Articles | Volume 10, issue 2
https://doi.org/10.5194/essd-10-1197-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-10-1197-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
31 years of hourly spatially distributed air temperature, humidity, and precipitation amount and phase from Reynolds Critical Zone Observatory
Patrick R. Kormos
CORRESPONDING AUTHOR
Colorado Basin River Forecast Center, NWS-NOAA, 2242 W North Temple
St, Salt Lake City, UT 84116, USA
Danny G. Marks
Northwest Watershed
Research Center, USDA-ARS, 800 Park Blvd, Suite 105, Boise, ID 83712, USA
Mark S. Seyfried
Northwest Watershed
Research Center, USDA-ARS, 800 Park Blvd, Suite 105, Boise, ID 83712, USA
Scott C. Havens
Northwest Watershed
Research Center, USDA-ARS, 800 Park Blvd, Suite 105, Boise, ID 83712, USA
Andrew Hedrick
Northwest Watershed
Research Center, USDA-ARS, 800 Park Blvd, Suite 105, Boise, ID 83712, USA
Kathleen A. Lohse
Department of Biological Sciences, Idaho State University, 921 S.
8th Ave., Pocatello, ID 83209, USA
Micah Sandusky
Northwest Watershed
Research Center, USDA-ARS, 800 Park Blvd, Suite 105, Boise, ID 83712, USA
Annelen Kahl
École Polytechnique
Fédérale de Lausanne (EPFL), Environmental Engineering Institute,
Lausanne, Switzerland
David Garen
National Water and Climate Center,
USDA-NRCS, 1201 NE Lloyd Blvd, Suite 802, Portland, OR 97232, USA
Related authors
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
C. Jason Williams, Frederick B. Pierson, Patrick R. Kormos, Osama Z. Al-Hamdan, and Justin C. Johnson
Earth Syst. Sci. Data, 12, 1347–1365, https://doi.org/10.5194/essd-12-1347-2020, https://doi.org/10.5194/essd-12-1347-2020, 2020
Short summary
Short summary
Data were collected at three sites over 10 years to evaluate ecologic impacts of tree encroachment on rangelands and assess impacts of tree-removal practices on vegetation, surface conditions, and hydrologic/erosion processes. The dataset includes 1300 rainfall simulation and 838 overland-flow experiments paired with vegetation, surface cover, and soil data across point to hillslope scales. The data advance hydrology/erosion process understanding and are a source for model development/testing.
Patrick R. Kormos, Danny G. Marks, Frederick B. Pierson, C. Jason Williams, Stuart P. Hardegree, Alex R. Boehm, Scott C. Havens, Andrew Hedrick, Zane K. Cram, and Tony J. Svejcar
Earth Syst. Sci. Data, 9, 91–98, https://doi.org/10.5194/essd-9-91-2017, https://doi.org/10.5194/essd-9-91-2017, 2017
Short summary
Short summary
Data are presented that are essential to assessing the impacts of western juniper encroachment and woodland treatments in the interior Great Basin region of the western USA. This woodland expansion into sagebrush ecosystems influences the vegetation community and the hydrology and soil resources of an area, which affect wildlife habitat, ecosystem quality, and local economies. Data include weather, snow, and stream time series, as well as lidar-derived topographic and vegetation height data.
Clarissa L. Enslin, Sarah E. Godsey, Danny Marks, Patrick R. Kormos, Mark S. Seyfried, James P. McNamara, and Timothy E. Link
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2016-44, https://doi.org/10.5194/essd-2016-44, 2016
Preprint withdrawn
Short summary
Short summary
Weather data in mountainous rain-to-snow transition zones are limited, but vital for water resources. We present a 10-year dataset for this zone that includes hourly temperatures, relative humidity, stream flow, snow depth, precipitation, wind speed/direction, solar energy, and soil moisture at 11 stations. Average air temperatures are near freezing eight months each year, so that slight warming may determine whether rain falls instead of snow, affecting water supplies, ecosystems and fire risk.
Joachim Meyer, John Horel, Patrick Kormos, Andrew Hedrick, Ernesto Trujillo, and S. McKenzie Skiles
Geosci. Model Dev., 16, 233–250, https://doi.org/10.5194/gmd-16-233-2023, https://doi.org/10.5194/gmd-16-233-2023, 2023
Short summary
Short summary
Freshwater resupply from seasonal snow in the mountains is changing. Current water prediction methods from snow rely on historical data excluding the change and can lead to errors. This work presented and evaluated an alternative snow-physics-based approach. The results in a test watershed were promising, and future improvements were identified. Adaptation to current forecast environments would improve resilience to the seasonal snow changes and helps ensure the accuracy of resupply forecasts.
C. Jason Williams, Frederick B. Pierson, Patrick R. Kormos, Osama Z. Al-Hamdan, and Justin C. Johnson
Earth Syst. Sci. Data, 12, 1347–1365, https://doi.org/10.5194/essd-12-1347-2020, https://doi.org/10.5194/essd-12-1347-2020, 2020
Short summary
Short summary
Data were collected at three sites over 10 years to evaluate ecologic impacts of tree encroachment on rangelands and assess impacts of tree-removal practices on vegetation, surface conditions, and hydrologic/erosion processes. The dataset includes 1300 rainfall simulation and 838 overland-flow experiments paired with vegetation, surface cover, and soil data across point to hillslope scales. The data advance hydrology/erosion process understanding and are a source for model development/testing.
Cécile B. Ménard, Richard Essery, Alan Barr, Paul Bartlett, Jeff Derry, Marie Dumont, Charles Fierz, Hyungjun Kim, Anna Kontu, Yves Lejeune, Danny Marks, Masashi Niwano, Mark Raleigh, Libo Wang, and Nander Wever
Earth Syst. Sci. Data, 11, 865–880, https://doi.org/10.5194/essd-11-865-2019, https://doi.org/10.5194/essd-11-865-2019, 2019
Short summary
Short summary
This paper describes long-term meteorological and evaluation datasets from 10 reference sites for use in snow modelling. We demonstrate how data sharing is crucial to the identification of errors and how the publication of these datasets contributes to good practice, consistency, and reproducibility in geosciences. The ease of use, availability, and quality of the datasets will help model developers quantify and reduce model uncertainties and errors.
Daniel D. Richter, Sharon A. Billings, Peter M. Groffman, Eugene F. Kelly, Kathleen A. Lohse, William H. McDowell, Timothy S. White, Suzanne Anderson, Dennis D. Baldocchi, Steve Banwart, Susan Brantley, Jean J. Braun, Zachary S. Brecheisen, Charles W. Cook, Hilairy E. Hartnett, Sarah E. Hobbie, Jerome Gaillardet, Esteban Jobbagy, Hermann F. Jungkunst, Clare E. Kazanski, Jagdish Krishnaswamy, Daniel Markewitz, Katherine O'Neill, Clifford S. Riebe, Paul Schroeder, Christina Siebe, Whendee L. Silver, Aaron Thompson, Anne Verhoef, and Ganlin Zhang
Biogeosciences, 15, 4815–4832, https://doi.org/10.5194/bg-15-4815-2018, https://doi.org/10.5194/bg-15-4815-2018, 2018
Short summary
Short summary
As knowledge in biology and geology explodes, science becomes increasingly specialized. Given the overlap of the environmental sciences, however, the explosion in knowledge inevitably creates opportunities for interconnecting the biogeosciences. Here, 30 scientists emphasize the opportunities for biogeoscience collaborations across the world’s remarkable long-term environmental research networks that can advance science and engage larger scientific and public audiences.
Sarah E. Godsey, Danny Marks, Patrick R. Kormos, Mark S. Seyfried, Clarissa L. Enslin, Adam H. Winstral, James P. McNamara, and Timothy E. Link
Earth Syst. Sci. Data, 10, 1207–1216, https://doi.org/10.5194/essd-10-1207-2018, https://doi.org/10.5194/essd-10-1207-2018, 2018
Short summary
Short summary
Weather data in mountainous rain-to-snow transition zones are limited, but are vital for water resources. We present a 10-year dataset for this zone that includes hourly temperatures, relative humidity, streamflow, snow depth, precipitation, wind speed/direction, solar energy, and soil moisture at 11 stations. Average air temperatures are near freezing 8 months each year, so that slight warming may determine whether rain falls instead of snow, affecting water supplies and fire risk.
Susan L. Brantley, William H. McDowell, William E. Dietrich, Timothy S. White, Praveen Kumar, Suzanne P. Anderson, Jon Chorover, Kathleen Ann Lohse, Roger C. Bales, Daniel D. Richter, Gordon Grant, and Jérôme Gaillardet
Earth Surf. Dynam., 5, 841–860, https://doi.org/10.5194/esurf-5-841-2017, https://doi.org/10.5194/esurf-5-841-2017, 2017
Short summary
Short summary
The layer known as the critical zone extends from the tree tops to the groundwater. This zone varies globally as a function of land use, climate, and geology. Energy and materials input from the land surface downward impact the subsurface landscape of water, gas, weathered material, and biota – at the same time that differences at depth also impact the superficial landscape. Scientists are designing observatories to understand the critical zone and how it will evolve in the future.
Patrick R. Kormos, Danny G. Marks, Frederick B. Pierson, C. Jason Williams, Stuart P. Hardegree, Alex R. Boehm, Scott C. Havens, Andrew Hedrick, Zane K. Cram, and Tony J. Svejcar
Earth Syst. Sci. Data, 9, 91–98, https://doi.org/10.5194/essd-9-91-2017, https://doi.org/10.5194/essd-9-91-2017, 2017
Short summary
Short summary
Data are presented that are essential to assessing the impacts of western juniper encroachment and woodland treatments in the interior Great Basin region of the western USA. This woodland expansion into sagebrush ecosystems influences the vegetation community and the hydrology and soil resources of an area, which affect wildlife habitat, ecosystem quality, and local economies. Data include weather, snow, and stream time series, as well as lidar-derived topographic and vegetation height data.
Clarissa L. Enslin, Sarah E. Godsey, Danny Marks, Patrick R. Kormos, Mark S. Seyfried, James P. McNamara, and Timothy E. Link
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2016-44, https://doi.org/10.5194/essd-2016-44, 2016
Preprint withdrawn
Short summary
Short summary
Weather data in mountainous rain-to-snow transition zones are limited, but vital for water resources. We present a 10-year dataset for this zone that includes hourly temperatures, relative humidity, stream flow, snow depth, precipitation, wind speed/direction, solar energy, and soil moisture at 11 stations. Average air temperatures are near freezing eight months each year, so that slight warming may determine whether rain falls instead of snow, affecting water supplies, ecosystems and fire risk.
Cited articles
Brown, R. D. and Mote, P. W.: The Response of Northern Hemisphere Snow Cover
to a Changing Climate, J. Climate, 22, 2124–2145,
https://doi.org/10.1175/2008JCLI2665.1, 2009. a
Garen, D. C.: Estimation of spatially distributed values of daily
precipitation in mountainous areas, in: Mountain Hydrology: Peaks and Valleys
in Research and Applications, Canadian Water Resources Association,
Cambridge, Ont., Canada, 237–242, 1995. a
Garen, D. C., Johnson, G. L., and Hanson, C. L.: Mean Areal Precipitation For
Daily Hydrologic Modeling In Mountainous Regions, J. Am. Water Resour. As.,
30, 481–491, https://doi.org/10.1111/j.1752-1688.1994.tb03307.x, 1994. a
Godsey, S. E., Marks, D. G., Kormos, P. R., Seyfried, M. S., Enslin, C. L.,
McNamara, J. P., and Link, T. E.: Data from: Eleven years of mountain
weather, snow, soil moisture and stream flow data from the rain-snow
transition zone – the Johnston Draw catchment, Reynolds Creek Experimental
Watershed and Critical Zone Observatory, USA, USDA National Agricultural
Library Data Commons, https://doi.org/10.15482/USDA.ADC/1402076, 2016. a
Hanson, C., Burgess, M., Windom, J., and Hartzmann, R.: New Weighing
Mechanism for Precipitation Gauges, J. Hydrol. Eng., 6, 75–77,
https://doi.org/10.1061/(ASCE)1084-0699(2001)6:1(75), 2001. a, b
Hanson, C., Pierson, F., and Johnson, G.: Dual-Gauge System for Measuring
Precipitation: Historical Development and Use, J. Hydrol. Eng., 9, 350–359,
https://doi.org/10.1061/(ASCE)1084-0699(2004)9:5(350), 2004. a, b
Harder, P. and Pomeroy, J.: Estimating precipitation phase using a
psychrometric energy balance method, Hydrol. Process., 27, 1901–1914,
https://doi.org/10.1002/hyp.9799, 2013. a
Klos, P. Z., Link, T. E., and Abatzoglou, J. T.: Extent of the rain-snow
transition zone in the western U.S. under historic and projected climate,
Geophys. Res. Lett., 41, 4560–4568, https://doi.org/10.1002/2014GL060500, 2014. a
Kormos, P. R., Marks, D., Williams, C. J., Marshall, H. P., Aishlin, P.,
Chandler, D. G., and McNamara, J. P.: Soil, snow, weather, and sub-surface
storage data from a mountain catchment in the rain–snow transition zone,
Earth Syst. Sci. Data, 6, 165–173, https://doi.org/10.5194/essd-6-165-2014,
2014. a
Kormos, P. R., Marks, D. G., Seyfried, M. S., Havens, S. C., Hedrick, A.,
Lohse, K. A., Masarik, M., and Flores, A. N.: 31 Years of Spatially
Distributed Air Temperature, Humidity, Precipitation Amount and Precipitation
Phase From a Mountain Catchment in the Rain-snow Transition Zone, Reynolds
Creek Critical Zone Observatory Data, https://doi.org/10.18122/B2B59V, 2016. a
Marks, D., Domingo, J., Susong, D., Link, T., and Garen, D.: A spatially
distributed energy balance snowmelt model for application in mountain basins,
Hydrol. Proc., 13, 1935–1959, 1999. a
Morin, S., Lejeune, Y., Lesaffre, B., Panel, J.-M., Poncet, D., David, P.,
and Sudul, M.: An 18-yr long (1993–2011) snow and meteorological dataset
from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for
driving and evaluating snowpack models, Earth Syst. Sci. Data, 4, 13–21,
https://doi.org/10.5194/essd-4-13-2012, 2012. a
Mote, P. W.: Trends in snow water equivalent in the Pacific Northwest and
their climatic causes, Geophys. Res. Lett., 30, 1601,
https://doi.org/10.1029/2003GL017258, 2003. a
Nayak, A., Chandler, D. G., Marks, D., McNamara, J. P., and Seyfried, M.:
Correction of electronic record for weighing bucket precipitation gauge
measurements, Water Resour. Res., 44, W00D11, https://doi.org/10.1029/2008WR006875,
2008. a
Nayak, A., Marks, D., Chandler, D. G., and Seyfried, M.: Long-term snow,
climate, and streamflow trends at the Reynolds Creek Experimental Watershed,
Owyhee Mountains, Idaho, United States, Water Resour. Res., 46, W06519,
https://doi.org/10.1029/2008WR007525, 2010. a, b, c
Reba, M. L., Marks, D., Seyfried, M., Winstral, A., Kumar, M., and
Flerchinger, G.: A long-term data set for hydrologic modeling in a
snow-dominated mountain catchment, Water Resour. Res., 47, W07702,
https://doi.org/10.1029/2010WR010030, 2011. a
Seyfried, M., Harris, R., Marks, D., and Jacob, B.: Geographic Database,
Reynolds Creek Experimental Watershed, Idaho, United States, Water Resour.
Res., 37, 2825–2829, https://doi.org/10.1029/2001WR000414, 2001. a
Western, A. W. and Grayson, R. B.: The Tarrawarra Data Set: Soil moisture
patterns, soil characteristics, and hydrological flux measurements, Water
Resour. Res., 34, 2765–2768, https://doi.org/10.1029/98WR01833, 1998. a
Winstral, A. and Marks, D.: Long-term snow distribution observations in a
mountain catchment: Assessing variability, time stability, and the
representativeness of an index site, Water Resour. Res., 50, 293–305,
https://doi.org/10.1002/2012WR013038, 2014. a
Winstral, A., Marks, D., and Gurney, R.: Simulating wind-affected snow
accumulations at catchment to basin scales, Adv. Water Resour., 55, 64–79,
2013. a
Short summary
Thirty-one years of hourly gridded (10 m) air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed, Idaho, which is part of the Critical Zone Observatory network. The air temperature, relative humidity, and precipitation are distributed from weather station measurements. This dataset covers a wide range of weather extremes in the rain–snow transition zone from 1984 to 2014.
Thirty-one years of hourly gridded (10 m) air temperature, relative humidity, dew point...
Altmetrics
Final-revised paper
Preprint