Articles | Volume 11, issue 2
Earth Syst. Sci. Data, 11, 553–563, 2019
https://doi.org/10.5194/essd-11-553-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Water, ecosystem, cryosphere, and climate data from the interior...
26 Apr 2019
26 Apr 2019
Meteorological, soil moisture, surface water, and groundwater data from the St. Denis National Wildlife Area, Saskatchewan, Canada
Edward K. P. Bam et al.
Related authors
No articles found.
Christopher Spence, Zhihua He, Kevin R. Shook, Balew A. Mekonnen, John W. Pomeroy, Colin J. Whitfield, and Jared D. Wolfe
Hydrol. Earth Syst. Sci., 26, 1801–1819, https://doi.org/10.5194/hess-26-1801-2022, https://doi.org/10.5194/hess-26-1801-2022, 2022
Short summary
Short summary
We determined how snow and flow in small creeks change with temperature and precipitation in the Canadian Prairie, a region where water resources are often under stress. We tried something new. Every watershed in the region was placed in one of seven groups based on their landscape traits. We selected one of these groups and used its traits to build a model of snow and streamflow. It worked well, and by the 2040s there may be 20 %–40 % less snow and 30 % less streamflow than the 1980s.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Jeffrey M. McKenzie, Barret L. Kurylyk, Michelle A. Walvoord, Victor F. Bense, Daniel Fortier, Christopher Spence, and Christophe Grenier
The Cryosphere, 15, 479–484, https://doi.org/10.5194/tc-15-479-2021, https://doi.org/10.5194/tc-15-479-2021, 2021
Short summary
Short summary
Groundwater is an underappreciated catalyst of environmental change in a warming Arctic. We provide evidence of how changing groundwater systems underpin surface changes in the north, and we argue for research and inclusion of cryohydrogeology, the study of groundwater in cold regions.
Zhe Zhang, Yanping Li, Michael Barlage, Fei Chen, Gonzalo Miguez-Macho, Andrew Ireson, and Zhenhua Li
Hydrol. Earth Syst. Sci., 24, 655–672, https://doi.org/10.5194/hess-24-655-2020, https://doi.org/10.5194/hess-24-655-2020, 2020
Short summary
Short summary
The groundwater regime in cold regions is strongly impacted by the soil freeze–thaw processes and semiarid climatic conditions. In this paper, we incorporate groundwater dynamics in the Noah-MP land surface model to simulate the water exchange between the unsaturated soil zone and an unconfined aquifer in the Prairie Pothole Region. The water table dynamics are reasonably simulated. The water budget of groundwater aquifer under current and future climate are also investigated.
Jared D. Wolfe, Kevin R. Shook, Chris Spence, and Colin J. Whitfield
Hydrol. Earth Syst. Sci., 23, 3945–3967, https://doi.org/10.5194/hess-23-3945-2019, https://doi.org/10.5194/hess-23-3945-2019, 2019
Short summary
Short summary
Watershed classification can identify regions expected to respond similarly to disturbance. Methods should extend beyond hydrology to include other environmental questions, such as ecology and water quality. We developed a classification for the Canadian Prairie and identified seven classes defined by watershed characteristics, including elevation, climate, wetland density, and surficial geology. Results provide a basis for evaluating watershed response to land management and climate condition.
Umarporn Charusombat, Ayumi Fujisaki-Manome, Andrew D. Gronewold, Brent M. Lofgren, Eric J. Anderson, Peter D. Blanken, Christopher Spence, John D. Lenters, Chuliang Xiao, Lindsay E. Fitzpatrick, and Gregory Cutrell
Hydrol. Earth Syst. Sci., 22, 5559–5578, https://doi.org/10.5194/hess-22-5559-2018, https://doi.org/10.5194/hess-22-5559-2018, 2018
Short summary
Short summary
The authors evaluated several algorithms of heat loss and evaporation simulation by comparing with direct measurements at four offshore flux towers in the North American Great Lakes. The algorithms reproduced the seasonal cycle of heat loss and evaporation reasonably, but some algorithms significantly overestimated them during fall to early winter. This was due to false assumption of roughness length scales for temperature and humidity and was improved by employing a correct parameterization.
Christopher Spence and Newell Hedstrom
Earth Syst. Sci. Data, 10, 1753–1767, https://doi.org/10.5194/essd-10-1753-2018, https://doi.org/10.5194/essd-10-1753-2018, 2018
Short summary
Short summary
This dataset documents physiographic and hydrometeorological conditions from 2003 to 2016 in the 155 km2 Baker Creek Research Watershed in Canada's Northwest Territories. Half-hourly hydrometeorological data were collected over several land cover types. The dataset includes streamflow, ground temperature, soil moisture, and spring maximum snow depth and water content. These data are unique in this remote region and provide scientific and engineering communities data to advance understanding.
Katheryn Burd, Suzanne E. Tank, Nicole Dion, William L. Quinton, Christopher Spence, Andrew J. Tanentzap, and David Olefeldt
Hydrol. Earth Syst. Sci., 22, 4455–4472, https://doi.org/10.5194/hess-22-4455-2018, https://doi.org/10.5194/hess-22-4455-2018, 2018
Short summary
Short summary
In this study we investigated whether climate change and wildfires are likely to alter water quality of streams in western boreal Canada, a region that contains large permafrost-affected peatlands. We monitored stream discharge and water quality from early snowmelt to fall in two streams, one of which drained a recently burned landscape. Wildfire increased the stream delivery of phosphorous and possibly increased the release of old natural organic matter previously stored in permafrost soils.
José-Luis Guerrero, Patricia Pernica, Howard Wheater, Murray Mackay, and Chris Spence
Hydrol. Earth Syst. Sci., 21, 6345–6362, https://doi.org/10.5194/hess-21-6345-2017, https://doi.org/10.5194/hess-21-6345-2017, 2017
Short summary
Short summary
Lakes are sentinels of climate change, and an adequate characterization of their feedbacks to the atmosphere could improve climate modeling. These feedbacks, as heat fluxes, can be simulated but are seldom measured, casting doubt on modeling results. Measurements from a small lake in Canada established that the model parameter modulating how much light penetrates the lake dominates model response. This parameter is measurable: improved monitoring could lead to more robust modeling.
Xicai Pan, Warren Helgason, Andrew Ireson, and Howard Wheater
Hydrol. Earth Syst. Sci., 21, 5401–5413, https://doi.org/10.5194/hess-21-5401-2017, https://doi.org/10.5194/hess-21-5401-2017, 2017
Short summary
Short summary
In this paper we present a case study from a heterogeneous pasture site in the Canadian prairies, where we have quantified the various components of the water balance on the field scale, and critically examine some of the simplifying assumptions which are often invoked when applying water budget approaches in applied hydrology. We highlight challenges caused by lateral fluxes of blowing snow and ambiguous partitioning of snow melt water into runoff and infiltration.
Craig D. Smith, Garth van der Kamp, Lauren Arnold, and Randy Schmidt
Hydrol. Earth Syst. Sci., 21, 5263–5272, https://doi.org/10.5194/hess-21-5263-2017, https://doi.org/10.5194/hess-21-5263-2017, 2017
Short summary
Short summary
This research provides an example of how groundwater pressures measured in deep observation wells can be used as a reliable estimate, and perhaps as a reference, for event-based precipitation. Changes in loading at the surface due to the weight of precipitation are transferred to the groundwater formation and can be measured in the observation well. Correlations in precipitation measurements made with the
geolysimeterand the co-located sheltered precipitation gauge are high.
Christopher Spence and Samson Girma Mengistu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-252, https://doi.org/10.5194/hess-2017-252, 2017
Manuscript not accepted for further review
Short summary
Short summary
This research summarizes the application of a hydrological model to determine the relationships between streamflow and the area that contributes water to it. The model performed well. Results show that the frequency of streamflow events and with which areas contribute are not necessarily the same. There are implications from this research for determining the sources of water and nutrients available downstream in lakes vulnerable to eutrophication.
Amber M. Peterson, Warren D. Helgason, and Andrew M. Ireson
Hydrol. Earth Syst. Sci., 20, 1373–1385, https://doi.org/10.5194/hess-20-1373-2016, https://doi.org/10.5194/hess-20-1373-2016, 2016
Short summary
Short summary
Remote sensing techniques can provide useful large-scale estimates of soil moisture. However, these methods often only sense near-surface soil moisture, whereas many applications require estimates of the entire root zone. In this study we propose and test methods to "depth-scale" the shallow soil moisture measurements obtained using the cosmic-ray neutron probe to represent the entire root zone, thereby improving the applicability of this measurement approach.
U. Nachshon, A. Ireson, G. van der Kamp, S. R. Davies, and H. S. Wheater
Hydrol. Earth Syst. Sci., 18, 1251–1263, https://doi.org/10.5194/hess-18-1251-2014, https://doi.org/10.5194/hess-18-1251-2014, 2014
A. M. Ireson and A. P. Butler
Hydrol. Earth Syst. Sci., 17, 2083–2096, https://doi.org/10.5194/hess-17-2083-2013, https://doi.org/10.5194/hess-17-2083-2013, 2013
Related subject area
Hydrology and Soil Science – Hydrology
A new dataset of river flood hazard maps for Europe and the Mediterranean Basin
COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors
Distribution and characteristics of wastewater treatment plants within the global river network
Correcting Thornthwaite potential evapotranspiration using a global grid of local coefficients to support temperature-based estimations of reference evapotranspiration and aridity indices
CCAM: China Catchment Attributes and Meteorology dataset
A high-accuracy rainfall dataset by merging multiple satellites and dense gauges over the southern Tibetan Plateau for 2014–2019 warm seasons
Baseline data for monitoring geomorphological effects of glacier lake outburst flood: a very-high-resolution image and GIS datasets of the distal part of the Zackenberg River, northeast Greenland
Mineral, thermal and deep groundwater of Hesse, Germany
Spatial and seasonal patterns of water isotopes in northeastern German lakes
LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe
Datasets for research on groundwater flow and its interactions with surface water in an alpine catchment on the northeastern Tibetan Plateau, China
Development of observation-based global multilayer soil moisture products for 1970 to 2016
A year of attenuation data from a commercial dual-polarized duplex microwave link with concurrent disdrometer, rain gauge, and weather observations
Rosalia: an experimental research site to study hydrological processes in a forest catchment
Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation
CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia
A multi-source 120-year US flood database with a unified common format and public access
C-band radar data and in situ measurements for the monitoring of wheat crops in a semi-arid area (center of Morocco)
The three-dimensional groundwater salinity distribution and fresh groundwater volumes in the Mekong Delta, Vietnam, inferred from geostatistical analyses
A national topographic dataset for hydrological modeling over the contiguous United States
Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset
CLIGEN parameter regionalization for mainland China
Year-long, broad-band, microwave backscatter observations of an alpine meadow over the Tibetan Plateau with a ground-based scatterometer
STH-net: a soil monitoring network for process-based hydrological modelling from the pedon to the hillslope scale
Comprehensive bathymetry and intertidal topography of the Amazon estuary
Virtual water trade and water footprint of agricultural goods: the 1961–2016 CWASI database
Historical cartographic and topo-bathymetric database on the French Rhône River (17th–20th century)
COSMOS-UK: national soil moisture and hydrometeorology data for environmental science research
SoilKsatDB: global database of soil saturated hydraulic conductivity measurements for geoscience applications
ADHI: the African Database of Hydrometric Indices (1950–2018)
Dynamics of shallow wakes on gravel-bed floodplains: dataset from field experiments
Two decades of distributed global radiation time series across a mountainous semiarid area (Sierra Nevada, Spain)
GeoDAR: Georeferenced global dam and reservoir dataset for bridging attributes and geolocations
Inventory of dams in Germany
Country-level and gridded estimates of wastewater production, collection, treatment and reuse
Dataset of Georeferenced Dams in South America (DDSA)
The impact of landscape evolution on soil physics: evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines
The CH-IRP data set: a decade of fortnightly data on δ2H and δ18O in streamflow and precipitation in Switzerland
CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany
CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil
GloFAS-ERA5 operational global river discharge reanalysis 1979–present
A Canadian River Ice Database from the National Hydrometric Program Archives
An integration of gauge, satellite, and reanalysis precipitation datasets for the largest river basin of the Tibetan Plateau
Towards harmonisation of image velocimetry techniques for river surface velocity observations
AIMERG: a new Asian precipitation dataset (0.1°/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE
Vegetation, ground cover, soil, rainfall simulation, and overland-flow experiments before and after tree removal in woodland-encroached sagebrush steppe: the hydrology component of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP)
Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018
Data for wetlandscapes and their changes around the world
Measurements of the water balance components of a large green roof in the greater Paris area
Francesco Dottori, Lorenzo Alfieri, Alessandra Bianchi, Jon Skoien, and Peter Salamon
Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, https://doi.org/10.5194/essd-14-1549-2022, 2022
Short summary
Short summary
We present a set of hazard maps for river flooding for Europe and the Mediterranean basin. The maps depict inundation extent and depth for flood probabilities for up to 1-in-500-year flood hazards and are based on hydrological and hydrodynamic models driven by observed climatology. The maps can identify two-thirds of the flood extent reported by official flood maps, with increasing skill for higher-magnitude floods. The maps are used for evaluating present and future impacts of river floods.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, Günther Grill, Jing Li, Antonio Limtong, and Ranish Shakya
Earth Syst. Sci. Data, 14, 559–577, https://doi.org/10.5194/essd-14-559-2022, https://doi.org/10.5194/essd-14-559-2022, 2022
Short summary
Short summary
We introduce HydroWASTE, a spatially explicit global database of 58 502 wastewater treatment plants (WWTPs) and their characteristics to understand the impact of discharges from such facilities. HydroWASTE was developed by compiling regional datasets and using auxiliary information to complete missing characteristics. The location of the outfall of the WWTPs into the river system is also included, allowing for the identification of the waterbodies most likely affected.
Vassilis Aschonitis, Dimos Touloumidis, Marie-Claire ten Veldhuis, and Miriam Coenders-Gerrits
Earth Syst. Sci. Data, 14, 163–177, https://doi.org/10.5194/essd-14-163-2022, https://doi.org/10.5194/essd-14-163-2022, 2022
Short summary
Short summary
This work provides a global database of correction coefficients for improving the performance of the temperature-based Thornthwaite potential evapotranspiration formula and aridity indices (e.g., UNEP, Thornthwaite) that make use of this formula. The coefficients were produced using as a benchmark the ASCE-standardized reference evapotranspiration formula (formerly FAO-56) that requires temperature, solar radiation, wind speed, and relative humidity data.
Zhen Hao, Jin Jin, Runliang Xia, Shimin Tian, Wushuang Yang, Qixing Liu, Min Zhu, Tao Ma, Chengran Jing, and Yanning Zhang
Earth Syst. Sci. Data, 13, 5591–5616, https://doi.org/10.5194/essd-13-5591-2021, https://doi.org/10.5194/essd-13-5591-2021, 2021
Short summary
Short summary
CCAM is proposed to promote large-sample hydrological research in China. The first catchment attribute dataset and catchment-scale meteorological time series dataset in China are built. We also built HydroMLYR, a hydrological dataset with standardized streamflow observations supporting machine learning modeling. The open-source code producing CCAM supports the calculation of custom watersheds.
Kunbiao Li, Fuqiang Tian, Mohd Yawar Ali Khan, Ran Xu, Zhihua He, Long Yang, Hui Lu, and Yingzhao Ma
Earth Syst. Sci. Data, 13, 5455–5467, https://doi.org/10.5194/essd-13-5455-2021, https://doi.org/10.5194/essd-13-5455-2021, 2021
Short summary
Short summary
Due to complex climate and topography, there is still a lack of a high-quality rainfall dataset for hydrological modeling over the Tibetan Plateau. This study aims to establish a high-accuracy daily rainfall product over the southern Tibetan Plateau through merging satellite rainfall estimates based on a high-density rainfall gauge network. Statistical and hydrological evaluation indicated that the new dataset outperforms the raw satellite estimates and several other products of similar types.
Aleksandra M. Tomczyk and Marek W. Ewertowski
Earth Syst. Sci. Data, 13, 5293–5309, https://doi.org/10.5194/essd-13-5293-2021, https://doi.org/10.5194/essd-13-5293-2021, 2021
Short summary
Short summary
We collected detailed (cm-scale) topographical data to illustrate how a single flood event can modify river landscape in the high-Arctic setting of Zackenberg Valley, NE Greenland. The studied flood was a result of an outburst from a glacier-dammed lake. We used drones to capture images immediately before, during, and after the flood for the 2 km long section of the river. Data can be used for monitoring and modelling of flood events and assessment of geohazards for Zackenberg Research Station.
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860, https://doi.org/10.5194/essd-13-4847-2021, https://doi.org/10.5194/essd-13-4847-2021, 2021
Short summary
Short summary
Knowledge of groundwater properties is relevant, e.g. for drinking-water supply, spas or geothermal energy. We compiled 1035 groundwater datasets from 560 springs or wells sampled since 1810, using mainly publications, supplemented by personal communication and our own measurements. The data can help address spatial–temporal variation in groundwater composition, uncertainties in groundwater property prediction, deep groundwater movement, or groundwater characteristics like temperature and age.
Bernhard Aichner, David Dubbert, Christine Kiel, Katrin Kohnert, Igor Ogashawara, Andreas Jechow, Sarah-Faye Harpenslager, Franz Hölker, Jens Christian Nejstgaard, Hans-Peter Grossart, Gabriel Singer, Sabine Wollrab, and Stella Angela Berger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-315, https://doi.org/10.5194/essd-2021-315, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
Water isotopes were measured along transects and in the form of time series in northeastern German lakes. The spatial patterns within the data and their seasonal variability are related to morphological and hydrological properties of the studied lake systems. They are further useful for the understanding of biogeochemical and ecological characteristics of these lakes.
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021, https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary
Short summary
LamaH-CE is a large-sample catchment hydrology dataset for Central Europe. The dataset contains hydrometeorological time series (daily and hourly resolution) and various attributes for 859 gauged basins. Sticking closely to the CAMELS datasets, LamaH includes additional basin delineations and attributes for describing a large interconnected river network. LamaH further contains outputs of a conceptual hydrological baseline model for plausibility checking of the inputs and for benchmarking.
Zhao Pan, Rui Ma, Ziyong Sun, Yalu Hu, Qixin Chang, Mengyan Ge, Shuo Wang, Jianwei Bu, Xiang Long, Yanxi Pan, and Lusong Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-273, https://doi.org/10.5194/essd-2021-273, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
We drilled four sets of cluster wells and monitored groundwater level and temperature at different depth in an alpine catchment, northeast Tibet Plateau. The chemical and isotopic compositions of different waters including stream water, glacier/snow meltwater, soil water, spring and groundwater from boreholes were measured for six years. The data can be used to study the impact of soil freeze-thaw process and permafrost degradation on the groundwater flow and its interaction with surface water.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Josef Fürst, Hans Peter Nachtnebel, Josef Gasch, Reinhard Nolz, Michael Paul Stockinger, Christine Stumpp, and Karsten Schulz
Earth Syst. Sci. Data, 13, 4019–4034, https://doi.org/10.5194/essd-13-4019-2021, https://doi.org/10.5194/essd-13-4019-2021, 2021
Short summary
Short summary
Rosalia is a 222 ha forested research watershed in eastern Austria to study water, energy and solute transport processes. The paper describes the site, monitoring network, instrumentation and the datasets: high-resolution (10 min interval) time series starting in 2015 of four discharge gauging stations, seven rain gauges, and observations of air and water temperature, relative humidity, and conductivity, as well as soil water content and temperature, at different depths at four profiles.
Minghan Cheng, Xiyun Jiao, Binbin Li, Xun Yu, Mingchao Shao, and Xiuliang Jin
Earth Syst. Sci. Data, 13, 3995–4017, https://doi.org/10.5194/essd-13-3995-2021, https://doi.org/10.5194/essd-13-3995-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) is a key node linking surface water and energy balance. Satellite observations of ET have been widely used for water resources management in China. In this study, an ET product with high spatiotemporal resolution was generated using a surface energy balance algorithm and multisource remote sensing data. The generated ET product can be used for geoscience studies, especially global change, water resources management, and agricultural drought monitoring, for example.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Zhi Li, Mengye Chen, Shang Gao, Jonathan J. Gourley, Tiantian Yang, Xinyi Shen, Randall Kolar, and Yang Hong
Earth Syst. Sci. Data, 13, 3755–3766, https://doi.org/10.5194/essd-13-3755-2021, https://doi.org/10.5194/essd-13-3755-2021, 2021
Short summary
Short summary
This dataset is a compilation of multi-sourced flood records, retrieved from official reports, instruments, and crowdsourcing data since 1900. This study utilizes the flood database to analyze flood seasonality within major basins and socioeconomic impacts over time. It is anticipated that this dataset can support a variety of flood-related research, such as validation resources for hydrologic models, hydroclimatic studies, and flood vulnerability analysis across the United States.
Nadia Ouaadi, Jamal Ezzahar, Saïd Khabba, Salah Er-Raki, Adnane Chakir, Bouchra Ait Hssaine, Valérie Le Dantec, Zoubair Rafi, Antoine Beaumont, Mohamed Kasbani, and Lionel Jarlan
Earth Syst. Sci. Data, 13, 3707–3731, https://doi.org/10.5194/essd-13-3707-2021, https://doi.org/10.5194/essd-13-3707-2021, 2021
Short summary
Short summary
In this paper, a radar remote sensing database composed of processed Sentinel-1 products and field measurements of soil and vegetation characteristics, weather data, and irrigation water inputs is described. The data set was collected over 3 years (2016–2019) in three drip-irrigated wheat fields in the center of Morocco. It is dedicated to radar data analysis over vegetated surface including the retrieval of soil and vegetation characteristics.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Jun Zhang, Laura E. Condon, Hoang Tran, and Reed M. Maxwell
Earth Syst. Sci. Data, 13, 3263–3279, https://doi.org/10.5194/essd-13-3263-2021, https://doi.org/10.5194/essd-13-3263-2021, 2021
Short summary
Short summary
Existing national topographic datasets for the US may not be compatible with gridded hydrologic models. A national topographic dataset developed to support physically based hydrologic models at 1 km and 250 m over the contiguous US is provided. We used a Priority Flood algorithm to ensure hydrologically consistent drainage networks and evaluated the performance with an integrated hydrologic model. Datasets and scripts are available for direct data usage or modification of processing as desired.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, https://doi.org/10.5194/essd-13-3075-2021, 2021
Short summary
Short summary
This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface soil moisture (SM) dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of three networks (i.e. the Maqu, Naqu, and Ngari networks) and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Wenting Wang, Shuiqing Yin, Bofu Yu, and Shaodong Wang
Earth Syst. Sci. Data, 13, 2945–2962, https://doi.org/10.5194/essd-13-2945-2021, https://doi.org/10.5194/essd-13-2945-2021, 2021
Short summary
Short summary
A gridded input dataset at a 10 km resolution of a weather generator, CLIGEN, was established for mainland China. Based on this, CLIGEN can generate a series of daily temperature, solar radiation, precipitation data, and rainfall intensity information. In each grid, the input file contains 13 groups of parameters. All parameters were first calculated based on long-term observations and then interpolated by universal kriging. The accuracy of the gridded input dataset has been fully assessed.
Jan G. Hofste, Rogier van der Velde, Jun Wen, Xin Wang, Zuoliang Wang, Donghai Zheng, Christiaan van der Tol, and Zhongbo Su
Earth Syst. Sci. Data, 13, 2819–2856, https://doi.org/10.5194/essd-13-2819-2021, https://doi.org/10.5194/essd-13-2819-2021, 2021
Short summary
Short summary
The dataset reported in this paper concerns the measurement of microwave reflections from an alpine meadow over the Tibetan Plateau. These microwave reflections were measured continuously over 1 year. With it, variations in soil water content due to evaporation, precipitation, drainage, and soil freezing/thawing can be seen. A better understanding of the effects aforementioned processes have on microwave reflections may improve methods for estimating soil water content used by satellites.
Edoardo Martini, Matteo Bauckholt, Simon Kögler, Manuel Kreck, Kurt Roth, Ulrike Werban, Ute Wollschläger, and Steffen Zacharias
Earth Syst. Sci. Data, 13, 2529–2539, https://doi.org/10.5194/essd-13-2529-2021, https://doi.org/10.5194/essd-13-2529-2021, 2021
Short summary
Short summary
We present the in situ data available from the soil monitoring network
STH-net, recently implemented at the Schäfertal Hillslope site (Germany). The STH-net provides data (soil water content, soil temperature, water level, and meteorological variables – measured at a 10 min interval since 1 January 2019) for developing and testing modelling approaches in the context of vadose zone hydrology at spatial scales ranging from the pedon to the hillslope.
Alice César Fassoni-Andrade, Fabien Durand, Daniel Moreira, Alberto Azevedo, Valdenira Ferreira dos Santos, Claudia Funi, and Alain Laraque
Earth Syst. Sci. Data, 13, 2275–2291, https://doi.org/10.5194/essd-13-2275-2021, https://doi.org/10.5194/essd-13-2275-2021, 2021
Short summary
Short summary
We present a seamless dataset of river, land, and ocean topography of the Amazon River estuary with a 30 m spatial resolution. An innovative remote sensing approach was used to estimate the topography of the intertidal flats, riverbanks, and adjacent floodplains. Amazon River bathymetry was generated from digitized nautical charts. The novel dataset opens up a broad range of opportunities, providing the poorly known underwater digital topography required for environmental sciences.
Stefania Tamea, Marta Tuninetti, Irene Soligno, and Francesco Laio
Earth Syst. Sci. Data, 13, 2025–2051, https://doi.org/10.5194/essd-13-2025-2021, https://doi.org/10.5194/essd-13-2025-2021, 2021
Short summary
Short summary
The database includes water footprint and virtual water trade data for 370 agricultural goods in all countries, starting from 1961 and 1986, respectively. Data improve upon earlier datasets because of the annual variability of data and the tracing of goods’ origin within the international trade. The CWASI database aims at supporting national and global assessments of water use in agriculture and food production/consumption and welcomes contributions from the research community.
Fanny Arnaud, Lalandy Sehen Chanu, Jules Grillot, Jérémie Riquier, Hervé Piégay, Dad Roux-Michollet, Georges Carrel, and Jean-Michel Olivier
Earth Syst. Sci. Data, 13, 1939–1955, https://doi.org/10.5194/essd-13-1939-2021, https://doi.org/10.5194/essd-13-1939-2021, 2021
Short summary
Short summary
This article provides a database of 350 cartographic and topographic resources on the 530-km-long French Rhône River, compiled from the 17th to mid-20th century in 14 national, regional, and departmental archive services. The database has several potential applications in geomorphology, retrospective hydraulic modelling, historical ecology, and sustainable river management and restoration, as well as permitting comparisons of channel changes with other human-impacted rivers worldwide.
Hollie M. Cooper, Emma Bennett, James Blake, Eleanor Blyth, David Boorman, Elizabeth Cooper, Jonathan Evans, Matthew Fry, Alan Jenkins, Ross Morrison, Daniel Rylett, Simon Stanley, Magdalena Szczykulska, Emily Trill, Vasileios Antoniou, Anne Askquith-Ellis, Lucy Ball, Milo Brooks, Michael A. Clarke, Nicholas Cowan, Alexander Cumming, Philip Farrand, Olivia Hitt, William Lord, Peter Scarlett, Oliver Swain, Jenna Thornton, Alan Warwick, and Ben Winterbourn
Earth Syst. Sci. Data, 13, 1737–1757, https://doi.org/10.5194/essd-13-1737-2021, https://doi.org/10.5194/essd-13-1737-2021, 2021
Short summary
Short summary
COSMOS-UK is a UK network of environmental monitoring sites, with a focus on measuring field-scale soil moisture. Each site includes soil and hydrometeorological sensors providing data including air temperature, humidity, net radiation, neutron counts, snow water equivalent, and potential evaporation. These data can provide information for science, industry, and agriculture by improving existing understanding and data products in fields such as water resources, space sciences, and biodiversity.
Surya Gupta, Tomislav Hengl, Peter Lehmann, Sara Bonetti, and Dani Or
Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, https://doi.org/10.5194/essd-13-1593-2021, 2021
Yves Tramblay, Nathalie Rouché, Jean-Emmanuel Paturel, Gil Mahé, Jean-François Boyer, Ernest Amoussou, Ansoumana Bodian, Honoré Dacosta, Hamouda Dakhlaoui, Alain Dezetter, Denis Hughes, Lahoucine Hanich, Christophe Peugeot, Raphael Tshimanga, and Patrick Lachassagne
Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, https://doi.org/10.5194/essd-13-1547-2021, 2021
Short summary
Short summary
This dataset provides a set of hydrometric indices for about 1500 stations across Africa with daily discharge data. These indices represent mean flow characteristics and extremes (low flows and floods), allowing us to study the long-term evolution of hydrology in Africa and support the modeling efforts that aim at reducing the vulnerability of African countries to hydro-climatic variability.
Oleksandra O. Shumilova, Alexander N. Sukhodolov, George S. Constantinescu, and Bruce J. MacVicar
Earth Syst. Sci. Data, 13, 1519–1529, https://doi.org/10.5194/essd-13-1519-2021, https://doi.org/10.5194/essd-13-1519-2021, 2021
Short summary
Short summary
Obstructions (vegetation and/or boulders) located on a riverbed alter flow structure and affect riverbed morphology and biodiversity. We studied flow dynamics around obstructions by carrying out experiments in a gravel-bed river. Flow rates, size, submergence and solid fractions of the obstructions were varied in a set of 30 experimental runs, in which high-resolution patterns of mean and turbulent flow were obtained. For an introduction to the experiments see: https://youtu.be/5wXjvzqxONI.
Cristina Aguilar, Rafael Pimentel, and María J. Polo
Earth Syst. Sci. Data, 13, 1335–1359, https://doi.org/10.5194/essd-13-1335-2021, https://doi.org/10.5194/essd-13-1335-2021, 2021
Short summary
Short summary
This work presents the reconstruction of 19 years of daily, monthly, and annual global radiation maps in Sierra Nevada (Spain) derived using daily historical records from weather stations in the area and a modeling scheme that captures the topographic effects that constitute the main sources of the spatial and temporal variability of solar radiation. The generated datasets are valuable in different fields, such as hydrology, ecology, or energy production systems downstream.
Jida Wang, Blake A. Walter, Fangfang Yao, Chunqiao Song, Meng Ding, Abu S. Maroof, Jingying Zhu, Chenyu Fan, Aote Xin, Jordan M. McAlister, Safat Sikder, Yongwei Sheng, George H. Allen, Jean-François Crétaux, and Yoshihide Wada
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-58, https://doi.org/10.5194/essd-2021-58, 2021
Revised manuscript accepted for ESSD
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Bolivar Paredes-Beltran, Alvaro Sordo-Ward, and Luis Garrote
Earth Syst. Sci. Data, 13, 213–229, https://doi.org/10.5194/essd-13-213-2021, https://doi.org/10.5194/essd-13-213-2021, 2021
Short summary
Short summary
We present a dataset of 1010 entries of dams in South America describing several attributes such as the dams' names, characteristics, purposes, georeferenced locations and also relevant data on the dams' catchments. Information was obtained from extensive research through numerous sources and then validated individually.
With this work we expect to contribute to the development of new research in the region, which to date has been limited to certain basins due to the absence of information.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Vinícius B. P. Chagas, Pedro L. B. Chaffe, Nans Addor, Fernando M. Fan, Ayan S. Fleischmann, Rodrigo C. D. Paiva, and Vinícius A. Siqueira
Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, https://doi.org/10.5194/essd-12-2075-2020, 2020
Short summary
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
Short summary
A new river discharge reanalysis dataset is produced operationally by coupling ECMWF's latest global atmospheric reanalysis, ERA5, with the hydrological modelling component of the Global Flood Awareness System (GloFAS). The GloFAS-ERA5 reanalysis is a global gridded dataset with a horizontal resolution of 0.1° at a daily time step and is freely available from 1979 until near real time. The evaluation against observations shows that the GloFAS-ERA5 reanalysis was skilful in 86 % of catchments.
Laurent de Rham, Yonas Dibike, Spyros Beltaos, Daniel Peters, Barrie Bonsal, and Terry Prowse
Earth Syst. Sci. Data, 12, 1835–1860, https://doi.org/10.5194/essd-12-1835-2020, https://doi.org/10.5194/essd-12-1835-2020, 2020
Short summary
Short summary
This paper describes the Canadian River Ice Database. Water level recordings at a network of 196 National Hydrometric Program gauging sites over the period 1894–2015 were reviewed. This database, of nearly 73 000 recorded variables and over 460 000 data entries, includes the timing and magnitude of fall freeze-up, midwinter break-up, winter minimum, ice thickness, spring break-up and maximum open-water levels. These data cover the range of river types and climate regions for Canada.
Yuanwei Wang, Lei Wang, Xiuping Li, Jing Zhou, and Zhidan Hu
Earth Syst. Sci. Data, 12, 1789–1803, https://doi.org/10.5194/essd-12-1789-2020, https://doi.org/10.5194/essd-12-1789-2020, 2020
Short summary
Short summary
This article is to provide a better precipitation product for the largest river basin of the Tibetan Plateau, the upper Brahmaputra River basin, suitable for use in hydrological simulations and other climate change studies. We integrate gauge, satellite, and reanalysis precipitation datasets to generate a new dataset. The new product has been rigorously validated at various temporal and spatial scales with gauge precipitation observations as well as in cryosphere hydrological simulations.
Matthew T. Perks, Silvano Fortunato Dal Sasso, Alexandre Hauet, Elizabeth Jamieson, Jérôme Le Coz, Sophie Pearce, Salvador Peña-Haro, Alonso Pizarro, Dariia Strelnikova, Flavia Tauro, James Bomhof, Salvatore Grimaldi, Alain Goulet, Borbála Hortobágyi, Magali Jodeau, Sabine Käfer, Robert Ljubičić, Ian Maddock, Peter Mayr, Gernot Paulus, Lionel Pénard, Leigh Sinclair, and Salvatore Manfreda
Earth Syst. Sci. Data, 12, 1545–1559, https://doi.org/10.5194/essd-12-1545-2020, https://doi.org/10.5194/essd-12-1545-2020, 2020
Short summary
Short summary
We present datasets acquired from seven countries across Europe and North America consisting of image sequences. These have been subjected to a range of pre-processing methods in preparation for image velocimetry analysis. These datasets and accompanying reference data are a resource that may be used for conducting benchmarking experiments, assessing algorithm performances, and focusing future software development.
Ziqiang Ma, Jintao Xu, Siyu Zhu, Jun Yang, Guoqiang Tang, Yuanjian Yang, Zhou Shi, and Yang Hong
Earth Syst. Sci. Data, 12, 1525–1544, https://doi.org/10.5194/essd-12-1525-2020, https://doi.org/10.5194/essd-12-1525-2020, 2020
Short summary
Short summary
Focusing on the potential drawbacks in generating the state-of-the-art IMERG data in both the TRMM and GPM era, a new daily calibration algorithm on IMERG was proposed, as well as a new AIMERG precipitation dataset (0.1°/half-hourly, 2000–2015, Asia) with better quality than IMERG for Asian scientific research and applications. The proposed daily calibration algorithm for GPM is promising and applicable in generating the future IMERG in either an operational scheme or a retrospective manner.
C. Jason Williams, Frederick B. Pierson, Patrick R. Kormos, Osama Z. Al-Hamdan, and Justin C. Johnson
Earth Syst. Sci. Data, 12, 1347–1365, https://doi.org/10.5194/essd-12-1347-2020, https://doi.org/10.5194/essd-12-1347-2020, 2020
Short summary
Short summary
Data were collected at three sites over 10 years to evaluate ecologic impacts of tree encroachment on rangelands and assess impacts of tree-removal practices on vegetation, surface conditions, and hydrologic/erosion processes. The dataset includes 1300 rainfall simulation and 838 overland-flow experiments paired with vegetation, surface cover, and soil data across point to hillslope scales. The data advance hydrology/erosion process understanding and are a source for model development/testing.
Riccardo Tortini, Nina Noujdina, Samantha Yeo, Martina Ricko, Charon M. Birkett, Ankush Khandelwal, Vipin Kumar, Miriam E. Marlier, and Dennis P. Lettenmaier
Earth Syst. Sci. Data, 12, 1141–1151, https://doi.org/10.5194/essd-12-1141-2020, https://doi.org/10.5194/essd-12-1141-2020, 2020
Short summary
Short summary
We present a global collection of satellite-derived time series of surface water volume changes for 347 lakes and reservoirs for 1992–2018. These changes were estimated using a statistical relationship between water surface elevation and area measured from satellite, even during periods when either elevation or area was not available. These records represent the most complete global surface water time series, and they are of fundamental importance to baseline future satellite missions.
Navid Ghajarnia, Georgia Destouni, Josefin Thorslund, Zahra Kalantari, Imenne Åhlén, Jesús A. Anaya-Acevedo, Juan F. Blanco-Libreros, Sonia Borja, Sergey Chalov, Aleksandra Chalova, Kwok P. Chun, Nicola Clerici, Amanda Desormeaux, Bethany B. Garfield, Pierre Girard, Olga Gorelits, Amy Hansen, Fernando Jaramillo, Jerker Jarsjö, Adnane Labbaci, John Livsey, Giorgos Maneas, Kathryn McCurley Pisarello, Sebastián Palomino-Ángel, Jan Pietroń, René M. Price, Victor H. Rivera-Monroy, Jorge Salgado, A. Britta K. Sannel, Samaneh Seifollahi-Aghmiuni, Ylva Sjöberg, Pavel Terskii, Guillaume Vigouroux, Lucia Licero-Villanueva, and David Zamora
Earth Syst. Sci. Data, 12, 1083–1100, https://doi.org/10.5194/essd-12-1083-2020, https://doi.org/10.5194/essd-12-1083-2020, 2020
Short summary
Short summary
Hydroclimate and land-use conditions determine the dynamics of wetlands and their ecosystem services. However, knowledge and data for conditions and changes over entire wetlandscapes are scarce. This paper presents a novel database for 27 wetlandscapes around the world, combining survey-based local information and hydroclimatic and land-use datasets. The developed database can enhance our capacity to understand and manage critical wetland ecosystems and their services under global change.
Pierre-Antoine Versini, Filip Stanic, Auguste Gires, Daniel Schertzer, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 12, 1025–1035, https://doi.org/10.5194/essd-12-1025-2020, https://doi.org/10.5194/essd-12-1025-2020, 2020
Short summary
Short summary
The Blue Green Wave of Champs-sur-Marne (1 ha, France) has been converted into a full-scale monitoring site devoted to studying the uses of green infrastructure in storm-water management. For this purpose, the components of the water balance have been monitored: rainfall, water content in the substrate, and discharge. These measurements are useful to better understand the processes (infiltration and retention) in hydrological performance and spatial variability.
Cited articles
Bam, E., Brannen, R., Budhathoki, S., Ireson, A., Spence, C., and Van der
Kamp, G.: Atmospheric, soil, surface and groundwater data from the St Denis
National Wildlife Area, Saskatchewan, Canada, FRDR, https://doi.org/10.20383/101.0115,
2018.
Begley, I. S. and Scrimgeour, C. M.: High-precision δ2H and
δ18O measurement for water and volatile organic compounds by
continuous-flow pyrolysis isotope ratio mass spectrometry, Anal. Chem., 69,
1530–1535, https://doi.org/10.1021/ac960935r, 1997.
Berthold, S., Bentley, L. R., and Hayashi, M.: Integrated hydrogeological and
geophysical study of depression-focused groundwater recharge in the Canadian
prairies, Water Resour. Res., 40, W06505, https://doi.org/10.1029/2003WR002982, 2004.
Coleman, M. L., Shepherd, T. J., Durham, J. J., Rouse, J. E., and Moore, G.
R.: Reduction of water with zinc for hydrogen isotope analysis, Anal. Chem.,
54, 993–995, https://doi.org/10.1021/ac00243a035, 1982.
Campbell Scientific, Inc.: 229 Heat Dissipation Matric Water Potential Sensor
Instruction Manual, Revision: 5/09, 2009.
Conly, F. M., Su, M., van der Kamp, G., and Millar, J. B.: A practical
approach to monitoring water levels in prairie wetlands, Wetlands, 24,
219–226, 2004.
Coplen, T. B.: Normalization of oxygen and hydrogen isotope data, Chem.
Geol., 72, 293–297, https://doi.org/10.1016/0168-9622(88)90042-5, 1988.
Cressey, R. L., Austin, J. E., and Stafford, J. D.: Three Responses of
Wetland Conditions to Climatic Extremes in the Prairie Pothole Region,
Wetlands, 36, 357–370, https://doi.org/10.1007/s13157-016-0818-8, 2016.
Dumanski, S., Pomeroy, J. W., and Westbrook, C. J.: Hydrological regime
changes in a Canadian Prairie basin, Hydrol. Process., 29, 3893–3904, 2015.
Eiler, J. M. and Kitchen, N.: Hydrogen-isotope analysis of nanomole
(picoliter) quantities of H2O, Geochim. Cosmochim. Ac., 65,
4467–4479, https://doi.org/10.1016/S0016-7037(01)00723-2, 2001.
Epstein, S. and Mayeda, T.: Variation of O18 content of waters from
natural sources, Geochim. Cosmochim. Ac., 4, 213–224,
https://doi.org/10.1016/0016-7037(53)90051-9, 1953.
Fortin, G., van der Kamp, G., and Cherry, J. A.: Hydrogeology and
hydrochemistry of an aquifer-aquitard system within glacial deposits,
Saskatchewan, Canada, J. Hydrol., 126, 262–292, 1991.
Fritz, P., Drimmie, R. J., Frape, S. K., and O'Shea, K.: The isotopic composition of precipitation and groundwater in Canada, in: Proceedings of an International Symposium on the use of Isotope Techniques In Water Resources Development Organized by the International Atomic Energy Agency in co-Operation with the United Nations Educational, Scientific And Cultural Organization and held in Vienna, 30 March–3 April 1987, IAEA (Ed), Austria, Vienna, 539–549, 1987.
Goldhaber, M. B., Mills, C. T., Morrison, J. M., Stricker, C. A., Mushet, D.
M., and LaBaugh, J. W.: Hydrogeochemistry of prairie pothole region wetlands:
Role of long-term critical zone processes, Chem. Geol. 387, 170–183,
https://doi.org/10.1016/j.chemgeo.2014.08.023, 2014.
Goldhaber, M. B., Mills, C. T., Mushet, D. M., McCleskey, B. B., and Rover,
J.: Controls on the Geochemical Evolution of Prairie Pothole Region Lakes and
Wetlands over Decadal Time Scales, Wetlands, 36, 255–272,
https://doi.org/10.1007/s13157-016-0854-4, 2016.
Goodison, B. E., Glynn, J. E., Harvey, K. D., and Slater, J. E.: Snow
surveying in Canada: A perspective, Can. Water Resour. J., 12, 27–42, 1987.
Hayashi, M. and van der Kamp, G.: Simple equations to represent the
volume–area–depth relations of shallow wetlands in small topographic
depressions, J. Hydrol., 237, 74–85, 2000.
Hayashi, M., van der Kamp, G., and Rudolph, D. L.: Water and solute transfer
between a prairie wetland and adjacent uplands, 1. Water balance, J. Hydrol.,
207, 42–55, 1998.
Hayashi, M., van der Kamp, G., and Schmidt, R.: Focused infiltration of
snowmelt water in partially frozen soil under small depressions, J. Hydrol.,
270, 214–229, 2003.
Hayashi, M., van der Kamp, G., and Rosenberry, D. O.: Hydrology of prairie
wetlands: Understanding the integrated surface-water and groundwater
processes, Wetlands, 36, 237–254, https://doi.org/10.1007/s13157-016-0797-9, 2016.
Heagle, D., Hayashi, M., and van der Kamp, G.: Surface–subsurface salinity
distribution and exchange in a closed-basin prairie wetland, J. Hydrol., 478,
1–14, https://doi.org/10.1016/j.jhydrol.2012.05.054, 2013.
Heagle, D. J., Hayashi, M., and van der Kamp, G.: Use of solute mass balance
to quantify geochemical processes in a prairie recharge wetland, Wetlands,
27, 806–818, 2007.
Hogan, J. M. and Conly, F. M.: St. Denis National Wildlife Area land cover
classification: 1997, Canadian Wildlife Service, Prairie and Northern Region,
Saskatoon, SK, Canada, Technical Report Series No. 384, 2002.
IAEA: Laser spectroscopic analysis of liquid water samples for stable
hydrogen and oxygen isotopes, Isotope Hydrology Section, International Atomic
Energy Agency (IAEA), Vienna, Austria, 49 pp., 2009.
Jasechko, S., Gibson, J. J., and Edwards, T. W. D.: Stable isotope mass
balance of the Laurentian Great Lakes, J. Great Lakes Res., 40, 336–346,
2014.
Jasechko, S., Wassenaar, L. I., and Mayer, B.: Isotopic evidence for
widespread cold-season-biased groundwater recharge and young streamflow
across central Canada, Hydrol. Process., 31, 2196–2209, 2017.
Karhu, J. A.: Catalytic reduction of water to hydrogen for isotopic analysis
using zinc containing traces of sodium, Anal. Chem., 69, 4728–4730,
https://doi.org/10.1021/ac9704467, 1997.
Kelley, L. I. and Holmden, C.: Reconnaissance hydrogeochemistry of economic deposits of sodium sulfate ( mirabilite ) in saline lakes , Saskatchewan , Canada, Hydrbiologia, 466, 279–289, https://doi.org/10.1023/A:1014565619506, 2001.
Kelly, S. D., Heaton, K. D., and Brereton, P.: Deuterium/hydrogen isotope
ratio measurement of water and organic samples by continuous-flow isotope
ratio mass spectrometry using chromium as the reducing agent in an elemental
analyser, Rapid Commun. Mass Sp., 15, 1283–1286, https://doi.org/10.1002/rcm.303,
2001.
LaBaugh, J. W., Mushet, D. M., Rosenberry, D. O., Euliss, N. H., Goldhaber,
M. B., Mills, C. T., and Nelson, R. D.: Changes in Pond Water Levels and
Surface Extent Due to Climate Variability Alter Solute Sources to
Closed-Basin Prairie-Pothole Wetland Ponds, 1979 to 2012, Wetlands, 36,
343–355, https://doi.org/10.1007/s13157-016-0808-x, 2016.
Lis, G., Wassenaar, L. I., and Hendry, M. J.: High-precision laser
spectroscopy D∕H and δ18O∕δ16O measurements of
microliter natural water samples, Anal. Chem., 80, 287–93,
https://doi.org/10.1021/ac701716q, 2008.
Miller, J. J., Acton, D. F., and St. Arnaud, R. J.: The effect of groundwater
on soil formation in a morainal landscape in Saskatchewan, Can. J. Soil Sci.,
65, 293–307, 1985.
Minke, A. G., Westbrook, C. J., and van der Kamp, G.: Simplified
volume-area-depth method for estimating water storage of prairie potholes,
Wetlands, 30, 541–551, 2010.
Morgenstern, U. and Taylor, C. B.: Ultra low-level tritium measurement using
electrolytic enrichment and LSC, Isot. Environ. Healt. S., 45, 96–117,
https://doi.org/10.1080/10256010902931194, 2009.
Nachshon, U., Ireson, A., van der Kamp, G., Davies, S. R., and Wheater, H.
S.: Impacts of climate variability on wetland salinization in the North
American prairies, Hydrol. Earth Syst. Sci., 18, 1251–1263,
https://doi.org/10.5194/hess-18-1251-2014, 2014.
Pan, X., Helgason, W., Ireson, A., and Wheater, H.: Field-scale water balance
closure in seasonally frozen conditions, Hydrol. Earth Syst. Sci., 21,
5401–5413, https://doi.org/10.5194/hess-21-5401-2017, 2017.
Pennock, D., Yates, T., Bedard-Haughn, A., Phipps, K., Farrell, R., and
McDougal, R.: Landscape controls on N2O and CH4 emissions
from freshwater mineral soil wetlands of the Canadian Prairie Pothole region,
Geoderma, 155, 308–319, 2010.
Pennock, D., Henderson, D., Naschon, U., Spence, C., van der Kamp, G.,
Waiser, M., Wilson, H., and Bedard-Haughn, A.: Where it all comes together –
45 years of research on the hydrology-ecosystem interactions at the St. Denis
National Wildlife Area, Report completed for the Global Institute for Water
Security, University of Saskatchewan, 84 pp., 2013.
Pennock, D., Bedard-Haughn, A., Kiss, J., and van der Kamp, G.: Application
of hydropedology to predictive mapping of wetland soils in the Canadian
Prairie Pothole Region, Geoderma, 235–236, 199–211,
https://doi.org/10.1016/j.geoderma.2014.07.008, 2014.
Rashford, B. S., Bastian, C. T., and Cole, J. G.: Agricultural land-use
change in prairie Canada: implications for wetlands and waterfowl habitat
conservation, Can. J. Agr. Econ., 59, 185–205, 2011.
Socki, R. A.: On-line technique for measuring stable oxygen and hydrogen
isotopes from microliter quantities of water, Anal. Chem., 71, 2250–2253,
https://doi.org/10.1021/ac981140i, 1999.
Spaans, E. J. A. and Baker, J. M.: Examining the use of time domain
reflectometry for measuring liquid water content in frozen soil TDR
Calibration, Water Resour. Res., 31, 2917–2925, 1995.
Statistics Canada: Table 002-0004 – Agriculture value added account, annual
(dollars), CANSIM (database), Web service, 2017, available at: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210004801 (4last access: 24 April 2018), 2017.
Stevens Water Monitoring Systems Inc.: The Hydra
Probe® Soil Sensor, User's Manual, 1–63,
July 2007.
Töyrä, J., Pietroniro, A., Craymer, M., and Véronneau, M:
Evaluation of LiDAR-derived ground surface digital elevation model (DEM) in
low-relief regions: Case study on the Canadian Prairies, in: Hydroscan:
Airborne laser mapping of hydrologic features and resources, edited by:
Hopkinson, C., Pietroniro, A., and Pomeroy, J. W., Canadian Water Resources Association, 301–326, 2008.
van der Kamp, G. and Hayashi, M.: Groundwater-wetland ecosystem interaction
in the semiarid glaciated plains of North America, Hydrogeol. J., 17,
203–214, 2009.
van der Kamp, G., Keir, D., and Evans, M. S.: Long-term water level changes
in closed-basin lakes of the Canadian prairies, Can. Water Resour. J.,
33, 23–38, 2008.
van der Kamp, G., Stolte, W. J., and Clark, R. G.: Drying out of small
prairie wetlands after conversion of their catchments from cultivation to
permanent brome grass, Hydrolog. Sci. J., 44, 387–397, 1999.
Waiser, M. J.: Relationship between hydrological characteristics and
dissolved organic carbon concentration and mass in northern prairie wetlands
using a conservative tracer approach, J. Geophys. Res., 111, G02024,
https://doi.org/10.1029/2005JG000088, 2006.
Woo, M. K. and Rowsell, R. D.: Hydrology of a prairie slough, J. Hydrol., 146,
175–207, 1993.
Short summary
The paper highlights the data contained in the database for the Prairie research site, St. Denis National Wildlife Research Area, at Saskatchewan, Canada. The database includes atmosphere, snow surveys, pond, soil, groundwater, and water isotopes collected on an intermittent basis between 1968 and 2018. The metadata table provides location information, information about the full range of measurements carried out on each parameter, and GPS locations relevant for interpretation of the data.
The paper highlights the data contained in the database for the Prairie research site, St. Denis...