Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-3081-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-3081-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early-season mapping of winter wheat in China based on Landsat and Sentinel images
Jie Dong
College of Geomatics & Municipal Engineering, Zhejiang University
of Water Resources and Electric Power, Hangzhou 310018, Zhejiang, China
Yangyang Fu
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510245, Guangdong, China
Jingjing Wang
School of Human Settlements and Civil Engineering, Xi'an Jiaotong
University, Xi'an 710049, Shaanxi, China
Haifeng Tian
College of Environment and Planning, Henan University, Kaifeng 475004,
Henan, China
Shan Fu
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510245, Guangdong, China
Zheng Niu
Institute of Remote Sensing and Digital Earth, Chinese Academy of
Sciences, Beijing 100101, China
Wei Han
Shandong General Station of Agricultural Technology Extension, Jinan 250013, Shandong, China
Yi Zheng
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510245, Guangdong, China
Jianxi Huang
College of Land Science and Technology, China Agricultural University, Beijing 100083, China
Wenping Yuan
CORRESPONDING AUTHOR
School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou
510245, Guangdong, China
Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, Guangdong, China
Related authors
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025, https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
Short summary
This study proposed the Winter-Triticeae Crops Index (WTCI), which had great performance and stable spatiotemporal transferability in identifying winter-triticeae crops in 66 countries worldwide, with an overall accuracy of 87.7 %. The first global 30 m resolution distribution maps of winter-triticeae crops from 2017 to 2022 were further produced based on the WTCI method. The product can serve as an important basis for agricultural applications.
Ruoque Shen, Baihong Pan, Qiongyan Peng, Jie Dong, Xuebing Chen, Xi Zhang, Tao Ye, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, https://doi.org/10.5194/essd-15-3203-2023, 2023
Short summary
Short summary
Paddy rice is the second-largest grain crop in China and plays an important role in ensuring global food security. This study developed a new rice-mapping method and produced distribution maps of single-season rice in 21 provincial administrative regions of China from 2017 to 2022 at a 10 or 20 m resolution. The accuracy was examined using 108 195 survey samples and county-level statistical data, and we found that the distribution maps have good accuracy.
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Hao Jiang, Mengjun Ku, Xia Zhou, Qiong Zheng, Yangxiaoyue Liu, Jianhui Xu, Dan Li, Chongyang Wang, Jiayi Wei, Jing Zhang, Shuisen Chen, and Jianxi Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-44, https://doi.org/10.5194/essd-2025-44, 2025
Preprint under review for ESSD
Short summary
Short summary
Existing cropland datasets in China show significant discrepancies. We created a high-resolution cropland map of China for 2020, using imagery from Mapbox and Google. By combining image quality assessments, active learning for semantic segmentation, and results integration. The accuracy achieved to 88.73 %, with 30 out of 32 provincial units reporting area estimates within ±10 % of official statistics. In contrast, only 9 to 1 provinces from 7 existing datasets meet the same accuracy standard.
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025, https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
Short summary
This study proposed the Winter-Triticeae Crops Index (WTCI), which had great performance and stable spatiotemporal transferability in identifying winter-triticeae crops in 66 countries worldwide, with an overall accuracy of 87.7 %. The first global 30 m resolution distribution maps of winter-triticeae crops from 2017 to 2022 were further produced based on the WTCI method. The product can serve as an important basis for agricultural applications.
Kaiqi Du, Guilong Xiao, Jianxi Huang, Xiaoyan Kang, Xuecao Li, Yelu Zeng, Quandi Niu, Haixiang Guan, and Jianjian Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-432, https://doi.org/10.5194/essd-2024-432, 2025
Manuscript not accepted for further review
Short summary
Short summary
In this manuscript, we developed a 500-m spatial resolution monthly SIF dataset for the China region (CNSIF) from 2003 to 2022 based on high-resolution apparent reflectance and thermal infrared data. The comparison of CNSIF with tower-based SIF observations, tower-based GPP observations, MODIS GPP products, and other SIF datasets has validated CNSIF's ability to capture photosynthetic activity across different vegetation types and its potential for estimating carbon fluxes.
Yuqing Wang, Yijie Ma, Tingsong Gong, Xueyue Liang, Yaochen Qin, Haifeng Tian, Jie Pei, and Li Wang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-214, https://doi.org/10.5194/nhess-2024-214, 2024
Manuscript not accepted for further review
Short summary
Short summary
Optical Water Body Index (OWI) In this paper, we study the monitoring potential of 12 kinds of OWIs in different water environments of the world in order to better understand the global water system, fast, accurate and highly automated water body map provides theoretical and technical support.
Daju Wang, Peiyang Ren, Xiaosheng Xia, Lei Fan, Zhangcai Qin, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 16, 2465–2481, https://doi.org/10.5194/essd-16-2465-2024, https://doi.org/10.5194/essd-16-2465-2024, 2024
Short summary
Short summary
This study generated a high-precision dataset, locating forest harvested carbon and quantifying post-harvest wood emissions for various uses. It enhances our understanding of forest harvesting and post-harvest carbon dynamics in China, providing essential data for estimating the forest ecosystem carbon budget and emphasizing wood utilization's impact on carbon emissions.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Wanru He, Xuecao Li, Yuyu Zhou, Zitong Shi, Guojiang Yu, Tengyun Hu, Yixuan Wang, Jianxi Huang, Tiecheng Bai, Zhongchang Sun, Xiaoping Liu, and Peng Gong
Earth Syst. Sci. Data, 15, 3623–3639, https://doi.org/10.5194/essd-15-3623-2023, https://doi.org/10.5194/essd-15-3623-2023, 2023
Short summary
Short summary
Most existing global urban products with future projections were developed in urban and non-urban categories, which ignores the gradual change of urban development at the local scale. Using annual global urban extent data from 1985 to 2015, we forecasted global urban fractional changes under eight scenarios throughout 2100. The developed dataset can provide spatially explicit information on urban fractions at 1 km resolution, which helps support various urban studies (e.g., urban heat island).
Ruoque Shen, Baihong Pan, Qiongyan Peng, Jie Dong, Xuebing Chen, Xi Zhang, Tao Ye, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, https://doi.org/10.5194/essd-15-3203-2023, 2023
Short summary
Short summary
Paddy rice is the second-largest grain crop in China and plays an important role in ensuring global food security. This study developed a new rice-mapping method and produced distribution maps of single-season rice in 21 provincial administrative regions of China from 2017 to 2022 at a 10 or 20 m resolution. The accuracy was examined using 108 195 survey samples and county-level statistical data, and we found that the distribution maps have good accuracy.
Xueqin Yang, Xiuzhi Chen, Jiashun Ren, Wenping Yuan, Liyang Liu, Juxiu Liu, Dexiang Chen, Yihua Xiao, Qinghai Song, Yanjun Du, Shengbiao Wu, Lei Fan, Xiaoai Dai, Yunpeng Wang, and Yongxian Su
Earth Syst. Sci. Data, 15, 2601–2622, https://doi.org/10.5194/essd-15-2601-2023, https://doi.org/10.5194/essd-15-2601-2023, 2023
Short summary
Short summary
We developed the first time-mapped, continental-scale gridded dataset of monthly leaf area index (LAI) in three leaf age cohorts (i.e., young, mature, and old) from 2001–2018 data (referred to as Lad-LAI). The seasonality of three LAI cohorts from the new Lad-LAI product agrees well at eight sites with very fine-scale collections of monthly LAI. The proposed satellite-based approaches can provide references for mapping finer spatiotemporal-resolution LAI products with different leaf age cohorts.
Yuchan Chen, Xiuzhi Chen, Meimei Xue, Chuanxun Yang, Wei Zheng, Jun Cao, Wenting Yan, and Wenping Yuan
Hydrol. Earth Syst. Sci., 27, 1929–1943, https://doi.org/10.5194/hess-27-1929-2023, https://doi.org/10.5194/hess-27-1929-2023, 2023
Short summary
Short summary
This study addresses the quantification and estimation of the watershed-characteristic-related parameter (Pw) in the Budyko framework with the principle of hydrologically similar groups. The results show that Pw is closely related to soil moisture and fractional vegetation cover, and the relationship varies across specific hydrologic similarity groups. The overall satisfactory performance of the Pw estimation model improves the applicability of the Budyko framework for global runoff estimation.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144, https://doi.org/10.5194/esd-13-1119-2022, https://doi.org/10.5194/esd-13-1119-2022, 2022
Short summary
Short summary
We present a land surface model which can simulate the complete lateral transfer of sediment and carbon from land to ocean through rivers. Our model captures the water, sediment, and organic carbon discharges in European rivers well. Application of our model in Europe indicates that lateral carbon transfer can strongly change regional land carbon budgets by affecting organic carbon distribution and soil moisture.
Quandi Niu, Xuecao Li, Jianxi Huang, Hai Huang, Xianda Huang, Wei Su, and Wenping Yuan
Earth Syst. Sci. Data, 14, 2851–2864, https://doi.org/10.5194/essd-14-2851-2022, https://doi.org/10.5194/essd-14-2851-2022, 2022
Short summary
Short summary
In this paper we generated the first national maize phenology product with a fine spatial resolution (30 m) and a long temporal span (1985–2020) in China, using Landsat images. The derived phenological indicators agree with in situ observations and provide more spatial details than moderate resolution phenology products. The extracted maize phenology dataset can support precise yield estimation and deepen our understanding of the response of agroecosystem to global warming in the future.
Yi Zheng, Ana Cláudia dos Santos Luciano, Jie Dong, and Wenping Yuan
Earth Syst. Sci. Data, 14, 2065–2080, https://doi.org/10.5194/essd-14-2065-2022, https://doi.org/10.5194/essd-14-2065-2022, 2022
Short summary
Short summary
Brazil is the largest sugarcane producer. Sugarcane in Brazil can be harvested all year round. The flexible phenology makes it difficult to identify sugarcane in Brazil at a country scale. We developed a phenology-based method which can identify sugarcane with limited training data. The sugarcane maps for Brazil obtain high accuracy through comparison against field samples and statistical data. The maps can be used to monitor growing conditions and evaluate the feedback to climate of sugarcane.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
Cited articles
Abramov, S., Rubel, O., Lukin, V., Kozhemiakin, R., Kussul, N., Shelestov,
A., and Lavreniuk, M.: Speckle reducing for Sentinel-1 SAR data, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 27 July 2017, Fort Worth, TX, USA, 2353–2356, 2017.
Anhui Statistical Bureau: Anhui Statistical Yearbook, China
Statistics Press, Beijing, 2018.
Belgiu, M. and Csillik, O.: Sentinel-2 cropland mapping using pixel-based
and object-based time-weighted dynamic time warping analysis, Remote Sens.
Environ., 204, 509–523, https://doi.org/10.1016/j.rse.2017.10.005, 2017.
Boryan, C., Yang, Z., Mueller, R., and Craig, M.: Monitoring US agriculture:
the US Department of Agriculture, National Agricultural Statistics Service,
Cropland Data Layer Program, Geocarto Int., 26, 341–358,
https://doi.org/10.1080/10106049.2011.562309, 2011.
Brown, J. F. and Pervez, M. S.: Merging remote sensing data and national
agricultural statistics to model change in irrigated agriculture,
Agr. Syst., 127, 28–40, https://doi.org/10.1016/j.agsy.2014.01.004, 2014.
Cai, Y., Guan, K., Peng, J., Wang, S., Seifert, C., Wardlow, B., and Li, Z.:
A high-performance and in-season classification system of field-level crop
types using time-series Landsat data and a machine learning approach, Remote
Sens. Environ., 210, 35–47, https://doi.org/10.1016/j.rse.2018.02.045, 2018.
Chipanshi, A., Zhang, Y., Kouadio, L., Newlands, N., Davidson, A., Hill, H.,
Warren, R., Qian, B., Daneshfar, B., Bedard, F., and Reichert, G.: Evaluation
of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season
prediction of crop yield across the Canadian agricultural landscape,
Agr. Forest Meteorol., 206, 137–150,
https://doi.org/10.1016/j.agrformet.2015.03.007, 2015.
Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y.,
Wang, J., Biradar, C., Liu, J., and Moore, B.: Tracking the dynamics of paddy
rice planting area in 1986–2010 through time series Landsat images and
phenology-based algorithms, Remote Sens. Environ., 160, 99–113,
https://doi.org/10.1016/j.rse.2015.01.004, 2015.
Dong, J., Fu, Y., Wang, J., Tian, H., Fu, S., Niu, Z., Han, W.,
Zheng, Y., Huang, J., and Yuan, W.: Early-season mapping of winter wheat in
China based on Landsat and Sentinel images, figshare Dataset, https://doi.org/10.6084/m9.figshare.12003990,
2020a.
Dong, J., Lu, H., Wang, Y., Ye, T., and Yuan, W.: Estimating winter wheat
yield based on a light use efficiency model and wheat variety data, ISPRS
J. Photogramm., 160, 18–32,
https://doi.org/10.1016/j.isprsjprs.2019.12.005, 2020b.
ESA: Sentinel-2 User Handbook, European Space Agency, Paris, France,
2015.
FAOSTAT: Food and Agriculture Organization of the United Nations, FAO
Statistical Databases, available at: http://www.fao.org/faostat/en/ (last access: 17 February 2020), 2018.
Franch, B., Vermote, E. F., Becker-Reshef, I., Claverie, M., Huang, J.,
Zhang, J., Justice, C., and Sobrino, J. A.: Improving the timeliness of
winter wheat production forecast in the United States of America, Ukraine
and China using MODIS data and NCAR Growing Degree Day information, Remote
Sens. Environ., 161, 131–148, https://doi.org/10.1016/j.rse.2015.02.014, 2015.
Franch, B., Vermote, E. F., Skakun, S., Roger, J. C., Becker-Reshef, I.,
Murphy, E., and Justice, C.: Remote sensing based yield monitoring:
Application to winter wheat in United States and Ukraine, Int.
J. Appl. Earth Obs., 76, 112–127,
https://doi.org/10.1016/j.jag.2018.11.012, 2019.
Gong, P., Wang, J., Yu, L., Zhao, Y., and Chen, J.: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data, Int. J. Remote Sens., 34, 2607–2654, https://doi.org/10.1080/01431161.2012.748992, 2013.
Griffiths, P., Nendel, C., and Hostert, P.: Intra-annual reflectance
composites from Sentinel-2 and Landsat for national-scale crop and land
cover mapping, Remote Sens. Environ., 220, 135–151,
https://doi.org/10.1016/j.rse.2018.10.031, 2019.
Guan, X., Huang, C., Liu, G., Meng, X., and Liu, Q.: Mapping Rice Cropping
Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement
Based on DTW Distance, Remote Sens., 8, 19, https://doi.org/10.3390/rs8010019,
2016.
Guo, C., Tang, Y., Lu, J., Zhu, Y., Cao, W., Cheng, T., Zhang, L., and Tian,
Y.: Predicting wheat productivity: Integrating time series of vegetation
indices into crop modeling via sequential assimilation, Agr. Forest Meteorol., 272/273, 69–80, https://doi.org/10.1016/j.agrformet.2019.01.023,
2019.
Guo, Q.: Agricultural development and adjustment of industrial structure in
Northeast China, in: Annual Meeting of 2008 in Chinese Association of
Agricultural Economics, 21–22 September 2008, Hefei, Anhui, China, 2008.
He, Y., Wang, C., Chen, F., Jia, H., Liang, D., and Yang, A.: Feature
Comparison and Optimization for 30-M Winter Wheat Mapping Based on Landsat-8
and Sentinel-2 Data Using Random Forest Algorithm, Remote Sens., 11,
535, https://doi.org/10.3390/rs11050535, 2019.
Huang, J., Tian, L., Liang, S., Ma, H., Becker-Reshef, I., Huang, Y., Su,
W., Zhang, X., Zhu, D., and Wu, W.: Improving winter wheat yield estimation
by assimilation of the leaf area index from Landsat TM and MODIS data into
the WOFOST model, Agr. Forest Meteorol., 204, 106–121,
https://doi.org/10.1016/j.agrformet.2015.02.001, 2015.
Hubei Statistical Bureau: Hubei Statistical Yearbook, China
Statistics Press, Beijing, 2018.
Inglada, J., Vincent, A., Arias, M., and Marais-Sicre, C.: Improved Early
Crop Type Identification By Joint Use of High Temporal Resolution SAR And
Optical Image Time Series, Remote Sens., 8, 362, https://doi.org/10.3390/rs8050362,
2016.
Jiangsu Statistical Bureau: Jiangsu Statistical Yearbook, China
Statistics Press, Beijing, 2018.
Jin, Z., Azzari, G., You, C., Di Tommaso, S., Aston, S., Burke, M., and
Lobell, D. B.: Smallholder maize area and yield mapping at national scales
with Google Earth Engine, Remote Sens. Environ., 228, 115–128,
https://doi.org/10.1016/j.rse.2019.04.016, 2019.
Johnson, D. M.: A comprehensive assessment of the correlations between field
crop yields and commonly used MODIS products, Int. J. Appl. Earth Obs., 52, 65–81, https://doi.org/10.1016/j.jag.2016.05.010, 2016.
King, L., Adusei, B., Stehman, S. V., Potapov, P. V., Song, X.-P., Krylov,
A., Di Bella, C., Loveland, T. R., Johnson, D. M., and Hansen, M. C.: A
multi-resolution approach to national-scale cultivated area estimation of
soybean, Remote Sens. Environ., 195, 13–29,
https://doi.org/10.1016/j.rse.2017.03.047, 2017.
Kontgis, C., Schneider, A., and Ozdogan, M.: Mapping rice paddy extent and
intensification in the Vietnamese Mekong River Delta with dense time stacks
of Landsat data, Remote Sens. Environ., 169, 255–269,
https://doi.org/10.1016/j.rse.2015.08.004, 2015.
Lhermitte, S., Verbesselt, J., Verstraeten, W. W., and Coppin, P.: A
comparison of time series similarity measures for classification and change
detection of ecosystem dynamics, Remote Sens. Environ., 115,
3129–3152, https://doi.org/10.1016/j.rse.2011.06.020, 2011.
Li, C., Gong, P., Wang, J., Zhu, Z., Biging, G. S., Yuan, C., Hu, T., Zhang, H., Wang, Q., and Li, X.: The first all-season sample set for mapping global land cover with Landsat-8 data, Sci. Bull., 62, 508–515, https://doi.org/10.1016/j.scib.2017.03.011, 2017.
Li, M. and Bijker, W.: Vegetable classification in Indonesia using Dynamic
Time Warping of Sentinel-1A dual polarization SAR time series, Int.
J. Appl. Earth Obs., 78, 268–280, https://doi.org/10.1016/j.jag.2019.01.009, 2019.
Liu, J., Feng, Q., Gong, J., Zhou, J., Liang, J., and Li, Y.: Winter wheat
mapping using a random forest classifier combined with multi-temporal and
multi-sensor data, Int. J. Digit. Earth, 11, 783–802,
https://doi.org/10.1080/17538947.2017.1356388, 2018.
Maus, V., Camara, G., Cartaxo, R., Sanchez, A., Ramos, F. M., and de Queiroz,
G. R.: A Time-Weighted Dynamic Time Warping Method for Land-Use and
Land-Cover Mapping, IEEE J. Sel. Top. Appl., 9, 3729–3739,
https://doi.org/10.1109/JSTARS.2016.2517118, 2016.
McNairn, H., Kross, A., Lapen, D., Caves, R., and Shang, J.: Early season
monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2,
Int. J. Appl. Earth Obs., 28, 252–259, https://doi.org/10.1016/j.jag.2013.12.015, 2014.
Millard, K. and Richardson, M.: On the Importance of Training Data Sample
Selection in Random Forest Image Classification: A Case Study in Peatland
Ecosystem Mapping, Remote Sens., 7, 8489–8515, https://doi.org/10.3390/rs70708489,
2015.
National Bureau of Statistics of China: National statistical yearbook, China Statistics Press, Beijing, 2018.
Pan, Y., Li, L., Zhang, J., Liang, S., Zhu, X., and Sulla-Menashe, D.: Winter
wheat area estimation from MODIS-EVI time series data using the Crop
Proportion Phenology Index, Remote Sens. Environ., 119, 232–242,
https://doi.org/10.1016/j.rse.2011.10.011, 2012.
Petitjean, F., Inglada, J., and Gancarski, P.: Satellite Image Time Series
Analysis Under Time Warping, IEEE T. Geosci. Remote, 50, 3081–3095, https://doi.org/10.1109/TGRS.2011.2179050, 2012.
Qiu, B., Luo, Y., Tang, Z., Chen, C., Lu, D., Huang, H., Chen, Y., Chen, N.,
and Xu, W.: Winter wheat mapping combining variations before and after
estimated heading dates, ISPRS J. Photogramm., 123, 35–46, https://doi.org/10.1016/j.isprsjprs.2016.09.016, 2017.
Sakoe, H. and Chiba, S.: Dynamic programming algorithm optimization for
spoken word recognition, IEEE T. Acoust. Speech, 26, 43–49, https://doi.org/10.1109/TASSP.1978.1163055, 1978.
Shandong Statistical Bureau: Shandong Statistical Yearbook, China
Statistics Press, Beijing, 2018.
Shao, Y., Campbell, J. B., Taff, G. N., and Zheng, B.: An analysis of
cropland mask choice and ancillary data for annual corn yield forecasting
using MODIS data, Int. J. Appl. Earth Obs., 38, 78–87, https://doi.org/10.1016/j.jag.2014.12.017, 2015.
Skakun, S., Vermote, E., Roger, J.-C., and Franch, B.: Combined Use of Landsat-8
and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield
Assessment at Regional Scale, AIMS Geosciences, 3, 163–186,
https://doi.org/10.3934/geosci.2017.2.163, 2017a.
Skakun, S., Franch, B., Vermote, E., Roger, J.-C., Becker-Reshef, I.,
Justice, C., and Kussul, N.: Early season large-area winter crop mapping
using MODIS NDVI data, growing degree days information and a Gaussian
mixture model, Remote Sens. Environ., 195, 244–258,
https://doi.org/10.1016/j.rse.2017.04.026, 2017b.
Song, Q., Hu, Q., Zhou, Q., Hovis, C., Xiang, M., Tang, H., and Wu, W.:
In-Season Crop Mapping with GF-1/WFV Data by Combining Object-Based Image
Analysis and Random Forest, Remote Sens., 9, 1184,
https://doi.org/10.3390/rs9111184, 2017.
Song, X.-P., Potapov, P. V., Krylov, A., King, L., Di Bella, C. M., Hudson,
A., Khan, A., Adusei, B., Stehman, S. V., and Hansen, M. C.: National-scale
soybean mapping and area estimation in the United States using medium
resolution satellite imagery and field survey, Remote Sens.
Environ., 190, 383–395, https://doi.org/10.1016/j.rse.2017.01.008, 2017.
Tian, H., Huang, N., Niu, Z., Qin, Y., Pei, J., and Wang, J.: Mapping Winter Crops in China with Multi-Source Satellite Imagery and Phenology-Based Algorithm, Remote Sens., 11, 820, https://doi.org/10.3390/rs11070820, 2019.
Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffield, J.: Global warming and changes in drought,
Nature Clim. Change, 4, 17–22, https://doi.org/10.1038/nclimate2067, 2014.
USDA ERS, Economic Research Service, United States Department of Agriculture: Wheat Data, available at: https://www.ers.usda.gov/data-products/wheat-data/, last access: 12 October 2018.
Valero, S., Morin, D., Inglada, J., Sepulcre, G., Arias, M., Hagolle, O.,
Dedieu, G., Bontemps, S., Defourny, P., and Koetz, B.: Production of a
Dynamic Cropland Mask by Processing Remote Sensing Image Series at High
Temporal and Spatial Resolutions, Remote Sens., 8, 1–21,
https://doi.org/10.3390/rs8010055, 2016.
Veloso, A., Mermoz, S., Bouvet, A., Le Toan, T., Planells, M., Dejoux, J.-F.,
and Ceschia, E.: Understanding the temporal behavior of crops using
Sentinel-1 and Sentinel-2-like data for agricultural applications, Remote
Sens. Environ., 199, 415–426, https://doi.org/10.1016/j.rse.2017.07.015, 2017.
Wang, S., Azzari, G., and Lobell, D. B.: Crop type mapping without
field-level labels: Random forest transfer and unsupervised clustering
techniques, Remote Sens. Environ., 222, 303–317,
https://doi.org/10.1016/j.rse.2018.12.026, 2019.
Wardlow, B., Egbert, S., and Kastens, J.: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains, Remote Sens. Environ., 108, 290–310,
https://doi.org/10.1016/j.rse.2006.11.021, 2007.
Wardlow, B. D. and Egbert, S. L.: Large-area crop mapping using time-series
MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains,
Remote Sens. Environ., 112, 1096–1116,
https://doi.org/10.1016/j.rse.2007.07.019, 2008.
Wu, W., Shibasaki, R., Yang, P., Tan, G., Matsumura, K., and Sugimoto, K.:
Global-scale modelling of future changes in sown areas of major crops,
Ecol. Model., 208, 378–390,
https://doi.org/10.1016/j.ecolmodel.2007.06.012, 2007.
Yang, N., Liu, D., Feng, Q., Xiong, Q., Zhang, L., Ren, T., Zhao, Y., Zhu,
D., and Huang, J.: Large-Scale Crop Mapping Based on Machine Learning and
Parallel Computation with Grids, Remote Sens., 11, 1500,
https://doi.org/10.3390/rs11121500, 2019.
Yin, L., You, N., Zhang, G., Huang, J., and Dong, J.: Optimizing Feature
Selection of Individual Crop Types for Improved Crop Mapping, Remote
Sens., 12, 162, https://doi.org/10.3390/rs12010162, 2020.
Zambrano, F., Vrieling, A., Nelson, A., Meroni, M., and Tadesse, T.:
Prediction of drought-induced reduction of agricultural productivity in
Chile from MODIS, rainfall estimates, and climate oscillation indices,
Remote Sens. Environ., 219, 15–30, https://doi.org/10.1016/j.rse.2018.10.006,
2018.
Zhang, X., Qiu, F., and Qin, F.: Identification and mapping of winter wheat
by integrating temporal change information and Kullback–Leibler divergence,
Int. J. Appl. Earth Obs., 76, 26–39, https://doi.org/10.1016/j.jag.2018.11.002, 2019.
Zheng, B., Myint, S. W., Thenkabail, P. S., and Aggarwal, R. M.: A support
vector machine to identify irrigated crop types using time-series Landsat
NDVI data, Int. J. Appl. Earth Obs., 34, 103–112, https://doi.org/10.1016/j.jag.2014.07.002, 2015.
Zhong, L., Gong, P., and Biging, G. S.: Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery,
Remote Sens. Environ., 140, 1–13, doi.org/10.1016/j.rse.2013.08.023, 2014.
Zhong, L., Hu, L., Zhou, H., and Tao, X.: Deep learning based winter wheat
mapping using statistical data as ground references in Kansas and northern
Texas, US, Remote Sens. Environ., 233, 111411,
https://doi.org/10.1016/j.rse.2019.111411, 2019.
Zhuo, W., Huang, J., Li, L., Zhang, X., Ma, H., Gao, X., Huang, H., Xu, B.,
and Xiao, X.: Assimilating Soil Moisture Retrieved from Sentinel-1 and
Sentinel-2 Data into WOFOST Model to Improve Winter Wheat Yield Estimation,
Remote Sens., 11, 1618, https://doi.org/10.3390/rs11131618, 2019.
Short summary
For the first time, we produced a 30 m winter wheat distribution map in China for 3 years during 2016–2018. Validated with 33 776 survey samples, the map had perfect performance with an overall accuracy of 89.88 %. Moreover, the method can identify planting areas of winter wheat 3 months prior to harvest; that is valuable information for production predictions and is urgently necessary for policymakers to reduce economic loss and assess food security.
For the first time, we produced a 30 m winter wheat distribution map in China for 3 years during...
Altmetrics
Final-revised paper
Preprint