short summary
Short summary
When modelling land uplift processes, there is a need for historical data in which dating, elevation and consequently spatial data are connected to the shore level at that time. In addition, human settlements were located above the seawater level in Fennoscandia. This information can be used to validate and update the post-glacial land uplift model. In this paper, a collection of data consisting of geological and archaeological data sets is presented.
Cited articles
Anderson, R. S., Densmore, A. L., and Ellis, M. A.: The generation and
degradation of marine terraces, Basin Research, 11, 7–19,
https://doi.org/10.1046/j.1365-2117.1999.00085.x, 1999.
Angermann, D., Klotz, J., and Reigber, C.: Space-geodetic estimation of the
Nazca-South America Euler vector, Earth Planet. Sc. Lett., 171,
329–334, https://doi.org/10.1016/S0012-821X(99)00173-9, 1999.
Baker, A., Allmendinger, R. W., Owen, L. A., and Rech, J. A.: Permanent
deformation caused by subduction earthquakes in northern Chile, Nat.
Geosci., 6, 492–496, https://doi.org/10.1038/ngeo1789, 2013.
Bangs, N. L. and Cande, S. C.: Episodic development of a convergent margin
inferred from structures and processes along the southern Chile margin,
Tectonics, 16, 489–503, 1997.
Barazangi, M. and Isacks, B. L.: Spatial distribution of earthquakes and
subduction of the Nazca plate beneath South America, Geology, 4, 686,
https://doi.org/10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2, 1976.
Beck, S., Barrientos, S., Kausel, E., and Reyes, M.: Source characteristics
of historic earthquakes along the central Chile subduction zone, J.
S. Am. Earth Sci., 11, 115–129,
https://doi.org/10.1016/S0895-9811(98)00005-4, 1998.
Bendix, J., Rollenbeck, R., and Reudenbach, C.: Diurnal patterns of rainfall
in a tropical Andean valley of southern Ecuador as seen by a vertically
pointing K-band Doppler radar, Int. J. Climatol., 26,
829–846, https://doi.org/10.1002/joc.1267, 2006.
Bernhardt, A., Schwanghart, W., Hebbeln, D., Stuut, J.-B. W., and Strecker,
M. R.: Immediate propagation of deglacial environmental change to
deep-marine turbidite systems along the Chile convergent margin, Earth Planet. Sc. Lett., 473, 190–204,
https://doi.org/10.1016/j.epsl.2017.05.017, 2017.
Bernhardt, A., Hebbeln, D., Regenberg, M., Lückge, A., and Strecker, M.
R.: Shelfal sediment transport by an undercurrent forces turbidity-current
activity during high sea level along the Chile continental margin, Geology,
44, 295–298, https://doi.org/10.1130/G37594.1, 2016.
Bilek, S. L.: Invited review paper: Seismicity along the South American
subduction zone: Review of large earthquakes, tsunamis, and subduction zone
complexity, Tectonophysics, 495, 2–14,
https://doi.org/10.1016/j.tecto.2009.02.037, 2010.
Bilek, S. L., Schwartz, S. Y., and DeShon, H. R.: Control of seafloor
roughness on earthquake rupture behavior, Tectonics, 31, 455,
https://doi.org/10.1130/0091-7613(2003)031<0455:COSROE>2.0.CO;2, 2003.
Binnie, A., Dunai, T. J., Binnie, S. A., Victor, P., González, G., and
Bolten, A.: Accelerated late quaternary uplift revealed by 10Be exposure
dating of marine terraces, Mejillones Peninsula, northern Chile, Quat.
Geochronol., 36, 12–27, https://doi.org/10.1016/j.quageo.2016.06.005,
2016.
Bookhagen, B. and Strecker, M. R.: Orographic barriers, high-resolution TRMM
rainfall, and relief variations along the eastern Andes, Geophys.
Res. Lett., 35, 139, https://doi.org/10.1029/2007GL032011, 2008.
Cahill, T. and Isacks, B. L.: Seismicity and shape of the subducted Nazca
Plate, J. Geophys. Res.-Sol. Ea., 97, 17503,
https://doi.org/10.1029/92JB00493, 1992.
Ceccherini, G., Ameztoy, I., Hernández, C., and Moreno, C.:
High-Resolution Precipitation Datasets in South America and West Africa
based on Satellite-Derived Rainfall, Enhanced Vegetation Index and Digital
Elevation Model, Remote Sensing, 7, 6454–6488,
https://doi.org/10.3390/rs70506454, 2015.
Cembrano, J., Lavenu, A., Yañez, G., Riquelme, R., García, M.,
González, G., and Hérail, G.: Neotectonics, in: The geology of
Chile, edited by: Moreno, T. and Gibbons, W., Geological Society, London,
231–261, 2007.
Clift, P. and Vannucchi, P.: Controls on tectonic accretion versus erosion
in subduction zones: Implications for the origin and recycling of the
continental crust, Rev. Geophys., 42, RG2001,
https://doi.org/10.1029/2003RG000127, 2004.
Clift, P. D. and Hartley, A. J.: Slow rates of subduction erosion and
coastal underplating along the Andean margin of Chile and Peru, Geology, 35,
503–506, https://doi.org/10.1130/G23584A.1, 2007.
Cloos, M. and Shreve, R. L.: Shear-zone thickness and the seismicity of
Chilean- and Marianas-type subduction zones, Geology, 24, 107–110,
https://doi.org/10.1130/0091-7613(1996)024<0107:SZTATS>2.3.CO;2, 1996.
Cloos, M. and Shreve, R. L.: Subduction-channel model of prism accretion,
melange formation, sediment subduction, and subduction erosion at convergent
plate margins: 1. Background and description, Pure Appl. Geophys.,
128, 455–500, https://doi.org/10.1007/BF00874548, 1988.
Collot, J.-Y., Charvis, P., Gutscher, M.-A., and Operto, S.: Exploring the
Ecuador-Colombia Active Margin and Interplate Seismogenic Zone, Eos,
Transactions, American Geophysical Union, 83, 185–190,
https://doi.org/10.1029/2002EO000120, 2002.
Collot, J.-Y., Sanclemente, E., Nocquet, J.-M., Leprêtre, A., Ribodetti,
A., Jarrin, P., Chlieh, M., Graindorge, D., and Charvis, P.: Subducted
oceanic relief locks the shallow megathrust in central Ecuador, J. Geophys. Res.-Sol. Ea., 122, 3286–3305,
https://doi.org/10.1002/2016JB013849, 2017.
Costa, C., Alvarado, A., Audemard, F., Audin, L., Benavente, C., Bezerra, F.
H., Cembrano, J., González, G., López, M., Minaya, E.,
Santibañez, I., Garcia, J., Arcila, M., Pagani, M., Pérez, I.,
Delgado, F., Paolini, M., and Garro, H.: Hazardous faults of South America;
compilation and overview, J. S. Am. Earth Sci., 104,
102837, https://doi.org/10.1016/j.jsames.2020.102837, 2020.
Costa, C., Machette, M. N., Dart, R. L., Bastias, H. E., Paredes, J. D.,
Perucca, L. P., Tello, G. E., and Haller, K. M.: Map and database of
Quaternary faults and folds in Argentina, Open-File Report, US Geological
Survey, https://doi.org/10.3133/ofr00108, 2000.
Coudurier-Curveur, A., Lacassin, R., and Armijo, R.: Andean growth and
monsoon winds drive landscape evolution at SW margin of South America, Earth Planet. Sc. Lett., 414, 87–99,
https://doi.org/10.1016/j.epsl.2014.12.047, 2015.
Creveling, J. R., Mitrovica, J. X., Clark, P. U., Waelbroeck, C., and Pico,
T.: Predicted bounds on peak global mean sea level during marine isotope
stages 5a and 5c, Quatern. Sci. Rev., 163, 193–208,
https://doi.org/10.1016/j.quascirev.2017.03.003, 2017.
DeMets, C., Gordon, R. G., and Argus, D. F.: Geologically current plate
motions, Geophys. J. Int., 181, 1–80,
https://doi.org/10.1111/j.1365-246X.2009.04491.x, 2010.
Espurt, N., Funiciello, F., Martinod, J., Guillaume, B., Regard, V.,
Faccenna, C., and Brusset, S.: Flat subduction dynamics and deformation of
the South American plate: Insights from analog modeling, Tectonics, 27,
TC3011, https://doi.org/10.1029/2007TC002175, 2008.
Freisleben, R., Jara-Muñoz, J., Melnick, D., Martínez, J. M., and
Strecker, M.: Marine terraces of the last interglacial period along the
Pacific coast of South America (1∘ N–40∘ S), Zenodo,
https://doi.org/10.5281/ZENODO.4309748, 2020.
Fryer, P. and Smoot, N. C.: Processes of seamount subduction in the Mariana
and Izu-Bonin trenches, Mar. Geol., 64, 77–90,
https://doi.org/10.1016/0025-3227(85)90161-6, 1985.
Fuenzalida, H., Cooke, R., Paskoff, R., Segerstrom, K., and Weischet, W.:
High Stands of Quaternary Sea Level Along the Chilean Coast, Geol.
S. Am. S., 84, 473–496, 1965.
Gallen, S. F., Wegmann, K. W., Bohnenstiehl, D. R., Pazzaglia, F. J.,
Brandon, M. T., and Fassoulas, C.: Active simultaneous uplift and
margin-normal extension in a forearc high, Crete, Greece, Earth Planet. Sc. Lett., 398, 11–24,
https://doi.org/10.1016/j.epsl.2014.04.038, 2014.
Gardner, T. W., Fisher, D. M., Morell, K. D., and Cupper, M. L.: Upper-plate
deformation in response to flat slab subduction inboard of the aseismic
Cocos Ridge, Osa Peninsula, Costa Rica, Lithosphere, 5, 247–264,
https://doi.org/10.1130/L251.1, 2013.
Garreaud, R. D.: The Andes climate and weather, Adv. Geosci., 22, 3–11, https://doi.org/10.5194/adgeo-22-3-2009, 2009.
GEBCO Bathymetric Compilation Group: The GEBCO_2020 Grid – a
continuous terrain model of the global oceans and land, British
Oceanographic Data Centre, National Oceanography Centre, NERC, UK,
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9, 2020.
Geersen, J., Ranero, C. R., Barckhausen, U., and Reichert, C.: Subducting
seamounts control interplate coupling and seismic rupture in the 2014
Iquique earthquake area, Nat. Commun., 6, 8267,
https://doi.org/10.1038/ncomms9267, 2015.
German Aerospace Center: TanDEM-X – Digital Elevation Model (DEM) – Global,
12 m, 2018.
González, G. and Carrizo, D.: Segmentación, cinemática y
cronología relativa de la deformación tardía de la Falla Salar
del Carmen, Sistema de Fallas de Atacama, (23∘40′ S), norte de
Chile, Revista Geológica de Chile, 30,
https://doi.org/10.4067/S0716-02082003000200005, 2003.
Goy, J. L., Macharé, J., Ortlieb, L., and Zazo, C.: Quaternary
shorelines in Southern Peru a record of global sea-level fluctuations and
tectonic uplift in Chala Bay, Quatern. Int., 15–16, 99–112,
1992.
Gutscher, M.-A., Malavieille, J., Lallemand, S., and Collot, J.-Y.: Tectonic
segmentation of the North Andean margin: impact of the Carnegie Ridge
collision, Earth Planet. Sc. Lett., 168, 255–270,
https://doi.org/10.1016/S0012-821X(99)00060-6, 1999.
Gutscher, M.-A., Spakman, W., Bijwaard, H., and Engdahl, E. R.: Geodynamics
of flat subduction: Seismicity and tomographic constraints from the Andean
margin, Tectonics, 19, 814–833, https://doi.org/10.1029/1999TC001152, 2000.
Hampel, A.: The migration history of the Nazca Ridge along the Peruvian
active margin: a re-evaluation, Earth Planet. Sc. Lett., 203,
665–679, https://doi.org/10.1016/S0012-821X(02)00859-2, 2002.
Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney,
M., and Smoczyk, G. M.: Slab2, a comprehensive subduction zone geometry
model, Science, 362, 58–61,
https://doi.org/10.1126/science.aat4723, 2018.
Hearty, P. J., Hollin, J. T., Neumann, A. C., O'Leary, M. J., and McCulloch,
M.: Global sea-level fluctuations during the Last Interglaciation (MIS 5e),
Quatern. Sci. Rev., 26, 2090–2112,
https://doi.org/10.1016/j.quascirev.2007.06.019, 2007.
Hilde, T. W. C.: Sediment subduction versus accretion around the pacific,
Tectonophysics, 99, 381–397, https://doi.org/10.1016/0040-1951(83)90114-2,
1983.
Houston, J. and Hartley, A. J.: The central Andean west-slope rainshadow and
its potential contribution to the origin of hyper-aridity in the Atacama
Desert, Int. J. Climatol., 23, 1453–1464,
https://doi.org/10.1002/joc.938, 2003.
Hsu, J. T.: Quaternary uplift of the Peruvian coast related to the
subduction of the Nazca Ridge: 13.5 to 15.6 degrees south latitude,
Quatern. Int., 15–16, 87–97,
https://doi.org/10.1016/1040-6182(92)90038-4, 1992.
Hsu, J. T., Leonard, E. M., and Wehmiller, J. F.: Aminostratigraphy of
Peruvian and Chilean Quaternary marine terraces, Quatern. Sci. Rev.,
8, 255–262, https://doi.org/10.1016/0277-3791(89)90040-1, 1989.
Jaillard, E., Hérail, G., Monfret, T., Díaz-Martínez, E.,
Baby, P., Lavenu, A., and Dumont, J. F.: Tectonic evolution of the Andes of
Ecuador, Peru, Bolivia, and northernmost Chile, in: Tectonic evolution of
South America, 31st International Geological Congress, edited by: Cordani,
U. G., Milani, E. J., Thomaz, F. A., and Campos, D. A., Sociedad Brasileira
de Geologia, Rio de Janeiro, 481–559, 2000.
Jara-Muñoz, J., Melnick, D., Brill, D., and Strecker, M. R.:
Segmentation of the 2010 Maule Chile earthquake rupture from a joint
analysis of uplifted marine terraces and seismic-cycle deformation patterns,
Quatern. Sci. Rev., 113, 171–192,
https://doi.org/10.1016/j.quascirev.2015.01.005, 2015.
Jara-Muñoz, J., Melnick, D., and Strecker, M. R.: TerraceM: A
MATLAB® tool to analyze marine and lacustrine terraces using
high-resolution topography, Geosphere, 12, 176–195,
https://doi.org/10.1130/GES01208.1, 2016.
Jara-Muñoz, J., Melnick, D., Zambrano, P., Rietbrock, A., González,
J., Argandoña, B., and Strecker, M. R.: Quantifying offshore fore-arc
deformation and splay-fault slip using drowned Pleistocene shorelines,
Arauco Bay, Chile, J. Geophys. Res.-Sol. Ea., 122,
4529–4558, https://doi.org/10.1002/2016JB013339, 2017.
Jara-Muñoz, J., Melnick, D., Socquet, A., Cortés-Aranda, J., and
Strecker, M. R.: Slip rate and earthquake recurrence of the Pichilemu Fault,
15th Congreso Geológico Chileno, 18–23 November 2018.
Jordan, T. E., Isacks, B. L., Allmendinger, R. W., Brewer, J. A. O. N., Ramos,
V. A., and Ando, C. J.: Andean tectonics related to geometry of subducted
Nazca plate, Geol. Soc. Am. Bull., 94, 341–361,
https://doi.org/10.1130/0016-7606(1983)94<341:ATRTGO>2.0.CO;2, 1983.
Kay, S. M., Maksaev, V., Moscoso, R., Mpodozis, C., and Nasi, C.: Probing
the evolving Andean Lithosphere: Mid-Late Tertiary magmatism in Chile
(29∘–30∘30′ S) over the modern zone of subhorizontal
subduction, J. Geophys. Res.-Sol. Ea., 92, 6173–6189,
https://doi.org/10.1029/JB092iB07p06173, 1987.
Lajoie, K. R.: Coastal tectonics, in: Active tectonics, edited by: Wallace,
R. E., National Academics Press, Washington DC, 95–124, 1986.
Lamb, S. and Davis, P.: Cenozoic climate change as a possible cause for the
rise of the Andes, Nature, 425, 792–797,
https://doi.org/10.1038/nature02049, 2003.
Lohrmann, J., Kukowski, N., Adam, J., and Oncken, O.: The impact of analogue
material properties on the geometry, kinematics, and dynamics of convergent
sand wedges, J. Struct. Geol., 25, 1691–1711,
https://doi.org/10.1016/S0191-8141(03)00005-1, 2003.
Lorscheid, T. and Rovere, A.: The indicative meaning calculator –
quantification of paleo sea-level relationships by using global wave and
tide datasets, Open Geospatial Data, Software and Standards, 4, 10,
https://doi.org/10.1186/s40965-019-0069-8, 2019.
Macharé, J. and Ortlieb, L.: Plio-Quaternary vertical motions and the
subduction of the Nazca Ridge, central coast of Peru, Tectonophysics, 205,
97–108, https://doi.org/10.1016/0040-1951(92)90420-B, 1992.
Maldonado, V., Contreras, M., and Melnick, D.: A comprehensive database of
active and potentially-active continental faults in Chile at 1 : 25,000 scale,
Sci. Data, 8, 20, https://doi.org/10.1038/s41597-021-00802-4, 2021.
Manea, V. C., Pérez-Gussinyé, M., and Manea, M.: Chilean flat slab
subduction controlled by overriding plate thickness and trench rollback,
Geology, 40, 35–38, https://doi.org/10.1130/G32543.1, 2012.
Mann, P., Taylor, F. W., Lagoe, M. B., Quarles, A., and Burr, G.:
Accelerating late Quaternary uplift of the New Georgia Island Group (Solomon
island arc) in response to subduction of the recently active Woodlark
spreading center and Coleman seamount, Tectonophysics, 295, 259–306,
https://doi.org/10.1016/S0040-1951(98)00129-2, 1998.
Marcaillou, B., Collot, J.-Y., Ribodetti, A., d'Acremont, E., Mahamat,
A.-A., and Alvarado, A.: Seamount subduction at the North-Ecuadorian
convergent margin: Effects on structures, inter-seismic coupling and
seismogenesis, Earth Planet. Sc. Lett., 433, 146–158,
https://doi.org/10.1016/j.epsl.2015.10.043, 2016.
Martinod, J., Regard, V., Letourmy, Y., Henry, H., Hassani, R., Baratchart,
S., and Carretier, S.: How do subduction processes contribute to forearc
Andean uplift? Insights from numerical models, J. Geodynam., 96,
6–18, https://doi.org/10.1016/j.jog.2015.04.001, 2016a.
Martinod, J., Regard, V., Riquelme, R., Aguilar, G., Guillaume, B.,
Carretier, S., Cortés-Aranda, J., Leanni, L., and Hérail, G.:
Pleistocene uplift, climate and morphological segmentation of the Northern
Chile coasts (24∘ S–32∘ S): Insights from cosmogenic
10Be dating of paleoshorelines, Geomorphology, 274, 78–91,
https://doi.org/10.1016/j.geomorph.2016.09.010, 2016b.
Melet, A., Teatini, P., Le Cozannet, G., Jamet, C., Conversi, A.,
Benveniste, J., and Almar, R.: Earth Observations for Monitoring Marine
Coastal Hazards and Their Drivers, Surv. Geophys., 41, 1489–1534,
https://doi.org/10.1007/s10712-020-09594-5, 2020.
Melnick, D.: Rise of the central Andean coast by earthquakes straddling the
Moho, Nature Geoscience, 9, 401–407, https://doi.org/10.1038/ngeo2683,
2016.
Melnick, D., Bookhagen, B., Echtler, H. P., and Strecker, M. R.: Coastal
deformation and great subduction earthquakes, Isla Santa Maria, Chile
(37∘ S), Geol. Soc. Am. Bull., 118, 1463–1480,
https://doi.org/10.1130/B25865.1, 2006.
Melnick, D., Bookhagen, B., Strecker, M. R., and Echtler, H. P.:
Segmentation of megathrust rupture zones from fore-arc deformation patterns
over hundreds to millions of years, Arauco peninsula, Chile, J. Geophys. Res.-Sol. Ea., 114, 6140,
https://doi.org/10.1029/2008JB005788, 2009.
Melnick, D., Hillemann, C., Jara-Muñoz, J., Garrett, E.,
Cortés-Aranda, J., Molina, D., Tassara, A., and Strecker, M. R.: Hidden
Holocene slip along the coastal El Yolki Fault in Central Chile and its
possible link with megathrust earthquakes, J. Geophys. Res.-Sol. Ea., 124, 7280–7302, https://doi.org/10.1029/2018JB017188, 2019.
Melnick, D., Maldonado, V., and Contreras, M.: Database of active and
potentially-active continental faults in Chile at 1 : 25,000 scale, PANGAEA,
https://doi.org/10.1594/PANGAEA.922241, 2020.
Melosh, H. J. and Raefsky, A.: The dynamical origin of subduction zone
topography, Geophys. J. Int., 60, 333–354,
https://doi.org/10.1111/j.1365-246X.1980.tb04812.x, 1980.
Menant, A., Angiboust, S., Gerya, T., Lacassin, R., Simoes, M., and Grandin,
R.: Transient stripping of subducting slabs controls periodic forearc
uplift, Nat. Commun., 11, 1823,
https://doi.org/10.1038/s41467-020-15580-7, 2020.
Morgan, J. K. and Bangs, N. L.: Recognizing seamount-forearc collisions at
accretionary margins: Insights from discrete numerical simulations, Geology,
45, 635–638, https://doi.org/10.1130/G38923.1, 2017.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading
rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
Naranjo, J. A.: Interpretacion de la actividad cenozoica superior a lo largo
de la Zona de Falla Atacama, Norte de Chile, Revista Geológica de Chile,
43–55, 1987.
Ortlieb, L. and Macharé, J.: Geochronologia y morfoestratigrafia de
terrazas marinas del Pleistoceno superior: El caso de San Juan-Marcona,
Peru, Boletín de la Sociedad Geológica del Perú, 81, 87–106,
1990.
Ortlieb, L., Zazo, C., Goy, J. L., Dabrio, C., and Macharé, J.: Pampa
del Palo: an anomalous composite marine terrace on the uprising coast of
southern Peru, J. S. Am. Earth Sci., 9, 367–379,
https://doi.org/10.1016/S0895-9811(96)00020-X, 1996a.
Ortlieb, L., Zazo, C., Goy, J., Hillaire-Marcel, C., Ghaleb, B., and
Cournoyer, L.: Coastal deformation and sea-level changes in the northern
Chile subduction area (23∘ S) during the last 330 ky, Quatern. Sci. Rev., 15, 819–831,
https://doi.org/10.1016/S0277-3791(96)00066-2, 1996b.
Ota, Y., Miyauchi, T., Paskoff, R., and Koba, M.: Plio-Quaternary marine
terraces and their deformation along the Altos de Talinay, North-Central
Chile, Rev. Geol. Chile, 22, 89–102, 1995.
Paris, P. J., Walsh, J. P., and Corbett, D. R.: Where the continent ends,
Geophys. Res. Lett., 43, 12208–12216,
https://doi.org/10.1002/2016GL071130, 2016.
Pedoja, K., Dumont, J. F., Lamothe, M., Ortlieb, L., Collot, J.-Y., Ghaleb,
B., Auclair, M., Alvarez, V., and Labrousse, B.: Plio-Quaternary uplift of
the Manta Peninsula and La Plata Island and the subduction of the Carnegie
Ridge, central coast of Ecuador, J. S. Am. Earth Sci.,
22, 1–21, https://doi.org/10.1016/j.jsames.2006.08.003, 2006a.
Pedoja, K., Ortlieb, L., Dumont, J. F., Lamothe, M., Ghaleb, B., Auclair,
M., and Labrousse, B.: Quaternary coastal uplift along the Talara Arc
(Ecuador, Northern Peru) from new marine terrace data, Mar. Geol., 228,
73–91, https://doi.org/10.1016/j.margeo.2006.01.004, 2006b.
Pedoja, K., Husson, L., Regard, V., Cobbold, P. R., Ostanciaux, E., Johnson,
M. E., Kershaw, S., Saillard, M., Martinod, J., Furgerot, L., Weill, P., and
Delcaillau, B.: Relative sea-level fall since the last interglacial stage:
Are coasts uplifting worldwide?, Earth-Sci. Rev., 108, 1–15,
https://doi.org/10.1016/j.earscirev.2011.05.002, 2011.
Pilger, R. H.: Plate reconstructions, aseismic ridges, and low-angle
subduction beneath the Andes, Geol. Soc. Am. Bull., 92,
448, https://doi.org/10.1130/0016-7606(1981)92<448:PRARAL>2.0.CO;2, 1981.
Prémaillon, M., Regard, V., Dewez, T. J. B., and Auda, Y.: GlobR2C2 (Global Recession Rates of Coastal Cliffs): a global relational database to investigate coastal rocky cliff erosion rate variations, Earth Surf. Dynam., 6, 651–668, https://doi.org/10.5194/esurf-6-651-2018, 2018.
Rabassa, J. and Clapperton, C. M.: Quaternary glaciations of the southern
Andes, Quatern. Sci. Rev., 9, 153–174,
https://doi.org/10.1016/0277-3791(90)90016-4, 1990.
Ramos, V. A. and Folguera, A.: Andean flat-slab subduction through time,
Geol. Soc. Spec. Publ., 327, 31–54,
https://doi.org/10.1144/SP327.3, 2009.
Regard, V., Saillard, M., Martinod, J., Audin, L., Carretier, S., Pedoja,
K., Riquelme, R., Paredes, P., and Hérail, G.: Renewed uplift of the
Central Andes Forearc revealed by coastal evolution during the Quaternary,
Earth Planet. Sc. Lett., 297, 199–210,
https://doi.org/10.1016/j.epsl.2010.06.020, 2010.
Rehak, K., Bookhagen, B., Strecker, M. R., and Echtler, H. P.: The
topographic imprint of a transient climate episode: the western Andean flank
between 15.5∘ and 41.5∘ S, Earth Surf. Proc.
Land., 35, 1516–1534, https://doi.org/10.1002/esp.1992, 2010.
Rodríguez, M. P., Carretier, S., Charrier, R., Saillard, M., Regard,
V., Hérail, G., Hall, S., Farber, D., and Audin, L.: Geochronology of
pediments and marine terraces in north-central Chile and their implications
for Quaternary uplift in the Western Andes, Geomorphology, 180–181, 33–46,
https://doi.org/10.1016/j.geomorph.2012.09.003, 2013.
Rohling, E. J., Grant, K., Bolshaw, M., Roberts, A. P., Siddall, M.,
Hemleben, C., and Kucera, M.: Antarctic temperature and global sea level
closely coupled over the past five glacial cycles, Nat. Geosci., 2,
500–504, https://doi.org/10.1038/ngeo557, 2009.
Rovere, A., Ryan, D., Murray-Wallace, C., Simms, A., Vacchi, M., Dutton, A.,
Lorscheid, T., Chutcharavan, P., Brill, D., Bartz, M., Jankowski, N.,
Mueller, D., Cohen, K., and Gowan, E.: Descriptions of database fields for
the World Atlas of Last Interglacial Shorelines (WALIS), Zenodo,
https://doi.org/10.5281/ZENODO.3961544, 2020.
Ruh, J. B., Sallarès, V., Ranero, C. R., and Gerya, T.: Crustal
deformation dynamics and stress evolution during seamount subduction:
High-resolution 3-D numerical modeling, J. Geophys. Res.-Sol. Ea., 121, 6880–6902, https://doi.org/10.1002/2016JB013250, 2016.
Saillard, M.: Dynamique du soulèvement côtier Pléistocène
des Andes centrales Etude de l'évolution géomorphologique et
datations (10Be) de séquences de terrasses marines (Sud Pérou – Nord Chili), Sciences de la Terre, Université Paul Sabatier, Toulouse, 316 pp., 2008.
Saillard, M., Hall, S. R., Audin, L., Farber, D. L., Hérail, G.,
Martinod, J., Regard, V., Finkel, R. C., and Bondoux, F.: Non-steady
long-term uplift rates and Pleistocene marine terrace development along the
Andean margin of Chile (31∘ S) inferred from 10Be dating, Earth Planet. Sc. Lett., 277, 50–63,
https://doi.org/10.1016/j.epsl.2008.09.039, 2009.
Saillard, M., Hall, S. R., Audin, L., Farber, D. L., Regard, V., and
Hérail, G.: Andean coastal uplift and active tectonics in southern Peru:
10Be surface exposure dating of differentially uplifted marine terrace
sequences (San Juan de Marcona, ∼ 15.4∘ S),
Geomorphology, 128, 178–190,
https://doi.org/10.1016/j.geomorph.2011.01.004, 2011.
Santibáñez, I., Cembrano, J., García-Pérez, T., Costa, C.,
Yáñez, G., Marquardt, C., Arancibia, G., and González, G.:
Crustal faults in the Chilean Andes: geological constraints and seismic
potential, Andean Geol., 46, 32–65, https://doi.org/10.5027/andgeoV46n1-3067,
2019.
Scholl, D. W. and von Huene, R.: Crustal recycling at modern subduction
zones applied to the past – Issues of growth and preservation of continental
basement crust, mantle geochemistry, and supercontinent reconstruction, in:
4-D Framework of Continental Crust, Geol. Soc. Am., 9–32,
https://doi.org/10.1130/2007.1200(02), 2007.
Schwanghart, W. and Kuhn, N. J.: TopoToolbox: A set of Matlab functions for
topographic analysis, Environ. Model. Softw., 25, 770–781,
https://doi.org/10.1016/j.envsoft.2009.12.002, 2010.
Schweller, W. J., Kulm, L. D., and Prince, R. A.: Tectonics, structure, and
sedimentary framework of the Peru-Chile Trench, Geol. Soc.
Am. Mem., 154, 323–350, https://doi.org/10.1130/MEM154-p323, 1981.
Shackleton, N. J., Sánchez-Goñi, M. F., Pailler, D., and Lancelot,
Y.: Marine Isotope Substage 5e and the Eemian Interglacial, Global
Planet. Change, 36, 151–155,
https://doi.org/10.1016/S0921-8181(02)00181-9, 2003.
Shepherd, A. and Wingham, D.: Recent sea-level contributions of the
Antarctic and Greenland ice sheets, Science, 315,
1529–1532, https://doi.org/10.1126/science.1136776, 2007.
Siddall, M., Chappell, J., and Potter, E.-K.: Eustatic sea level during past
interglacials, in: The climate of past interglacials., edited by: Sirocko,
F., Litt, T., Claussen, M., and Sanchez-Goni, M.-F., Elsevier, Amsterdam,
75–92, https://doi.org/10.1016/S1571-0866(07)80032-7, 2006.
Simms, A. R., Rouby, H., and Lambeck, K.: Marine terraces and rates of
vertical tectonic motion: The importance of glacio-isostatic adjustment
along the Pacific coast of central North America, Geol. Soc.
Am. Bull., 128, 81–93, https://doi.org/10.1130/B31299.1, 2016.
Sobolev, S. V. and Babeyko, A. Y.: What drives orogeny in the Andes?,
Geology, 33, 617–620, https://doi.org/10.1130/G21557AR.1, 2005.
Stern, C. R.: Role of subduction erosion in the generation of Andean magmas,
Geology, 19, 78–81, https://doi.org/10.1130/0091-7613(1991)019<0078:ROSEIT>2.3.CO;2, 1991.
Stewart, I. S., Sauber, J., and Rose, J.: Glacio-seismotectonics: ice
sheets, crustal deformation and seismicity, Quatern. Sci. Rev., 19,
1367–1389, https://doi.org/10.1016/S0277-3791(00)00094-9, 2000.
Stirling, C. H., Esat, T. M., Lambeck, K., and McCulloch, M. T.: Timing and
duration of the Last Interglacial: evidence for a restricted interval of
widespread coral reef growth, Earth Planet. Sc. Lett., 160,
745–762, https://doi.org/10.1016/S0012-821X(98)00125-3, 1998.
Strecker, M. R., Alonso, R. N., Bookhagen, B., Carrapa, B., Hilley, G. E.,
Sobel, E. R., and Trauth, M. H.: Tectonics and Climate of the Southern
Central Andes, Annu. Rev. Earth Pl. Sc., 35, 747–787,
https://doi.org/10.1146/annurev.earth.35.031306.140158, 2007.
Suárez, G., Molnar, P., and Burchfiel, B. C.: Seismicity, fault plane
solutions, depth of faulting, and active tectonics of the Andes of Peru,
Ecuador, and southern Colombia, J. Geophys. Res.-Sol. Ea., 88,
10403–10428, https://doi.org/10.1029/JB088iB12p10403, 1983.
Taylor, F. W., Frohlich, C., Lecolle, J., and Strecker, M.: Analysis of
partially emerged corals and reef terraces in the central Vanuatu Arc:
Comparison of contemporary coseismic and nonseismic with quaternary vertical
movements, J. Geophys. Res.-Sol. Ea., 92, 4905,
https://doi.org/10.1029/JB092iB06p04905, 1987.
Trenhaile, A. S.: Modeling the development of marine terraces on tectonically
mobile rock coasts, Mar. Geol., 185, 341–361,
https://doi.org/10.1016/S0025-3227(02)00187-1, 2002.
Turcotte, D. L. and Schubert, G.: Geodynamics: Applications of Continuum
Physics to Geological Problems, John Wiley, New York, 1982.
Veloza, G., Styron, R., Taylor, M., and Mora, A.: Open-source archive of
active faults for northwest South America, GSA Today, 22, 4–10,
https://doi.org/10.1130/GSAT-G156A.1, 2012.
Venzke, E.: Volcanoes of the World, v. 4.3.4, Global Volcanism Program,
https://doi.org/10.5479/si.GVP.VOTW4-2013, 2013.
Victor, P., Sobiesiak, M., Glodny, J., Nielsen, S. N., and Oncken, O.:
Long-term persistence of subduction earthquake segment boundaries: Evidence
from Mejillones Peninsula, northern Chile, J. Geophys. Res.-Sol. Ea.,
116, B02402, https://doi.org/10.1029/2010JB007771, 2011.
Villegas-Lanza, J. C., Chlieh, M., Cavalié, O., Tavera, H., Baby, P.,
Chire-Chira, J., and Nocquet, J.-M.: Active tectonics of Peru: Heterogeneous
interseismic coupling along the Nazca megathrust, rigid motion of the
Peruvian Sliver, and Subandean shortening accommodation, J. Geophys. Res.-Sol. Ea., 121, 7371–7394,
https://doi.org/10.1002/2016JB013080, 2016.
von Huene, R. and Scholl, D. W.: Observations at convergent margins
concerning sediment subduction, subduction erosion, and the growth of
continental crust, Geology, 29, 279–316, https://doi.org/10.1029/91RG00969,
1991.
von Huene, R., Pecher, I. A., and Gutscher, M.-A.: Development of the
accretionary prism along Peru and material flux after subduction of Nazca
Ridge, Tectonics, 15, 19–33, https://doi.org/10.1029/95TC02618, 1996.
von Huene, R., Corvalán, J., Flueh, E. R., Hinz, K., Korstgard, J.,
Ranero, C. R., and Weinrebe, W.: Tectonic control of the subducting Juan
Fernández Ridge on the Andean margin near Valparaiso, Chile, Tectonics,
16, 474–488, https://doi.org/10.1029/96TC03703, 1997.
Wang, K. and Bilek, S. L.: Do subducting seamounts generate or stop large
earthquakes?, Geology, 39, 819–822, https://doi.org/10.1130/G31856.1, 2011.
Wang, K. and Bilek, S. L.: Invited review paper: Fault creep caused by
subduction of rough seafloor relief, Tectonophysics, 610, 1–24,
https://doi.org/10.1016/j.tecto.2013.11.024, 2014.
Watts, A. B. and Daly, S. F.: Long wavelength gravity and topography anomalies, Ann. Rev. Earth Pl. Sc., 9, 415–448, 1981.
Short summary
Tectonically active coasts are dynamic environments that host densely populated areas and associated infrastructure. We measured and described last interglacial marine terraces along 5000 km of the western South American coast. The pattern of terrace elevations displays short- to long-wavelength structures that may be controlled by crustal faults and the subduction of major bathymetric anomalies. Latitudinal climate characteristics may further influence their generation and preservation.
Tectonically active coasts are dynamic environments that host densely populated areas and...
Special issue
Altmetrics
Final-revised paper
Preprint