Articles | Volume 10, issue 2
Earth Syst. Sci. Data, 10, 765–785, 2018
https://doi.org/10.5194/essd-10-765-2018
Earth Syst. Sci. Data, 10, 765–785, 2018
https://doi.org/10.5194/essd-10-765-2018

  17 Apr 2018

17 Apr 2018

The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata

Hong Xuan Do et al.

Related authors

Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
Songyan Yu, Hong Xuan Do, Albert I. J. M. van Dijk, Nick R. Bond, Peirong Lin, and Mark J. Kennard
Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020,https://doi.org/10.5194/hess-24-5279-2020, 2020
Short summary
Historical and future changes in global flood magnitude – evidence from a model–observation investigation
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020,https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
The Global Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control, time-series indices and homogeneity assessment
Lukas Gudmundsson, Hong Xuan Do, Michael Leonard, and Seth Westra
Earth Syst. Sci. Data, 10, 787–804, https://doi.org/10.5194/essd-10-787-2018,https://doi.org/10.5194/essd-10-787-2018, 2018
Short summary

Related subject area

Hydrology and Soil Science – Hydrology
CCAM: China Catchment Attributes and Meteorology dataset
Zhen Hao, Jin Jin, Runliang Xia, Shimin Tian, Wushuang Yang, Qixing Liu, Min Zhu, Tao Ma, Chengran Jing, and Yanning Zhang
Earth Syst. Sci. Data, 13, 5591–5616, https://doi.org/10.5194/essd-13-5591-2021,https://doi.org/10.5194/essd-13-5591-2021, 2021
Short summary
A high-accuracy rainfall dataset by merging multiple satellites and dense gauges over the southern Tibetan Plateau for 2014–2019 warm seasons
Kunbiao Li, Fuqiang Tian, Mohd Yawar Ali Khan, Ran Xu, Zhihua He, Long Yang, Hui Lu, and Yingzhao Ma
Earth Syst. Sci. Data, 13, 5455–5467, https://doi.org/10.5194/essd-13-5455-2021,https://doi.org/10.5194/essd-13-5455-2021, 2021
Short summary
Baseline data for monitoring geomorphological effects of glacier lake outburst flood: a very-high-resolution image and GIS datasets of the distal part of the Zackenberg River, northeast Greenland
Aleksandra M. Tomczyk and Marek W. Ewertowski
Earth Syst. Sci. Data, 13, 5293–5309, https://doi.org/10.5194/essd-13-5293-2021,https://doi.org/10.5194/essd-13-5293-2021, 2021
Short summary
Mineral, thermal and deep groundwater of Hesse, Germany
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860, https://doi.org/10.5194/essd-13-4847-2021,https://doi.org/10.5194/essd-13-4847-2021, 2021
Short summary
LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021,https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017.
Arsenault, R., Bazile, R., Ouellet Dallaire, C., and Brissette, F.: CANOPEX: A Canadian hydrometeorological watershed database, Hydrol. Process., 30, 2734–2736, 2016.
Barr, I. D. and Clark, C. D.: An updated moraine map of Far NE Russia, J. Maps, 8, 431–436, 2012.
Bhaduri, B., Bright, E., Coleman, P., and Dobson, J.: LandScan, Geoinformatics, 5, 34–37, 2002.
Bierkens, M. F. P.: Global hydrology 2015: State, trends, and directions, Water Resour. Res., 51, 4923–4947, 2015.
Short summary
The production of 30 959 daily streamflow time series in the Global Streamflow and Metadata Archive (GSIM) project is presented. The paper also describes the development of three metadata products that are freely available. Having collated an unprecedented number of stations and associated metadata, GSIM can be used to advance large-scale hydrological research and improve understanding of the global water cycle.