Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-147-2026
https://doi.org/10.5194/essd-18-147-2026
Data description paper
 | 
06 Jan 2026
Data description paper |  | 06 Jan 2026

A six-year circum-Antarctic icebergs dataset (2018–2023)

Zilong Chen, Xuying Liu, Zhenfu Guan, Teng Li, Xiao Cheng, Tian Li, Yan Liu, Qi Liang, Lei Zheng, and Jiping Liu

Related authors

Extended seasonal prediction of Antarctic sea ice concentration using ANTSIC-UNet
Ziying Yang, Jiping Liu, Mirong Song, Yongyun Hu, Qinghua Yang, Ke Fan, Rune Grand Graversen, and Lu Zhou
The Cryosphere, 19, 6381–6402, https://doi.org/10.5194/tc-19-6381-2025,https://doi.org/10.5194/tc-19-6381-2025, 2025
Short summary
A satellite-based ice fraction record for small water bodies of the Arctic Coastal Plain
Hong Lin, Jinyang Du, John S. Kimball, Xiao Cheng, J. Patrick Donnelly, Jennifer D. Watts, and Annett Bartsch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-503,https://doi.org/10.5194/essd-2025-503, 2025
Revised manuscript accepted for ESSD
Short summary
Totten Ice Shelf history over the past century interpreted from satellite imagery
Bertie W. J. Miles, Tian Li, and Robert G. Bingham
The Cryosphere, 19, 4027–4043, https://doi.org/10.5194/tc-19-4027-2025,https://doi.org/10.5194/tc-19-4027-2025, 2025
Short summary
Investigating the impact of sub-ice shelf melt on Antarctica Ice Sheet spin-up and projections
Fan Gao, Qiang Shen, Hansheng Wang, Tong Zhang, Liming Jiang, Yan Liu, C. K. Shum, Yan An, and Xu Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3264,https://doi.org/10.5194/egusphere-2025-3264, 2025
Short summary
Active subglacial lakes in the Canadian Arctic identified by multi-annual ice elevation changes
Whyjay Zheng, Wesley Van Wychen, Tian Li, and Tsutomu Yamanokuchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2707,https://doi.org/10.5194/egusphere-2025-2707, 2025
Short summary

Cited articles

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S.: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 2274–2282, https://doi.org/10.1109/TPAMI.2012.120, 2012. a
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., and Brisco, B.: Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5326–5350, https://doi.org/10.1109/JSTARS.2020.3021052, 2020. a
Barbat, M. M., Rackow, T., Hellmer, H. H., Wesche, C., and Mata, M. M.: Three Years of Near-Coastal Antarctic Iceberg Distribution From a Machine Learning Approach Applied to SAR Imagery, Journal of Geophysical Research: Oceans, 124, 6658–6672, https://doi.org/10.1029/2019JC015205, 2019a. a, b
Barbat, M. M., Wesche, C., Werhli, A. V., and Mata, M. M.: An adaptive machine learning approach to improve automatic iceberg detection from SAR images, ISPRS Journal of Photogrammetry and Remote Sensing, 156, 247–259, https://doi.org/10.1016/j.isprsjprs.2019.08.015, 2019b. a
Barbat, M. M., Rackow, T., Wesche, C., Hellmer, H. H., and Mata, M. M.: Automated iceberg tracking with a machine learning approach applied to SAR imagery: A Weddell sea case study, ISPRS Journal of Photogrammetry and Remote Sensing, 172, 189–206, https://doi.org/10.1016/j.isprsjprs.2020.12.006, 2021. a
Download
Short summary
Our study uses Google Earth Engine to create a dataset of Antarctic icebergs in the Southern Ocean (south of 55° S) from October 2018 to 2023. The dataset includes icebergs larger than 0.04 km², with details on their locations, sizes, and shapes. It shows significant changes in iceberg number and area, mainly driven by major ice shelf calving events – especially in the Weddell Sea. This resource fills key gaps in understanding iceberg impacts on the ocean and climate.
Share
Altmetrics
Final-revised paper
Preprint