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Abstract. The distribution of Antarctic icebergs is crucial for understanding their impact on the Southern
Ocean’s atmosphere and physical environment, as well as their role in global climate change. Recent advance-
ments in iceberg databases, based on remote sensing imagery and altimetry data, have led to products like the
BYU/NIC iceberg database, the Altiberg database, and high-resolution SAR-based iceberg distribution data.
However, no unified database exists that integrates various iceberg scales and covers the entire Southern Ocean.
Our research presents a comprehensive circum-Antarctic iceberg dataset, developed using Sentinel-1 SAR im-
agery from the Google Earth Engine (GEE) platform, covering the Southern Ocean south of 55° S. A semi-
automated classification method that integrated incremental random forest classification with manual correction
was applied to extract icebergs larger than 0.04 km2, resulting in a dataset for each October from 2018 to 2023.
The resulting dataset documents the geographic coordinates and geometric attributes of icebergs (area, perimeter,
major axis, and minor axis), provides uncertainty estimates for area, and, under a fixed density assumption, em-
ploys the Iceberg Size Scaling to derive iceberg mass along with the associated uncertainty bounds. The dataset
reveals significant interannual variability in iceberg number and total area. Specifically, the number of icebergs
increased from 34 825 in 2018 to approximately 51 420 in 2021, while the total area expanded from 38 668 to
52 276 km2, both corresponding to major ice shelf calving events, followed by a decline in 2022. The annual
average total iceberg area is 44 859± 4900 km2, and the average mass is 9162± 1935 Gt. Validation using test
set samples shows that the integrated incremental random forest classification achieves accuracy, recall, and F1-
score exceeding 0.90. Comparisons with existing iceberg products (including the BYU/NIC iceberg database
and the Altiberg database) indicate a high consistency in spatial distribution, while our dataset demonstrates
clear advantages in terms of spatial coverage, iceberg detection scale, and identification capabilities in regions
with dense sea ice. This dataset serves as a novel data resource for investigating the impact of Antarctic icebergs
on the Southern Ocean, the mass balance of ice sheets, the mechanisms underlying ice shelf collapse, and the
response mechanisms of iceberg disintegration to climate change. The iceberg dataset is publicly available at
https://doi.org/10.5281/zenodo.17165466 (Liu and Chen, 2025).
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1 Introduction

Icebergs are large freshwater ice masses that break off from
the edges of ice sheets, ice shelves, or glaciers and enter the
ocean. They are a critical component in the global climate
system (Benn and Åström, 2018). Approximately half of the
mass loss from the Antarctic ice sheet is discharged into the
Southern Ocean through iceberg calving (Depoorter et al.,
2013; Rignot et al., 2013; Liu et al., 2015). Annually, the
dissolution of over 100 000 icebergs into the ocean is esti-
mated to introduce a volume of freshwater that, according
to certain calculations, exceeds the global annual freshwater
consumption (Qadir et al., 2022; Orheim et al., 2023). This
resultant freshwater influx plays a critical role in influencing
the thermohaline characteristics, heat content, and freshwater
balance within the impacted regions of the Southern Ocean
(Gladstone et al., 2001; Hammond and Jones, 2016). On the
bottom, grounding icebergs can interact with ocean floor and
leave scours as a kind of geological record (Dowdeswell and
Bamber, 2007; Li et al., 2018; Liu et al., 2021). Additionally,
the nutrients carried by icebergs can influence the spatial dis-
tribution of primary productivity (Duprat et al., 2016), pro-
moting the development of local ecosystems (Smith et al.,
2007; Wu and Hou, 2017; Lin et al., 2024). Furthermore,
icebergs pose a potential threat to maritime activities (Bigg
et al., 2018), as human activity in the Antarctic region in-
creases, accurate monitoring of iceberg distribution, size, and
trajectory prediction has become critical (Evans et al., 2023)

The current databases on the distribution of Antarctic ice-
bergs, as shown in Table 1, are primarily categorized into
four types: (1) Ship-based observations, such as the SCAR
International Iceberg Database (Orheim et al., 2023), com-
piled and published by the Norwegian Polar Institute (NPI)
and the Scientific Committee on Antarctic Research (SCAR),
which records 323 520 icebergs and serves as an impor-
tant historical dataset. However, it is only confined to ship-
ping lanes, not fully representing the Antarctic iceberg’s
spatial distribution and its interannual changes; (2) Low-
resolution satellite imagery-based databases, with the U.S.
National Ice Center (USNIC) and Brigham Young Univer-
sity (BYU) Antarctic Iceberg Database as a notable exam-
ple (Long et al., 2002; Stuart and Long, 2011a, b). Budge
and Long (2018) consolidated these databases to offer ice-
berg location, length, and area data, but they are restricted
to larger icebergs (length> 5 km) due to the limitations of
low-resolution imagery; (3) Satellite radar altimetry-based
databases, like the Altiberg database from the French Re-
search Institute for Exploitation of the Sea (Tournadre et al.,
2012, 2015, 2016). This database is effective at detecting
icebergs in open waters, but in complex scene, such as ar-
eas with dense ice or high iceberg concentrations, it becomes
challenging to extract accurate iceberg information from the
altimetric waveforms; (4) High-resolution SAR data-derived
products. Wesche and Dierking (2015) extracted icebergs
larger than 0.3 km2 in the Antarctic coastal region using

Radarsat-1 circum-Antarctic mosaic images. Barbat applied
a random forest algorithm to Radarsat circum-Antarctic mo-
saic images from 1997, 2000, and 2008 to obtain iceberg dis-
tributions for the corresponding years (Barbat et al., 2019a);
(5) circum-Antarctic iceberg calving dataset. This dataset
was derived from continuous optical (MODIS and Landsat-
8) and radar (Envisat ASAR and Sentinel-1) satellite obser-
vations and was released by Qi et al. (2021). The product
provides detailed information on each calving event, includ-
ing time, area, size, thickness, etc., but it only focused on the
transient icebergs just calved from ice shelves therefore lack-
ing the spatial distribution across the open ocean. All above
data products primarily cover the Antarctic coastal region,
and the published datasets are not real-time monitoring re-
sults, but rather used for historical scientific research. In sum-
mary, there is currently no comprehensive iceberg database
covering multiple scales and the entire Southern Ocean has
been established to date.

High-precision, large-scale, and long-term continuous re-
mote sensing observations of circum-Antarctic iceberg dis-
tribution not only characterize the spatiotemporal patterns of
iceberg occurrence but also provide critical data for elucidat-
ing the mechanisms of iceberg formation and evolution, ice-
shelf dynamics, and their complex interactions with climate
change. In this study, we leveraged the Google Earth Engine
(GEE) platform to acquire Sentinel-1 SAR mosaic imagery
and applied an incremental random forest classification com-
bined with manual correction to identify Antarctic icebergs
larger than 0.04 km2, extracting each iceberg’s outline, loca-
tion, area, mass, and associated uncertainty. Based on these
results, we constructed a circum-Antarctic iceberg distribu-
tion dataset covering each October from 2018 to 2023 and
conducted a comprehensive analysis of the spatiotemporal
characteristics of iceberg distribution over this six-year pe-
riod. To ensure the reliability of the dataset, we performed an
internal accuracy validation of the classifier and conducted
external validation by comparing our results with existing
iceberg databases and data products.

2 Data

To identify circum-Antarctic icebergs, we utilized the Euro-
pean Space Agency (ESA) Sentinel-1 C-band SAR Ground
Range Detected (GRD) data. Given the extensive coverage of
the data, we chose the Extra Wide (EW) swath mode, which
provides a spatial resolution of 40 m. The Sentinel-1 data of-
fers various band combinations based on different polariza-
tion modes (e.g., VV, HH, VV+VH, and HH+HV), with
HH polarization being the primary mode available in polar
regions (Koo et al., 2023; Ferdous et al., 2018). Therefore,
only HH polarization band images were used for analysis.
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Table 1. Overview of Antarctic Iceberg Datasets.

Iceberg dataset Time scale Iceberg size range Satellite data (sensors)

The SCAR International
Iceberg Database

1982–2010 > 10 m –

USNIC Antarctic Iceberg
Data

1978–present > 18 km SAR, visible, and infrared remotely sensed
imagery

BYU Antarctic Iceberg
Tracking Database

1978 and 1992–present > 5 km SASS, ERS-1/2, NSCAT, QuikSCAT, ASCAT,
OSCAT, SeaWinds, NIC analyse(multi-sensor)

Altiberg 1992–2023 Determined by the
resolution of the
satellite altimeter

ERS1/2, Topex, Poseidon, Jason1/2/3, Envisat,
CryoSat-2 (SAR, SARIn), ALTIKA, HY-2A/B/C,
Sentinel-3(A&B) PLRM, Sentinel-3(A&B) SAR,
Geosat

Wesche and Dierking
(2015)

1997 > 0.3 km2 Radarsat-1 SAR

Barbat et al. (2019) 1997, 2000, 2008 > 0.1 km2 Radarsat-1 SAR, Radarsat-2 SAR

Qi et al. (2021) 2005–2020 > 1 km Envisat ASAR, Sentinel-1 SAR, MODIS, Landsat
8 OLI

To optimize iceberg detection, HH-polarized backscatter
time series were extracted from representative fixed pix-
els for icebergs, first-year ice, multiyear ice and open wa-
ter in Sentinel-1 GRD imagery, sampled every five days
from January 2018 to December 2021. The iceberg pixel
remained grounded throughout the study, yielding approxi-
mately 60 observations per year (≈ 5 per month), with com-
parable sampling frequencies for the other typical Antarctic
oceanic features. Each pixel’s time series was then resam-
pled on a monthly basis to compute mean backscatter co-
efficients and variances, and the resulting mean curves with
shaded standard-deviation uncertainty are shown in Fig. 1.
As noted by Drinkwater et al. (1995) in their study of sea
ice in the Weddell Sea, distinct differences in backscatter
coefficients exist between various oceanic features. For in-
stance, rough and undisturbed first-year ice, second-year ice,
and other ice types exhibit unique reflective properties, which
become more pronounced with seasonal and environmental
changes. Environmental factors such as temperature and heat
flux cause significant variation in backscatter coefficients. By
comparing the interannual backscatter coefficient trends of
typical Antarctic oceanic features, it was found that from
June to October, the backscatter coefficient of icebergs is
significantly higher than that of fast ice, first-year ice, and
open water (Wesche and Dierking, 2012, 2015; Mazur et al.,
2017), especially in October when the backscatter coefficient
of fast ice reaches its annual minimum, providing optimal
conditions for distinguishing icebergs from other oceanic
features. Based on the above analysis, we selected Sentinel-1
SAR data in October for each year.

3 Method

The semi-automated workflow for extracting Antarctic ice-
bergs using machine learning is shown in Fig. 2 and consists
of four subprocesses: (1) Data acquisition, (2) Image seg-
mentation, (3) Iceberg detection, and (4) Iceberg attribute ex-
traction. In this section, we will provide the technical meth-
ods and details for each subprocess.

3.1 Data acquisition

GEE is a cloud-based platform developed by Google for
the visualization and analysis of geospatial data. Through
GEE, users can easily access a wide area of satellite remote
sensing datasets (Gorelick et al., 2017; Amani et al., 2020).
The Sentinel-1 SAR data provided by GEE have been pre-
processed to remove thermal noise, apply radiometric cal-
ibration, and perform terrain correction, resulting in GRD
backscatter coefficient images (expressed in dB). Given the
vast extent of the Southern Ocean, this study divides the re-
gion south of 55° S into 5°× 5° tiles, resulting in a total of
360 tiles annually. For each tile, we retrieved Sentinel-1 SAR
HH-polarization data from the EW swath mode acquired in
October of each year between 2018 and 2023 (Fig. 3), and
mosaicked the data chronologically to create monthly com-
posite images, with later-acquired images overwriting valid
pixels in earlier ones to fill voids at the beginning of the
month. Statistics show that most tiles contain 2–4 images
from different dates: in each year, more than 50 % of tiles
have a maximum date span of ≤ 5 d, and more than 90 %
have a maximum span of ≤ 10 d (Fig. S1 in the Supple-
ment). In addition, we delineated the effective observation
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Figure 1. Time series of backscatter coefficients for typical Antarctic surfaces from 2018 to 2021: (a) iceberg, (b) first-year ice, (c) fast
ice, and (d) open water. Each time series corresponds to a single pixel. The solid colored lines represent the monthly average backscatter
coefficients derived from the 5 d sampling intervals, while the shaded regions indicate the uncertainty intervals corresponding to one standard
deviation. Gray-highlighted areas indicate the selected months (October of each year).

area for each year and determined the intersection and union
of these areas across the different years. The intersection of
the effective observation ranges over six years has reached
16.67× 106 km2, nearly covering the sea regions where ice-
bergs might exist, thereby providing data support for obtain-
ing the distribution of circum-Antarctic icebergs. In the sub-
sequent analysis of annual variation, we primarily focused on
comparing icebergs within the intersecting observation areas
across years, in order to identify trends in iceberg numbers
and distribution. We emphasized this comparison in the con-
sistent dimension, ensuring that the trends we observed were
on an equal footing and thus more reliably indicative of ac-
tual changes in the iceberg population. Furthermore, to quan-
titatively assess the issues of misclassification, omission, ice-
berg merging, and contour deviations in the iceberg dataset,
we selected four 5°×5° tile sample areas with low ocean cur-
rent speeds and slow iceberg drift (as indicated by the yellow
regions in Fig. 3). These sample areas effectively reflect the
uncertainties in iceberg detection under complex ocean con-

ditions and thus serve as representative of the overall detec-
tion performance of the entire dataset.

3.2 Image segmentation

3.2.1 Total Variation-based principal structure extraction
(TV) algorithm for Sentinel-1 images smoothing

Due to the presence of background features such as sea ice
and sea water, the edges and shapes of icebergs in SAR im-
ages can be unclear. To address this issue, we applied a To-
tal Variation-based principal structure extraction (TV) algo-
rithm (Xu et al., 2012), which separates the SAR images
into two layers: a background texture layer and a primary
structure layer that represents the shape characteristics of
the ocean surface. By extracting the primary structure layer,
we were able to enhance the visibility of the iceberg edges
and improve the accuracy of contour detection. The TV al-
gorithm is particularly effective when the size of the back-
ground textures differs substantially from that of the primary
structures, as it preserves the image edges and clarifies the
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Figure 2. Flowchart of our methodology to obtain the 2018–2023 Antarctic iceberg product.

Figure 3. Circum-Antarctic Sentinel-1 SAR Data. The left and right columns display the Sentinel-1 mosaic images acquired from 2018 to
2023 on the GEE platform. The blue line delineates the coastline, while the red line indicates the valid observation boundaries. The central
map illustrates the intersection and union of the observation areas over the six-year period, along with the four selected 5°× 5° tile sample
areas.
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boundaries. The results (Fig. 4) show that the TV algorithm
successfully reduced background interference, retaining only
the main contours of the icebergs, which made the iceberg
bodies and boundaries much distinct. Even in complicated
scene (Fig. 4c) or for small icebergs only a few hundred me-
ters in size (Fig. 4b), the algorithm was able to effectively
extract their contours.

3.2.2 Simple Linear Iterative Clustering (SLIC) image
segmentation

We applied the Simple Linear Iterative Clustering (SLIC) al-
gorithm for superpixel segmentation on the smoothed SAR
images to avoid noise amplification and reduce computa-
tional complexity that may arise from using individual pix-
els during the subsequent Random Forest (RF) classifica-
tion (Mazur et al., 2017; Karvonen et al., 2022; Koo et al.,
2023). A superpixel is defined as a small, contiguous clus-
ter of adjacent pixels that share similar backscatter charac-
teristics, effectively representing a meaningful image region
rather than individual pixels. By grouping pixels with simi-
lar backscatter characteristics into small, connected clusters,
referred to as “superpixels”, we not only improved classifi-
cation efficiency but also significantly decreased the compu-
tational burden during the classification process (Achanta et
al., 2012). The results of superpixel segmentation on the SAR
images used in this study are shown in Fig. 4, with superpixel
outlines displayed independently and not combined. Com-
pared to the original image, the SLIC algorithm effectively
delineates the boundaries of oceanic features and adapts well
to different categories.

Given the large volume of image data and the spatial vari-
ability of iceberg distribution, we adopted a two-stage seg-
mentation approach. In the first stage, we performed coarse
segmentation using larger superpixels (40× 40 pixels). For
superpixels exhibiting histograms with multiple peaks, we
then applied finer segmentation using smaller superpixels
(5× 5 pixels). This approach ensures that the smallest de-
tectable iceberg has a length greater than 200 m or an area
larger than 0.04 km2.

3.3 Iceberg detection

3.3.1 Feature extraction

After image segmentation, we extracted features for each su-
perpixel object based on the segmentation labels applied to
the original, unprocessed image. These features were then
used to construct a feature set for classification. In conjunc-
tion with manual interpretation, a sample set was created for
the subsequent classification process. The extracted object
features were categorized into three types: Statistical fea-
tures, histogram-based features, and texture features, result-
ing in a total of 24 features. A detailed description and ex-
planation of these features can be found in Appendix A.

3.3.2 Incremental random forest classification

In this study, we employed an ensemble incremental ran-
dom forest (RF) classifier (Zhou, 2012) to identify Antarc-
tic circumpolar icebergs. The process consisted of two main
steps: (1) Using the training and validation sample sets, we
evaluated the classification performance of various feature
combinations, optimized the parameters of each RF classi-
fier, determined their weights and classification thresholds,
and constructed the ensemble classifier; (2) For each tile, we
performed incremental RF training and classification on the
superpixel objects, enabling automated iceberg detection.

Construction of Incremental random forest classifiers

Based on the Sentinel-1 SAR imagery, we applied the SLIC
algorithm to generate superpixels and then manually selected
approximately 2000 superpixel samples per year, evenly split
between icebergs and non-icebergs. The sample set was then
randomly divided into three subsets: an initial training set,
a validation set, and a test set, in a 6 : 2 : 2 ratio. The train-
ing set was used to train the RF classifier, the validation set
to tune parameters and the test set to assess generalization
performance.

Taking October 2018 as an example, we detailed how we
determined the parameters for our ensemble of random for-
est classifiers and performed an incremental training proce-
dure within each 5°× 5° tile. We constructed four indepen-
dent random forest models: RF1 trained on statistical fea-
tures, RF2 on histogram features, RF3 on texture features,
and RF4 on all combined features. Classifier settings were
determined from out-of-bag (OOB) error curves, with stable
minima selected as optimal: 200 trees/3 features for RF1, 100
trees/5 features for RF2, 250 trees/7 features for RF3, and
150 trees/3 features for RF4 (Fig. S2 in the Supplement).
Each independent random forest model was then evaluated
on the validation set to compute accuracy, precision, recall,
and F1 score. Using each metric in turn for normalization, we
generated four candidate weighting schemes, thereby avoid-
ing reliance on a single evaluation criterion.

For the ensemble in 2018, we multiplied each model’s ice-
berg probability by its corresponding weight and summed
the results to obtain a combined discriminant score for each
superpixel. We tested decision thresholds from 0 to 1 (step
0.01) on the validation set, plotting Precision-Recall (P-R)
and Receiver Operating Characteristic (ROC) curves (Fig. S3
in the Supplement). The scheme that maximized the combine
areas under the P-R curve and ROC curve was selected as op-
timal, as this balances precision-recall trade-offs with over-
all classification performance. This yielded weights of 0.218,
0.271, 0.246 and 0.265 for RF1–RF4, respectively. Finally,
we determined the threshold that maximized the F1 score on
the validation set, and set 0.783 as the final decision thresh-
old for iceberg detection. The same procedure was applied
to the remaining years to obtain optimal parameter configu-
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Figure 4. The results of the TV algorithm and SLIC segmentation on SAR imagery are shown in the following panels. Panel (a) provides
an overview of the study area, with three representative sub-regions highlighted. Panels (b)–(d) show enlarged views of these sub-regions,
presenting the original SAR image, the denoised output from the TV-smoothing algorithm, and the segmented image generated by the SLIC
algorithm, respectively.

rations for each year, with the specific settings presented in
Table S1 in the Supplement.

Automated Antarctic iceberg identification

After constructing the ensemble RF classifier, we predicted
all the superpixels within each 5°× 5° tile. Given the com-
plexity of the data within each tile, image segmentation typ-
ically produces tens of thousands to hundreds of thousands
of superpixels that require classification. Given the limited
size of the initial training sample and the potential varia-
tion in iceberg and non-iceberg characteristics across differ-
ent tiles, we adopted an incremental random forest approach
for each tile. This method uses Mahalanobis distance to al-
low the classifier to adaptively learn and better match local
data characteristics.

The process began by training RF1–RF4 using the ini-
tial training set, which were then combined into an ensem-
ble classifier to generate the initial classification results for
the tile. Then, we randomly selected an equal number of
iceberg and non-iceberg samples from the newly identified
objects to expand the training set. Based on feature impor-
tance ranking (Fig. S2), we selected the most significant three
features to construct the feature space for icebergs and non-
icebergs. Subsequently, we calculated the mean (µ) and stan-
dard deviation (σ ) of the distances between iceberg samples
and the center of the iceberg, as well as the mean distance
from non-iceberg samples to the iceberg center. If the mean
distance from non-iceberg samples to the iceberg center ex-
ceeds µ+ σ , or the iteration count did not exceed five, we
retrained the classifier with the incremental samples. The it-

eration limit of five was determined through multiple exper-
iments. The incremental learning process terminates when
either the conditions were not met or the iteration limit was
reached. The predicted iceberg results from the final iteration
were then taken as the final classification results for that tile.

For the final classification, all superpixels identified as ice-
bergs were converted into a binary mask, which was then
subjected to hole filling and noise removal. We then applied
a connected-component labeling algorithm to automatically
aggregate all contiguous iceberg superpixels into individual
iceberg objects. Two iceberg entities were recognized as dis-
tinct only if they were separated by at least one non-iceberg
superpixel.

3.3.3 Manual correction

The automatically classified superpixels labels identifying
icebergs were used to generate iceberg outlines based on the
geographic coordinates of the SAR images. These outline
vectors were then manually refined in ArcMap 10.8 soft-
ware interactively to ensure they accurately represent the
true shapes of the icebergs as observed in the corresponding
SAR image. Manual correction addressed three main issues:
(1) the automatic detection process still resulted in misclas-
sifications and missed icebergs; (2) some iceberg contours
were incomplete at the tile boundaries; and (3) due to the
mosaic nature of the tiles, some fast-moving icebergs with
distinct shape and texture features were segmented into mul-
tiple fragments. The results for the four sample areas after
incremental random forest classification and manual correc-
tion are shown in Fig. 5.
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Figure 5. Iceberg identification results, panels (a)–(d) display the Sentinel-1 SAR images from the sample areas, while panels (e)–(h) present
the classification results derived from these images using an incremental random forest classification supplemented with manual corrections.
In these panels, the red vectors denote icebergs.

3.4 Iceberg attribute extraction

For each iceberg, key attributes such as area, perimeter, long
axis, short axis, average thickness, mass, and the associated
uncertainties for these parameters were calculated. This sec-
tion outlines the methods used to derive these iceberg at-
tributes and assess the uncertainties involved.

After obtaining the iceberg outline vector data, we cal-
culated the area (km2) and perimeter (km) of each ice-
berg under the Antarctic Polar Stereographic projection
(EPSG:3031). Based on the area data, we applied the Iceberg
Size Scaling to estimate both the mass of individual icebergs
and the annual total iceberg mass across the circum-Antarctic
region (Gladstone et al., 2001; Stern et al., 2016). Specif-
ically, we used the 10-class iceberg classification scheme
from Stern et al. (2016), which provides standardized ice-
berg properties (mass, length, area, and thickness) spanning
from small fragments to kilometer-scale icebergs for use in
ocean general circulation models. For each class, we con-
verted the prescribed mass to volume using an iceberg den-
sity of 850 kgm−3, generating 10 discrete area-volume pairs.
A power-law relationship was then fitted to these data points
to derive the volume estimation formula for small icebergs
(Eq. 1). Based on Eq. (1), the physical thickness limit of
250 m defined by Stern et al. (2016) corresponds to a crit-
ical area of approximately 0.67 km2. For icebergs smaller
than this threshold, volume is calculated directly from the
power-law relationship, whereas for larger icebergs, volume

is derived by multiplying the area by the fixed thickness of
250 m. Assuming an average density of 850 kgm−3, the mass
of each iceberg and the circumpolar total are then obtained
accordingly in Eq. (2).

VIceberg = 7.64A1.26 (1)
M = AIceberg×H × ρIceberg = VIceberg× ρIceberg (2)

Due to the diverse shapes of icebergs, we used the prin-
cipal orientation method to determine their geometric char-
acteristics. First, we calculated the centroid of the iceberg’s
geometry, which serves as its geometric center. Then, we ap-
plied Principal Component Analysis (PCA) to the iceberg’s
boundary points to determine the directions of its principal
axes. The first principal component corresponds to the long
axis of the iceberg, while the second principal component
corresponds to the short axis. Next, we projected the bound-
ary points along the long axis and computed the projection
length in this direction to obtain the length of the iceberg’s
long axis, and we used the same method to obtain the length
of the short axis.

3.5 Uncertainty assessment

3.5.1 Iceberg area uncertainty

The uncertainty in iceberg area measurement primarily arises
from three independent factors: (1) the spatial resolution lim-
itations of SAR imagery; (2) the detection errors introduced
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during iceberg identification (e.g., misclassification, omis-
sion, or merging of iceberg targets); and (3) duplication er-
rors in iceberg counts arising from the image mosaicking
process.

The uncertainty due to image resolution (U1) can be ap-
proximated as the product of the total iceberg perimeter and
the pixel size of the imagery, that is, we estimate the area
uncertainty from the pixel error along the iceberg boundaries
using Eq. (3):

U1 = P ×1x (3)

Where P is the total perimeter of all icebergs each year (km),
and 1x is the spatial resolution of the imagery, which is
40 m.

The second source of uncertainty (U2) primarily arises
from errors in iceberg classification and extraction, such as
omissions, false detections, erroneous merging (i.e., mistak-
enly detecting adjacent icebergs as a single object), and con-
tour deviations. To quantitatively evaluate this component,
we acquired mosaic images in the Interferometric Wide (IW)
swath mode (with a spatial resolution of 20 m) from four
5°× 5° sample tile areas, while ensuring that, in iceberg-
dense areas, the time interval between the IW mode images
and the EW mode images (with a spatial resolution of 40 m)
did not exceed 10 d. In each sample tile area, we manually
digitized iceberg outlines from high-resolution IW images to
construct a reference dataset representing the “true” iceberg
count and area, and then compared it with the dataset ob-
tained from EW mode imagery using an incremental random
forest algorithm supplemented with manual corrections. As
shown in Table 2, the comparison results indicate that in the
most complex sample area, the relative error in total iceberg
area reached up to 3.15 %. For a conservative estimation of
uncertainty, we adopt 4 % as the parameter – i.e., the uncer-
tainty due to detection errors is calculated by multiplying the
annual total iceberg area by 4 %.

The third source of uncertainty (U3) arises from duplicate
counting during image mosaicking,when the same iceberg
is recorded in adjacent scenes. Despite manual corrections,
small icebergs lacking distinctive shape or texture features
cannot always be matched reliably. To quantify this effect,
we used the 2021 Antarctic mosaic via GEE, extracting ac-
quisition dates (YYYYMMDD) for each pixel (Fig. S4 in the
Supplement). For every iceberg smaller than 10 km2, we as-
signed the centroid pixel’s date and computed the distance
to the nearest pixel acquired later in time. If this distance
was less than the product of the date difference and the mean
drift speed, the iceberg was flagged as a potential duplicate.
Previous regional studies report mean drift speeds of about
3–7 kmd−1 (Hamley and Budd, 1986; Collares et al., 2018;
Barbat et al., 2021; Orheim et al., 2023), and we adopted
5 kmd−1 as a representative value. In 2021, 1757 icebergs
were identified as potential duplicates, representing 3.36 %
of the total count and 1.25 % (655 km2) of the total iceberg
area. We therefore assign 2 % as the uncertainty contribution

from duplicate counting, representing a conservative cross-
year upper limit.

The uncertainty in the total annual iceberg area (UA) can
be calculated using the error propagation law, as shown in
Eq. (4):

UA =

√
U2

1 +U
2
2 +U

2
3 . (4)

It should be noted that for an individual iceberg, its area
uncertainty is solely determined by the image resolution
(U1), since an iceberg is either correctly extracted or not de-
tected at all; whereas for the total annual iceberg area, both
U1, U2 and U3 must be considered, and the overall error is
calculated using Eq. (4).

3.5.2 Iceberg mass uncertainty

We employed a two-segment area–volume parameterization
combined with a nonparametric bootstrap approach to assess
uncertainties in iceberg mass. For small icebergs with an area
less than 0.67 km2, volumes were estimated using a power-
law regression in logarithmic space (lnV = b0+b1 lnA), cal-
ibrated against the area-thickness parameterization scheme
provided by Stern et al. (2016). By repeatedly resampling
this calibration dataset, we obtained empirical distributions
of the regression parameters (b0, b1) and propagated them
to derive confidence intervals for total mass. For large ice-
bergs with an area greater than 0.67 km2, a fixed thickness
of 250 m was assumed. To account for uncertainty in this as-
sumption, the equivalent thickness distribution inferred from
the power-law fit at the threshold area was used as a proxy
and extrapolated to all large icebergs to construct mass inter-
vals. Finally, we report point estimates and 95 % confidence
intervals for the mass of individual icebergs as well as the
total Antarctic iceberg mass, with mass uncertainty for small
icebergs mainly arising from regression fitting and those for
large icebergs primarily arising from the fixed-thickness as-
sumption.

4 Validation and uncertainty

4.1 Accuracy assessment of Antarctic iceberg
identification algorithm

Using approximately 400 manually labeled superpixel sam-
ples per year as independent test sets, we conducted year-by-
year accuracy assessments of the incremental ensemble ran-
dom forest classifier for the corresponding years. The evalua-
tion results demonstrate that the classifier consistently main-
tained high performance in circum-Antarctic iceberg detec-
tion throughout the 2018–2023 (Table 3). All performance
metrics, including accuracy, precision, recall, and F1-score,
exceeded 0.90, indicating that the model possesses robust
and reliable classification capability. Furthermore, the inter-
annual variation in both classifier weights and discrimination
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Table 2. Validation of iceberg detection in four sample regions. Iceberg counts from EW and IW imagery, detection errors (inaccurate
outlines, merged and missed icebergs), average missed iceberg area, total iceberg areas, and relative area uncertainty (%) are presented.

Region EW IW Inaccurate Merged Missed Avg. Missed EW Total IW Total Area
Count Count Outlines Icebergs Icebergs Area (km2) Area (km2) Area (km2) Uncertainty

1 683 728 6 13 24 0.138 637.19 637.22 < 0.01 %
2 695 816 12 5 103 0.142 1340.06 1353.48 1.00 %
3 3151 3575 25 13 401 0.164 1895.16 1954.79 3.15 %
4 583 681 9 8 86 0.126 296.73 305.09 2.82 %

Table 3. Performance evaluation of the incremental random forest
classifier.

Year Iceberg Non- ACC Precision Recall F1
samples iceberg

samples

2018 198 199 0.947 0.978 0.914 0.945
2019 198 198 0.952 0.984 0.919 0.950
2020 200 197 0.950 1.000 0.900 0.947
2021 202 198 0.950 0.984 0.916 0.949
2022 201 198 0.940 0.973 0.905 0.938
2023 198 198 0.960 0.989 0.929 0.958

thresholds remained minimal (Table S1), providing evidence
that the trained model exhibits good stability under different
environmental conditions.

After classifier performance evaluation, our data prod-
uct incorporates a manual correction step in addition to the
machine learning-based automated iceberg detection (see
Sect. 3.3.3). By visual inspection and manually correcting
the automated classification results, we further reduced in-
stances of false positives and false negatives. As a result, the
final iceberg data product demonstrates even higher precision
across various accuracy metrics.

4.2 Attribute uncertainties of Icebergs

Based on a comparison of the results from four sample ar-
eas (Table 2), we found that iceberg omissions are relatively
severe, resulting in an underestimation of the total iceberg
amount by approximately 3 %–15 %. However, the missed
icebergs are mainly small or weak-signal targets, with an
average area of only 0.126–0.164 km2, thus having a lim-
ited impact on the total iceberg area. In low-resolution im-
agery, the radar signal of small icebergs is often weak or
their boundaries become blurred due to noise and complex
sea conditions, making it challenging to accurately iden-
tify all icebergs even after manual correction. Furthermore,
in the SLIC algorithm, the low contrast between icebergs
and sea ice or open water in low-resolution images leads to
blurred iceberg edges, making the boundaries between ad-
jacent icebergs indistinct and causing nearby icebergs to be
erroneously merged into a single object or to exhibit con-

tour deviations. Given that false detections are negligible af-
ter manual correction, the maximum area uncertainty due to
iceberg detection errors in the tile sample areas is 3.15 %.
Therefore, we adopt 4 % as a conservative and reasonable
estimate.

In addition to omission and classification errors, duplicate
counting can also introduce errors in both iceberg number
and area estimates. Such issues mainly occur in swath or
mosaic overlap regions, where even after manual correction,
small icebergs lacking distinctive shape or texture features
may still be recorded multiple times, leading to an overesti-
mation of local counts. For example, in 2021 the potential du-
plicate icebergs had an average area of 0.37 km2, accounting
for 3.36 % of the total number, whereas they represented only
1.25 % of the total area. This indicates that duplicate count-
ing errors primarily affect regional number statistics, while
their influence on overall iceberg area estimates remains rel-
atively limited.

We assessed the uncertainty in iceberg area attributes us-
ing Eq. (4). The maximum uncertainty in the area of a sin-
gle iceberg was 22.4 km2. From 2018 to 2023, the total area
uncertainty for each year was as follows: 4645, 5103, 5258,
5253, 4471, and 4673 km2 respectively. The uncertainty in
iceberg area primarily stems from the uncertainty in the ice-
berg perimeter, indicating that, for icebergs of equal area,
rectangular icebergs have greater area uncertainty compared
to elliptical ones. The uncertainty in iceberg mass is mainly
driven by the thickness parameterization scheme, and the
average uncertainty in iceberg mass over the six years was
1935 Gt. As the upper and lower deviations are nearly sym-
metric, the uncertainty distribution can be treated as approx-
imately symmetric, and the results are therefore reported in
the form of value± uncertainty.

4.3 Consistency of a multisource iceberg database

4.3.1 Comparison with BYU/NIC iceberg database

The BYU/NIC iceberg database provides detection dates and
geolocation information for icebergs with a major axis ex-
ceeding 5 km. To ensure consistency with this study, we ex-
tracted only the October records from 2018–2023 and like-
wise retained only icebergs larger than 5 km in our dataset.
Matching was guided by USNIC iceberg reports, and a one-
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to-one approach was applied to rigorously verify spatial
positions and morphological characteristics. If an iceberg’s
record within the same month exhibits consistent interan-
nual trajectories and its geographic location falls within a
predetermined spatial threshold, it is considered a success-
ful match.

Taking 2021 as an example, the BYU database (v7.1)
contained 192 records, including 52 for October, while our
dataset contained 292 icebergs larger than 5 km (88 exceed-
ing 10 km). Comparison shows that 50 icebergs reported
by BYU/NIC in October were successfully matched in our
dataset, except for C36 and B46, which were located in
blind zones of the Sentinel-1 SAR EW mode, resulting in
missed detections (Fig. S5 in the Supplement). Overall, dur-
ing 2018–2023 our dataset contained 288–475 icebergs per
year with a major axis > 5 km, far more than the 46–54 per
year reported in the BYU/NIC database, while successfully
recovering 96 %–98 % of the icebergs listed in their records.
The spatial positions of matched icebergs show high consis-
tency, with 92 % of BYU/NIC coordinates falling within our
iceberg polygons, the remaining deviations being within a
few kilometers, and only rare cases exceeding 30 km (e.g.,
32.28 and 44.08 km).

In addition, our dataset detected a large number of icebergs
not recorded in the BYU/NIC database. These additional ice-
bergs are mostly distributed in front of ice shelves and are
frequently accompanied by sea ice cover. Statistical analysis
shows that their number decreases sharply with increasing
area and major axis, with 71 % of icebergs having areas of 0–
20 km2 and 84 % having major axes of 5–10 km (Figs. S6 and
S7 in the Supplement). As noted by Budge and Long (2018),
the BYU/NIC database is constrained by the coarse reso-
lution of its primary sensors, passive microwave and scat-
terometer instruments, which limits the ability to resolve in-
dividual icebergs in areas of dense sea ice or high iceberg
concentrations, leading to potential omissions or false detec-
tions. Identification accuracy is further reduced under cloud
cover, strong surface waves, and complex scattering condi-
tions, especially near ice-shelf fronts and coastlines where
iceberg signals can be obscured by sea ice. In addition, the
use of piecewise cubic interpolation to bridge short obser-
vational gaps (< 2 weeks) can introduce positional biases,
while longer gaps remain unfilled, resulting in inaccurate lo-
cations or missed records of rapidly drifting or short-lived
icebergs.

4.3.2 Comparison with Altiberg database

The Altiberg database provides a merged grid product of ice-
berg detection from multiple satellite missions, incorporat-
ing quality control and calibration procedures to yield spa-
tiotemporal information on iceberg volume, area, and other
variables. To evaluate both the overall consistency and local
differences between our dataset and Altiberg’s, we generated
our iceberg volume data using the same 100km× 100km

grid. Specifically, for each grid cell, we aggregated the to-
tal iceberg volume to obtain the gridded iceberg volume, and
then calculated the average values for 2018–2023. We then
performed a visualization and difference analysis to compare
this dataset with Altiberg’s across both regional and global
domains (Fig. 6).

In October, the extent of Antarctic sea ice remains sub-
stantial. Consequently, Altiberg’s data show missing or low-
value cells in high-latitude and coastal regions with dense sea
ice, primarily due to its reliance on altimeter signals, which
are easily weakened or disrupted by ice cover (Tournadre et
al., 2015). This limitation makes it difficult for altimeters to
distinguish or detect icebergs in regions of high sea-ice con-
centration. In contrast, our approach utilizes high-resolution
SAR imagery that can capture iceberg outlines even beneath
sea ice, leading to higher iceberg volume estimates in these
regions. The difference map indicates a marked positive bias
(our dataset > Altiberg) in sea ice-dominated areas. Mean-
while, the histogram reveals that, in open-water or lower sea
ice concentration zones, most grid-cell volume differences
fall below 0.692 km3, indicating good overall consistency.

Altiberg’s detection model was initially designed for
medium- to small-scale icebergs (0.01–9 km2), whereas our
method imposes no upper limit on iceberg size. Conse-
quently, if a grid cell contains extremely large or multiple
large icebergs, the total iceberg volume can become substan-
tially higher than Altiberg’s, resulting in significant differ-
ences. This phenomenon is reflected in the histogram, where
a small number of grid cells exhibit differences exceeding
100 km3, raising the overall standard deviation to 34 km3.
These findings suggest that while Altiberg provides a contin-
uous, long-term record suitable for open-water regions, our
dataset more comprehensively identifies and quantifies ice-
bergs within sea ice-covered areas.

4.3.3 Comparison with previous studies

Compared with the Antarctic coastal icebergs larger than
0.1 km2 identified by Barbet using RAMP data (Barbat et
al., 2019b), our dataset covers a broader area and employs
a lower threshold for minimum iceberg size, thereby cap-
turing a larger number of icebergs with smaller scales and
resulting in certain differences in the overall findings. Rely-
ing solely on coastal data tends to underestimate the actual
number of small icebergs, because these smaller icebergs are
often rapidly transported by wind and coastal currents to the
open ocean shortly after formation. Coastal regions mainly
record the icebergs released during the initial stages of ice
shelf and glacier calving, and due to their small size, small
icebergs are more strongly influenced by wind, resulting in
a significantly lower proportion in coastal observations. De-
spite the significant differences in total iceberg numbers be-
tween the two studies, as shown in Fig. 7b, the relative pro-
portions of icebergs by size category are generally consistent
and exhibit minimal interannual variation, indicating that the
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Figure 6. Panel (a) shows the six-year average iceberg volume from the Altiberg database for each October from 2018 to 2023. Panel (b)
displays the six-year average iceberg volume from our dataset over the same time period and grid. Panel (c) presents the volume differences
(our dataset minus the Altiberg database), and panel (d) summarizes the statistical distribution of these differences.

size structure of Antarctic icebergs has maintained a certain
degree of temporal stability.

5 Result and discussion

5.1 Number, area, and mass of circum-Antarctic
icebergs

The statistics of circum-Antarctic icebergs from 2018 to
2023 are presented in Table 4, showing significant interan-
nual variations in both iceberg number and area. In 2018,
a total of 34 825 icebergs were observed in the circumpo-
lar region, covering an area of 38 668± 4645 km2. In 2019,
the number of icebergs increased to 39 261, and the area
rose to 42 001± 5103 km2. Although the number of ice-
bergs slightly decreased to 38 066 in 2020, the total area
continued to increase, reaching 45 959± 5258 km2. In 2021,
both the number of icebergs and their area peaked over
the six-year period, with 51 420 icebergs and an area of
52 276± 5253 km2. In 2022, the number of icebergs dropped

to 36 186, and the area decreased to 46 840± 4471 km2.
However, in 2023, the number of icebergs went up again to
44 537, with an area of 43 409± 4673 km2. The interannual
variations in the number and area of icebergs reflect the dy-
namic nature of the Antarctic ice sheet and its response to
climate change. Furthermore, We calculated the intersection
of the effective observation areas for each year (Fig. 3) and,
based on this intersected area, computed the proportion of
icebergs falling within it relative to the total annual iceberg
number, as reported in the “percentage” column of Table 4.

Similar to the interannual variations in iceberg area,
the total mass of Antarctic icebergs showed an increas-
ing trend from 2018 to 2021, rising from 7895± 1667 Gt
in 2018 to 10 656± 2247 Gt in 2021, before decreasing to
9627± 2040 Gt in 2022 and 8814± 1854 Gt in 2023.

5.2 Spatial distribution of icebergs

Figure 8 shows the distribution of icebergs in October for
each year from 2018 to 2023. Overall, iceberg density is
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Figure 7. Comparison with the results of Barbat et al. (2019a): (a) Number of Antarctic icebergs and (b) Proportion of different categories.

Table 4. Total number, area, mass of icebergs and percentage of
icebergs in the intersection area in the circum-Antarctic region from
2018 to 2023.

Year Total Total area Total mass Percentage
number (km2) (Gt)

2018 34 825 38 668± 4645 7895± 1667 96.08 %
2019 39 261 42 001± 5103 8563± 1806 94.81 %
2020 38 066 45 959± 5258 9420± 1993 93.76 %
2021 51 420 52 276± 5252 10 656± 2247 91.19 %
2022 36 186 46 840± 4471 9627± 2040 97.61 %
2023 44 537 43 409± 4673 8814± 1854 97.47 %

high at the Thwaites, Dotson, Holmes, Totten, and Mertz ice
shelves, indicating that calving activity in these areas is both
frequent and intense. In contrast, in large ice shelf regions
such as the Ross Sea and Weddell Sea, although calving
events occur less frequently from year to year, when a large-
scale fracture does occur, it typically leads to the rapid forma-
tion of a high-density iceberg zone in a short period. Figure 9
further illustrates the distribution of icebergs by size, show-
ing that medium-to-large icebergs tend to be concentrated in
near-coastal waters and are spatially more scattered, whereas
small icebergs are widely distributed throughout the South-
ern Ocean.

Following Wesche and Dierking (2015)’s rule, all detected
icebergs are classified into five size categories, as shown in
Fig. 10: A1 (< 1 km2), A2 (1–10 km2), A3 (10–100 km2),
A4 (100–1000 km2), and A5 (≥ 1000 km2). From 2018 to
2023, the number of the smallest icebergs (A1) shows sig-
nificant fluctuations, alternating between increases and de-
creases and consistently accounting for over 85 % of the total
iceberg count, thus driving the overall variability in iceberg
numbers. In contrast, the number of medium-sized icebergs
(A2 and A3) generally increases, reaching a peak in 2020

before slightly declining; their fluctuations are much smaller
compared to those of the A1 category, comprising roughly
10 % of the total. Large icebergs (A4 and A5) are relatively
rare, and their occurrence is closely associated with major ice
shelf calving events – years such as 2017/18 (A68a), 2019
(D28), 2020(A69) and 2021 (A74 and A76a) see a surge in
this size (Braakmann-Folgmann et al., 2022; Deakin et al.,
2024). Moreover, small icebergs not only result from con-
tinuous small-scale calving but can also originate from the
further breakup of large icebergs during their drift. Based
on this, although the annual iceberg count is predominantly
driven by small icebergs, following a large ice shelf fracture
the rapid increase in large icebergs is typically accompanied
by their subsequent fragmentation, which in turn leads to an
additional rise in the number of small icebergs.

To assess the spatial distribution of icebergs, the circum-
polar ocean region was divided into five sectors based on lon-
gitude: Ross Sea Sector (160° E to 130° W), Amundsen and
Bellingshausen Seas Sector (130–60° W), Weddell Sea Sec-
tor (60° W to 20° E), Indian Ocean Sector (20–90° E), and
Western Pacific Ocean Sector (90–160° E) (Parkinson and
Cavalieri, 2012). Figure 11a and b present the number of ice-
bergs and their relative percentages in each sector. The results
show that over these six years, the Western Pacific Ocean
Sector contributed the highest number of icebergs, while the
Weddell Sea Sector recorded the fewest from 2018 to 2021,
but in 2022 and 2023 its iceberg count surpassed that of the
Ross Sea. In the Ross Sea Sector, the iceberg proportion (i.e.,
the number of icebergs in the sector as a percentage of the to-
tal Southern Ocean iceberg count) remained stable at around
16 % in 2018 and 2019, increased to 21.7 % in 2020, and then
rapidly declined to 14 % and 9.8 % in 2021 and 2022, respec-
tively. The proportions in the Indian Ocean and Amundsen
and Bellingshausen Seas sectors remained relatively stable
at approximately 20 % over the six-year period.
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Figure 8. Distribution of Icebergs in the Circum-Antarctic Region from October 2018 to October 2023. The central map represents the
distribution of icebergs over the six years, with different colors indicating different years. The base map shows the iceberg density. Panels (a)–
(f) display the distribution of icebergs at the front of ice shelves that are prone to calving.

Figure 9. Iceberg counts for different size classes in various sea sectors from 2018 to 2023. Each point represents an individual iceberg,
point sizes represent five size categories (A1–A5).
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Figure 10. Annual distribution characteristics of Antarctic icebergs in five categories from October 2018 to October 2023. Panels (a)–(c)
show the number, area, and percentage of icebergs in each category, respectively. Note that the y axis in (c) is truncated at 80 % for clarity.

Figure 11. Annual variation trends of icebergs in five major Southern Ocean sectors from October 2018 to October 2023. Panels (a) and (b)
present the number and percentage of icebergs of five categories in different sea sectors.

5.3 Distinctive spatial characteristics and formation
mechanisms of small-scale icebergs in the
Southern Ocean

This study’s dataset is unique in both the scales and quan-
tity of icebergs, particularly as it is the first to include small
icebergs in the 0.04–0.1 km2 size area derived from remote
sensing imagery. Over the six-year period, the average num-
ber of icebergs in this size range was 8272, accounting for
15.25 % to 29.02 % of the total number each year, with an
average area of 559.5 km2, contributing 0.97 % to 1.93 % of
the total iceberg area.

To examine the spatial distribution and formation mech-
anisms of these small icebergs, we divided the Southern

Ocean into 50km× 50km grids and calculated the average
number of small icebergs in each grid from 2018 to 2023, as
well as the average distance between these small icebergs and
large icebergs (> 100 km2) (Fig. 12). The results show that
small icebergs are mainly concentrated at ice shelf fronts,
though their distribution is sparse at the fronts of the Ross
Ice Shelf, Filchner-Ronne Ice Shelf, and Riiser-Larsen Ice
Shelf. Due to their size, these icebergs have short lifespans
and are more sensitive to changes in surrounding sea ice and
ocean conditions.

In analyzing the distances between small and large ice-
bergs, we further derived conclusions consistent with the
small-iceberg formation mechanism proposed by Tournadre
et al. (2016). The results indicate that small icebergs in the
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Figure 12. The spatial distribution characteristics of icebergs with sizes between 0.04 and 0.1 km2 in 50km× 50km grids in the Southern
Ocean. Panel (a) represents the average number of icebergs in each grid cell from 2018 to 2023; Panel (b) shows the average distance from
the icebergs in each grid to the nearest large iceberg (area greater than 100 km2).

Southern Ocean follow two main patterns: one where small
icebergs are found near large icebergs, suggesting they may
originate from fragmentation, share a common source, or
drift along similar paths; and another where small icebergs
exhibit “free drift,” unrelated to any large icebergs, drift-
ing far from their calving sources, such as in the Ross Sea,
Bellingshausen Sea, and eastern Weddell Sea. In these re-
gions, the drift of small icebergs plays a key role in trans-
porting ice shelf and large iceberg material, significantly in-
fluencing regional ice flow and freshwater flux. The drift
paths can extend thousands of kilometers, forming indepen-
dent “drifting alley”.

6 Code and data availability

The GEE code for data acquisition, the MATLAB
code for image segmentation, feature extraction, and
the dataset of icebergs outlines in shapefile format
along with their latitude and longitude, area, perime-
ter, and other attribute information, are all available at
https://doi.org/10.5281/zenodo.17165466 (Liu and Chen,
2025).

7 Conclusions

This study successfully identified circum-Antarctic icebergs
from 2018 to 2023 using Sentinel-1 SAR mosaic data ob-
tained from the Google Earth Engine (GEE) platform, com-
bined with an incremental random forest algorithm and man-
ual corrections. The smallest identifiable iceberg had an area
of 0.04 km2. This is the first high-precision dataset covering
the entire Southern Ocean, including small icebergs. Small

icebergs dominate in terms of quantity, and their distribution
is critical for initializing coupled ocean-iceberg models, aid-
ing in more accurate simulations of iceberg melting effects
on ocean circulation and global climate.

Although this study primarily used data from October
each year, when the difference in backscatter characteris-
tics between icebergs and other oceanic features is most
pronounced, and the identification results are optimal, the
method is not limited to this period. In the future, images
from other months can be obtained via the GEE platform,
enabling the study of seasonal variations and year-round
iceberg dynamics. This approach compensates for the lim-
itations of snapshot data, providing a more comprehensive
understanding of iceberg formation, drift, and melting pro-
cesses.

Despite the extensive coverage of Sentinel-1 SAR data,
data gaps existed in certain years and regions, such as in
parts of the Indian Ocean in 2018, which may have led to an
underestimation of iceberg numbers in these areas. In terms
of mass estimation, the adopted parameterization constrains
small icebergs through an area-volume scaling and assumes a
fixed maximum thickness of 250 m for large icebergs. These
simplifications do not fully capture the variability in iceberg
geometry, calving source, or melt state, and may therefore
introduce biases (Dowdeswell and Bamber, 2007). Further-
more, Although we employed a high-precision iceberg iden-
tification model supplemented by manual corrections within
a semi-automated workflow, in complex marine and terres-
trial environments (e.g., regions with dense sea ice and ice-
berg calving zones), the radar signals of icebergs are often
weak and their boundaries blurred due to noise and adverse
sea conditions, potentially resulting in varying degrees of
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omissions, erroneous merging, and contour deviations. Fu-
ture research could consider integrating multi-source remote
sensing data and incorporating more advanced deep learning
algorithms to further improve iceberg identification accuracy.

Overall, this study provides the first high-precision iceberg
distribution dataset for the Southern Ocean, including small
icebergs. It lays the foundation for a deeper understanding
of the impact of icebergs on the marine environment and
global climate and offers valuable data support for future re-
search. Moving forward, we plan to use imagery from ad-
ditional months to study seasonal and interannual variations
in iceberg distribution and their long-term impacts on ma-
rine ecosystems and climate systems. Besides, we attempt
to backtrack and update this product as a “living” dataset,
meaning it will be continuously updated and expanded as
new input observations available, such as Sentinel-1A/B be-
fore 2018 and Sentinel-1C after 2024.

Appendix A: Feature description

(1) Statistical features: Calculated from the pixel
backscatter values of each segment

1. CenterBackscatter: The grayscale value at the center po-
sition of the superpixel object. A superpixel is defined
as a small, contiguous cluster of adjacent pixels that
share similar backscatter characteristics, effectively rep-
resenting a meaningful image region rather than individ-
ual pixels.

2. CenterStd: The standard deviation within a 3× 3 range
near the center of the superpixel. If there are fewer than
3× 3 pixels around the center, then CenterStd= 0.

3. WeightedMean: Obtained from Eq. (A1):

WeightedMean=
∑
ij

1
Dij

xij (A1)

where xij is the grayscale of the pixel at position (i,j ),
andDij is the distance from that pixel to the centroid of
the superpixel.

4. Energy: Obtained from Eq. (A2):

Energy=
1
N

∑
ij

x2
ij (A2)

where N is the total number of pixels within the super-
pixel.

(2) Histogram-based features (bin= 0.1): Calculated
from the histogram of each segment

1. Mean. The average of all pixel grayscale values within
the superpixel.

2. Variance. The variance of all pixel grayscale values
within the superpixel.

3. Skewness. Used to measure the asymmetry of the his-
togram distribution of grayscale values of all pixels
within a superpixel.It can derived from the Eq. (A3):

Skewness= E

[(
x−µ

σ

)3
]

(A3)

4. Kurtosis. Characterizes the height of the peak at the
mean of the probability distribution curve, that is, the
shape of the curve’s peak. The larger the kurtosis, the
sharper the peak.

Kurtosis= E

[(
x−µ

σ

)4
]

(A4)

5. Mode. The most frequent value in the grayscale values
of the superpixel. If multiple values occur with the same
frequency, the Mode is the smallest of these values.

6. Median. The median of the grayscale values of all pixels
within the superpixel.

7. Slope. The one-sided slope of the probability distribu-
tion curve.

Slope= tan−1
(

P (M)
max(x)−M

)
(A5)

Where M is the median of the grayscale values, and
P (M) is the probability density corresponding to the
median.

(3) Texture features: Calculated from the Grey Level
Co-occurrence Matrix(GLCM) of each segment

1. Entropy. It characterizes the overall distribution of
grayscale values in the image.

Entropy=−
∑
n

P (i) · log2P (i) (A6)

where n is the number of grayscale levels obtained
by binning the histogram of all pixel grayscale values
within a superpixel with bin= 0.1, and P (i) is the prob-
ability density value corresponding to the ith grayscale
level.

2. Contrast0/45/90/135°

3. Correlation0/45/90/135°

4. Homogeneity0/45/90/135°
In our research, the Gray-Level Co-Occurrence Matrix
(GLCM) is used to calculate the texture features of su-
perpixels. The GLCM characterizes the texture of an
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Table A1. Feature Categories and Descriptions.

Category Feature Note

Statistical features CenterBackscatter Calculated from the pixel backscatter values of each segment
CenterStd
WeightedMean
Energy

Histogram-based Mean Calculated from the histogram of each segment
features Variance

Skewness
Kurtosis
Mode
Median
Slope

Texture features Entropy Calculated from the Grey Level Co-occurrence Matrix (GLCM)
Contrast0/45/90/135° of each segment
Correlation0/45/90/135°
Homogeneity0/45/90/135°

image by calculating the frequency of occurrence of
pixel pairs with specific values and spatial relationships
in the image (Haralick et al., 1973). The elements of the
Gray-Level Co-Occurrence Matrix are calculated using
the Eq. (A7):

P (i,j )=
P (i,j,d,θ )∑
i

∑
jP (i,j,d,θ )

(A7)

The element P (i,j ) in the matrix represents the proba-
bility of the occurrence of pixel pairs at a distance d in
the direction θ . In this study, we consider the GLCM for
the cases when d = 0 and θ = 0, 45, 90, 135°. For non-
rectangular superpixels, missing pixels are filled with 0.
After calculating the GLCM for each superpixel in these
four directions, we can further compute metrics that de-
scribe contrast, correlation, and homogeneity. The equa-
tion is as follows:

Contrast=
∑
i,j

(i− j )2P (i,j ) (A8)

Correlation=
∑
i,j

(i−µi)(j −µj )P (i,j )
σiσj

(A9)

Homogeneity=
∑
i,j

P (i,j )
1+ (i− j )2 (A10)
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