Articles | Volume 17, issue 12
https://doi.org/10.5194/essd-17-7203-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-7203-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Two centuries of oceanographic data in the Indonesian Seas and surroundings: historical patterns of data availability, gaps, and future challenges
Department of Marine Science, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Sumedang, 45363, Indonesia
Indonesia Intergovernmental Oceanographic Commission/IOC UNESCO, Jakarta, 10340, Indonesia
Ghelby M. Faid
KomitmenX Research Group, Universitas Padjadjaran, Sumedang, 45363, Indonesia
Wang Zheng
CORRESPONDING AUTHOR
Key Laboratory of Ocean Observation and Forecasting, & Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, 266071, China
Li Rui
Key Laboratory of Ocean Observation and Forecasting, & Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, 266071, China
Mohd. Fadzil Akhir
Institute of Oceanography and Environment (INOS), University Malaysia Terengganu, Kuala Terengganu, 21030, Malaysia
Weidong Yu
School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
Rangga A. Mulya
KomitmenX Research Group, Universitas Padjadjaran, Sumedang, 45363, Indonesia
Fadli Syamsudin
National Research and Innovation Agency (BRIN), Jakarta, 10340, Indonesia
Ibnu Faizal
Department of Marine Science, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Sumedang, 45363, Indonesia
Buntora Pasaribu
Department of Marine Science, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Sumedang, 45363, Indonesia
Teguh Agustiadi
Research Centre Oceanography, National Research and Innovation Agency (BRIN), Jakarta, 10340, Indonesia
Bayu Priyono
Research Centre Oceanography, National Research and Innovation Agency (BRIN), Jakarta, 10340, Indonesia
Muhammad Fadli
Research Centre for Deep Sea, National Research and Innovation Agency (BRIN), Jakarta, 10340, Indonesia
Priyadi D. Santoso
Research Centre for Deep Sea, National Research and Innovation Agency (BRIN), Jakarta, 10340, Indonesia
Wahyu W. Pandoe
Indonesia Intergovernmental Oceanographic Commission/IOC UNESCO, Jakarta, 10340, Indonesia
Research Centre for Deep Sea, National Research and Innovation Agency (BRIN), Jakarta, 10340, Indonesia
Huiwu Wang
The First Institute of Oceanography (FIO), and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, 266061, China
Shujiang Li
The First Institute of Oceanography (FIO), and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, 266061, China
Zexun Wei
The First Institute of Oceanography (FIO), and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, 266061, China
R. Dwi Susanto
The University of Maryland, College Park, 20742, United States of America
Dwiyoga Nugroho
Research Centre Oceanography, National Research and Innovation Agency (BRIN), Jakarta, 10340, Indonesia
Adi Purwandana
Research Centre Oceanography, National Research and Innovation Agency (BRIN), Jakarta, 10340, Indonesia
Related authors
No articles found.
Chathumini Wathsala Kiel, Kanchana Bandara, Roswati Md. Amin, Nathalie Gypens, and Mohd Fadzil Mohd Akhir
EGUsphere, https://doi.org/10.5194/egusphere-2025-4988, https://doi.org/10.5194/egusphere-2025-4988, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Phytoplankton are tiny organisms that support marine life and influence the planet’s climate. Using a computer model, we studied how future climate change may affect them in the southern South China Sea. We found that warmer waters and reduced nutrient availability could lower phytoplankton growth, potentially reducing food sources for bigger marine creatures and impacting fisheries and coastal communities in the region.
Xiaoya Zhang, Lei Liu, Jianfang Fei, Zhijin Li, Zexun Wei, Zhiwei Zhang, Xingliang Jiang, Zexin Dong, and Feng Xu
Ocean Sci., 21, 1033–1045, https://doi.org/10.5194/os-21-1033-2025, https://doi.org/10.5194/os-21-1033-2025, 2025
Short summary
Short summary
Our research evaluated the precision of mapping the ocean's surface with combined data from a couple of satellites, focusing on dynamic aspects revealed by sea level changes. The results show that 2DVAR (two-dimensional variation), a new mapping product, aligns more closely and with less error with the most advanced satellite observations than a widely used mapping product called AVISO (Archiving, Validation, and Interpretation of Satellite Oceanographic). The results suggest that 2DVAR detects minor ocean movements better, making it more valuable and reliable for ocean dynamic study.
Winfred Marshal, Jing Xiang Chung, Nur Hidayah Roseli, Roswati Md Amin, and Mohd Fadzil Bin Mohd Akhir
Biogeosciences, 21, 4007–4035, https://doi.org/10.5194/bg-21-4007-2024, https://doi.org/10.5194/bg-21-4007-2024, 2024
Short summary
Short summary
This study stands out for thoroughly examining CMIP6 ESMs' ability to simulate biogeochemical variables in the southern South China Sea, an economically important region. It assesses variables like chlorophyll, phytoplankton, nitrate, and oxygen on annual and seasonal scales. While global assessments exist, this study addresses a gap by objectively ranking 13 CMIP6 ocean biogeochemistry models' performance at a regional level, focusing on replicating specific observed biogeochemical variables.
Faisal Hamzah, Iis Triyulianti, Agus Setiawan, Intan Suci Nurhati, Bayu Priyono, Dessy Berlianty, Muhammad Fadli, Rafidha D. Ahmad Opier, Teguh Agustiadi, Marsya J. Rugebregt, Weidong Yu, Zexun Wei, Huiwu Wang, R. Dwi Susanto, and Priyadi D. Santoso
EGUsphere, https://doi.org/10.5194/egusphere-2024-451, https://doi.org/10.5194/egusphere-2024-451, 2024
Preprint archived
Short summary
Short summary
We provide new insights on the presence of oxygen-depleted waters along the Indonesian coasts of Sumatra and Java attributed to the eastward advection of the northern Indian Ocean waters and monsoon-driven upwelling. Combined in situ and reanalysis data elucidate the complex interplay of oceanographic processes responsible for the observed oxygen in the region. The knowledge is crucial for research and management strategies to mitigate deoxygenation impacts on marine ecosystems in Indonesia.
Dingqi Wang, Guohong Fang, Shuming Jiang, Qinzeng Xu, Guanlin Wang, Zexun Wei, Yonggang Wang, and Tengfei Xu
EGUsphere, https://doi.org/10.5194/egusphere-2022-547, https://doi.org/10.5194/egusphere-2022-547, 2022
Preprint archived
Short summary
Short summary
The JES is a mid-latitude “Miniature Ocean” featured by multiscale oceanic dynamical processes and sea ice, which strongly influence the JES SSC. However, the dominant factors that favor and/or restrict SSC and how they influence JES SSC on different time scales are not clear. In this study, these issues are investigated using EOF and PCA methods based on high-resolution satellite-derived SSC data provided by the Copernicus Marine Environment Monitoring Service (CMEMS).
Nining Sari Ningsih, Sholihati Lathifa Sakina, Raden Dwi Susanto, and Farrah Hanifah
Ocean Sci., 17, 1115–1140, https://doi.org/10.5194/os-17-1115-2021, https://doi.org/10.5194/os-17-1115-2021, 2021
Short summary
Short summary
Detailed ocean currents in the southeastern tropical Indian Ocean have not been fully explained because of limited observations. Here, zonal current characteristics in the region have been studied using 64-year HYCOM results (1950–2013). This study has revealed distinctive features of current variations on various timescales. Current vertical structures, their responses to remote forcings from the Pacific and Indian oceans, and contributions of each timescale have all been investigated.
Di Wu, Guohong Fang, Zexun Wei, and Xinmei Cui
Ocean Sci., 17, 579–591, https://doi.org/10.5194/os-17-579-2021, https://doi.org/10.5194/os-17-579-2021, 2021
Short summary
Short summary
The Korea Strait is a major navigation passage linking the Japan Sea to the East China Sea and Yellow Sea. This paper establishes a theoretical model for the tides in the Korea Strait and Japan Sea using the extended Taylor method. The model solution explains the formation mechanism of the tidal amphidromic systems in the Korea Strait, and why the K1 amphidromic point is located farther away from the shelf break separating the Korea Strait and Japan Sea in comparison to the M2 amphidromic point.
Cited articles
Arruda, W. Z. and Nof, D.: The Mindanao and Halmahera Eddies – Twin Eddies Induced by Nonlinearities, J. Phys. Oceanogr., 33, 2815–2830, https://doi.org/10.1175/1520-0485(2003)033<2815:TMAHEE>2.0.CO;2, 2003.
Atmadipoera, A. S. and Suteja, Y.: Deep water masses exchange induced by internal tidal waves in Ombai Strait, in: IOP Conf. Series: Earth and Environmental Science, https://doi.org/10.1088/1755-1315/176/1/012017, 2018.
Bax, N. J., Appeltans, W., Brainard, R., Duffy, J. E., Dunstan, P., Hanich, Q., Davies, H. H., Hills, J., Miloslavich, P., Muller-Karger, F. E., Simmons, S., Aburto-Oropeza, O., Batten, S., Benedetti-Cecchi, L., Checkley, D., Chiba, S., Fischer, A., Garcia, M. A., Gunn, J., Klein, E., Kudela, R. M., Marsac, F., Obura, D., Shin, Y. J., Sloyan, B., Tanhua, T., and Wilkin, J.: Linking capacity development to GOOS monitoring networks to achieve sustained ocean observation, Front. Mar. Sci., 5, 1–8, https://doi.org/10.3389/fmars.2018.00346, 2018.
Beal, L. M., Vialard, J., and Roxy, M. K.: Executive Summary: IndOOS-2: A Roadmap to Sustained Observations of the Indian Ocean for 2020–2030, https://doi.org/10.36071/clivar.rp.4-1.2019, 2019.
Bingham, F. M., Howden, S. D., and Koblinsky, C. J.: Sea surface salinity measurements in the historical database, J. Geophys. Res.-Oceans, 107, https://doi.org/10.1029/2000jc000767, 2002.
Bouruet-Aubertot, P., Cuypers, Y., Ferron, B., Dausse, D., Ménage, O., Atmadipoera, A., and Jaya, I.: Contrasted turbulence intensities in the Indonesian Throughflow: a challenge for parameterizing energy dissipation rate, Ocean Dynam., 68, 779–800, https://doi.org/10.1007/s10236-018-1159-3, 2018.
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., Mishonov, A. V, Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K. W., and Zweng, M. M.: NOAA Atlas NESDIS 87, World Ocean Database 2018, NOAA, 1–207 pp., https://doi.org/10.13140/RG.2.2.34758.01602, 2018a.
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., Mishonov, A. V., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K. W., and Zweng, M. M.: World Ocean Database 2018, NOAA, https://doi.org/10.25923/z885-h264, 2018b.
Buck, J. J. H., Bainbridge, S. J., Burger, E. F., Kraberg, A. C., Casari, M., Casey, K. S., Darroch, L., Rio, J. Del, Metfies, K., Delory, E., Fischer, P. F., Gardner, T., Heffernan, R., Jirka, S., Kokkinaki, A., Loebl, M., Buttigieg, P. L., Pearlman, J. S., and Schewe, I.: Ocean data product integration through innovation-the next level of data interoperability, Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00032, 2019.
Burnett, W. H., Kamenkovich, V. M., Jaffe, D. A., Gordon, A. L., and Mellor, G. L.: Dynamical Balance in the Indonesian Seas Circulation, Geophys. Res. Lett., 27, 2705–2708, https://doi.org/10.1029/2000GL011494, 2000.
CCHDO Hydrographic Data Office: CLIVAR and Carbon Hydrographic Data Office, UC San Diego Library Digital Collections, https://cchdo.ucsd.edu/ (last access: 8 December 2025), 2025.
Coatanoan, C., Metzl, N., Fieux, M., and Coste, B.: Seasonal water mass distribution in the Indonesian throughflow entering the Indian Ocean, J. Geophys. Res.-Oceans, 104, 20801–20826, https://doi.org/10.1029/1999jc900129, 1999.
Duan, Y., Liu, H., Feng, M., Song, X., Li, K., Liu, L., Liu, B., Yang, G., and Yu, W.: The onset process of the 2018/2019 Indonesian–Australian summer monsoon: The importance of the air–sea interaction, Front. Mar. Sci., 9, https://doi.org/10.3389/fmars.2022.1089493, 2023.
Fadhilah, R., Faid, G. M., Ekananda, G. A., Lestari, L., Faizal, I., Martasuganda, M. K., and Purba, N. P.: Near-Surface Oceanic Condition During a Triple Dip La Nina in the Pacific Ocean, in: Springer Proceedings in Physics, Springer, 123–136, https://doi.org/10.1007/978-981-97-0740-9_12, 2024.
Faizal, I., Purba, N. P., Valino, D. A., Sidik, M. J., Abimanyu, A., Bratasena, T., Ramdhani, F., and Wulandari, A.: A New Oceanographic Data Portal: Padjadjaran Oceanographic Data Centre (PODC), J. Segara, 17, 155–164, https://doi.org/10.15578/segara.v17i3.10289, 2021.
Farhan, A. R. and Lim, S.: Integrated coastal zone management towards Indonesia Global Ocean Observing System (INA-GOOS): Review and Recommendation, Ocean Coast. Manage., 53, 421–427, https://doi.org/10.1016/j.ocecoaman.2010.06.015, 2010.
Feng, M., Zhang, N., Liu, Q., and Wijffels, S.: The Indonesian throughflow, its variability and centennial change, Geosci. Lett., 5, https://doi.org/10.1186/s40562-018-0102-2, 2018.
Franz, G., Garcia, C. A. E., Pereira, J., de Freitas Assad, L. P., Rollnic, M., Garbossa, L. H. P., da Cunha, L. C., Lentini, C. A. D., Nobre, P., Turra, A., Trotte-Duhá, J. R., Cirano, M., Estefen, S. F., Lima, J. A. M., Paiva, A. M., Noernberg, M. A., Tanajura, C. A. S., Moutinho, J. L., Campuzano, F., Pereira, E. S., Lima, A. C., Mendonça, L. F. F., Nocko, H., Machado, L., Alvarenga, J. B. R., Martins, R. P., Böck, C. S., Toste, R., Landau, L., Miranda, T., dos Santos, F., Pellegrini, J., Juliano, M., Neves, R., and Polejack, A.: Coastal Ocean Observing and Modeling Systems in Brazil: Initiatives and Future Perspectives, Front. Mar. Sci., 8, https://doi.org/10.3389/fmars.2021.681619, 2021.
Freeman, E., Kent, E. C., Brohan, P., Cram, T., Gates, L., Huang, B., Liu, C., Smith, S. R., Worley, S. J., and Zhang, H. M.: The international comprehensive ocean-atmosphere data set – meeting users needs and future priorities, Front. Mar. Sci., 6, 1–8, https://doi.org/10.3389/fmars.2019.00435, 2019.
Garternicht, U. and Schott, F.: Heat fluxes of the Indian Ocean from a global eddy-resolving model, J. Geophys. Res.-Oceans, 102, 21147–21159, https://doi.org/10.1029/97JC01585, 1997.
Garzoli, S. L., Boebel, O., Brydene, H., Fine, R. A., Fukasawa, M., Gladyshev, S., Johnson, G., Macdonald, A., Meinen, C. S., Mercier, H., Orsi, A., Piola, A., Rintoul, S., Speich, S., Visbeck, M., and Wanninkhof, R.: Progressing Towards Global Sustained Deep Ocean Observation, in: OceanObs'09: Sustained Ocean Observation and Information for Society, 1–12, https://doi.org/10.5270/OceanObs09.cwp.34, 2010.
Gordon, A. L.: Oceanography of the Indonesian Seas and Their Through Flow, Oceanography, 18, 14–27, https://doi.org/10.5670/oceanog.2005.01, 2005.
Gould, W. J.: WOCE and TOGA-The foundations of the Global Observing System, Oceanography, 16, 24–30, https://doi.org/10.5670/oceanog.2003.05, 2003.
Gusviga, B. H., Subiyanto, Faizal, I., Yusri, S., Sari, S. K., and Purba, N. P.: Occurrence and Prediction of Coral Bleaching Based on Ocean Surface Temperature Anomalies and Global Warming in Indonesian Waters, IOP Conf. Ser. Earth Environ. Sci., 750, 1–13, https://doi.org/10.1088/1755-1315/750/1/012032, 2021.
Heryati, H., Pranowo, W. S., Purba, N. P., Rizal, A., and Yuliadi, L. P. S.: Java Sea Surface Temperature Variability during ENSO 1997–1998 and 2014–2015, Omni Akuatika, 14, 96–107, https://doi.org/10.20884/1.oa.2018.14.1.429, 2018.
Horhoruw, S. M., Fadli, M., Atmadipoera, A., Lekalette, J., Nugroho, D. Y., Tatipatta, W. M., and Kainama, F.: Horizontal Structure of Banda Eddies and the Relationship to Chlorophyll-a during South East Monsoon in Normal and ENSO Period on 2008–2010, IOP Conf. Ser. Earth Environ. Sci., https://doi.org/10.1088/1755-1315/618/1/012011, 2020.
Hu, S. and Sprintall, J.: Observed strengthening of interbasin exchange via the Indonesian seas due to rainfall intensification, Geophys. Res. Lett., 44, 1448–1456, https://doi.org/10.1002/2016GL072494, 2017.
Idris, M. S., Lee Siang, H., and Amin, R. M.: Data on sea surface biophysical parameters during different monsoon seasons, Data Brief, 28, https://doi.org/10.1016/j.dib.2019.104982, 2020.
Iskandar, I., Sari, Q. W., Setiabudiday, D., Yustian, I., and Monger, B.: The distribution and variability of chlorophyll-a bloom in the southeastern tropical Indian ocean using empirical orthogonal function analysis, Biodiversitas, 18, 1546–1555, https://doi.org/10.13057/biodiv/d180433, 2017.
Johari, A., Akhir, M. F., Satar, M. N., Zainol, Z., and Jingsong, G.: Inter-annual Changes of Water Temperature in the Southern South China Sea's Continental Shelf: The Influence of ENSO on Malaysian Waters, J. Mar. Sci. Technol., 29, https://doi.org/10.51400/2709-6998.1593, 2021.
Kashino, Y., Atmadipoera, A., Kuroda, Y., and Lukijanto: Observed features of the Halmahera and Mindanao Eddies, J. Geophys. Res.-Oceans, 118, 6543–6560, https://doi.org/10.1002/2013JC009207, 2013.
Katavouta, A., Polton, J. A., Harle, J. D., and Holt, J. T.: Effect of Tides on the Indonesian Seas Circulation and Their Role on the Volume, Heat and Salt Transports of the Indonesian Throughflow, J. Geophys. Res.-Oceans, 127, https://doi.org/10.1029/2022JC018524, 2022.
Khan, A. M. A., Ilmi, M. H., Febriani, C., Sidik, T. D. A., Azizah, F. N., Ramadhanti, D. S., and Purba, N. P.: Variability of biophysical parameters during La Niña condition in the Eastern Region of the Indian Ocean, J. Sea Res., 201, https://doi.org/10.1016/j.seares.2024.102533, 2024.
Khokiattiwong, S. and Zhu, W.: South East Asian Global Ocean Observing System (SEAGOOS)'s Activities and Its Role on Ocean Observation, in: Proceedings of the International Symposium for the Integration of Marine-related Data and Information, 7–8 December 2011, Tokyo, Japan, https://www.jodc.go.jp/internationalsymposium/finalverpresentation/1207/Dr.SOMKIATpaper.pdf (last access: 8 December 2025), 2011
Kolodziejczyk, N., Portela, E., Thierry, V., and Prigent, A.: ISASO2: recent trends and regional patterns of ocean dissolved oxygen change, Earth Syst. Sci. Data, 16, 5191–5206, https://doi.org/10.5194/essd-16-5191-2024, 2024.
Lan, J., Hong, J., and Wang, Y.: Relationship of the interannual variability of the Indonesian Throughflow with the IOD over the tropical Indian Ocean, Theor. Appl. Climatol., 97, 75–79, https://doi.org/10.1007/s00704-008-0066-9, 2009.
Lana, A. B., Kurniawati, N., Purba, N. P., and Syamsuddin, M. L.: Thermocline Layers Depth and Thickness in Indonesian Waters when Southeast Monsoon, Omni Akuatika, 37, 36–41, https://doi.org/10.1002/jor.23509, 2017.
Li, X., Yuan, D., Li, Y., Wang, Z., Wang, J., Hu, X., Yang, Y., Corvianawatie, C., Surinati, D., Budiman, A. S., Bayhaqi, A., Avianto, P., Kusmanto, E., Santoso, P. D., Purwandana, A., Ismail, M. F. A., Dirhamsyah, and Arifin, Z.: Moored Observations of Currents and Water Mass Properties between Talaud and Halmahera Islands at the Entrance of the Indonesian Seas, J. Phys. Oceanogr., 51, 3557–3572, https://doi.org/10.1175/JPO-D-21-0048.1, 2021.
Liu, Y., Qiu, M., Liu, C., and Guo, Z.: Big data challenges in ocean observation: a survey, Pers. Ubiq.Comput., 21, 55–65, https://doi.org/10.1007/s00779-016-0980-2, 2017.
Makarim, S., Sprintall, J., Liu, Z., Yu, W., Santoso, A., Yan, X.-H., and Susanto, R. D.: Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades, Sci. Rep., 9, 7364, https://doi.org/10.1038/s41598-019-43841-z, 2019.
McPhaden, M. J., Busalacchi, A. J., Cheney, R., DeFlection, J. D., Gage, R., Halpern, D., Julian, P., Meyers, G., Mangum, N. J., Sato, J., Webster, P., and Woodroffe, A.: The Tropical Ocean-Global Atmosphere observing system: A decade of progress, J. Geophys. Res., 103, 14169–14240, https://doi.org/10.1029/97JC02622, 1998.
McPhaden, M. J., Connell, K. J., Foltz, G. R., Perez, R. C., and Grissom, K.: Tropical ocean observations for weather and climate: A decadal overview of the Global Tropical Moored Buoy Array, Oceanography, 36, 32–43, https://doi.org/10.5670/oceanog.2023.211, 2023.
Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., Köhl, A., Kato, S., L'Ecuyer, T., Ablain, M., Abraham, J. P., Blazquez, A., Cazenave, A., Church, J. A., Cowley, R., Cheng, L., Domingues, C., Giglio, D., Gouretski, V., Ishii, M., Johnson, G. C., Killick, R. E., Legler, D., Llovel, W., Lyman, J., Palmer, M. D., Piotrowicz, S., Purkey, S., Roemmich, D., Roca, R., Savita, A., von Schuckmann, K., Speich, S., Stephens, G., Wang, G. G., Wijffels, S. E., and Zilberman, N.: Measuring global ocean heat content to estimate the earth energy imbalance, Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00432, 2019.
Moltmann, T., Turton, J., Zhang, H.-M., Nolan, G., Gouldman, C., Griesbauer, L., Willis, Z., Piniella, Á. M., Barrell, S., Andersson, E., Gallage, C., Charpentier, E., Belbeoch, M., Poli, P., Rea, A., Burger, E. F., Legler, D. M., Lumpkin, R., Meinig, C., O'Brien, K., Saha, K., Sutton, A., Zhang, D., and Zhang, Y.: A Global Ocean Observing System (GOOS), Delivered Through Enhanced Collaboration Across Regions, Communities, and New Technologies, Front. Mar. Sci., 6, 291, https://doi.org/10.3389/fmars.2019.00291, 2019.
Moore, T. S., Marra, J., and Alkatiri, A.: Response of the Banda Sea to the southeast monsoon, Mar. Ecol.-Prog. Ser., 261, 41–49, https://doi.org/10.3354/meps261041, 2003.
Pandoe, W. W., Purwoadi, M. A., Qonita, Z., Rusdiansyah, A., and Suwarjono, A.: Indonesia Cable-Based Tsunameter (InaCBT): Tsunami detection and identification on other seismic wave signals, Ocean Coast. Res., 72, https://doi.org/10.1590/2675-2824072.23154, 2024.
Prihatiningsih, I., Jaya, I., Atmadipoera, A. S., and Zuraida, R.: Stratification And Characteristic Of Water Masses In Selayar Slope-Southern Makassar Strait, Omni-Akuatika, 17, 27–36, 2021.
Purba, N. P., Pranowo, W. S., Ndah, A. B., and Nanlohy, P.: Seasonal variability of temperature, salinity, and surface currents at 0° latitude section of Indonesia seas, Reg. Stud. Mar. Sci., 44, https://doi.org/10.1016/j.rsma.2021.101772, 2021.
Purba, N. P., Faizal, I., Syamsuddin, M. L., Wulandari, A., Bratasena, T., and Therie, R.: Oceanography dataset in Bonpies archipelago as remote island in Java Seas, Indonesia, Data Brief, 40, https://doi.org/10.1016/j.dib.2021.107769, 2022.
Purba, N. P., Faid, G. M., Mulya, R. A., Zheng, W., Pandoe, W. W., Fadli, M., and Faizal, I.: Cast per half degree Grid Square Python syntax to Compute Data in Indonesian Seas and Surroundings, Mendeley Data, Version 2, Mendeley Data [code], https://doi.org/10.17632/mbvxs72mvd.2, 2025a
Purba, N. P., Faid, G. M., and Mulya, R. A.: Softwares to Process Oceanographic Data in the Indonesian Seas and Surroundings, Mendeley Data, Version 1, Mendeley Data [code], https://doi.org/10.17632/nm5txj3fps.1, 2025b
Purba, N. P., Akhir, M. F., Faid, G. M., Roseli, N. H., Sinaga, I. F., and Faizal, I.: Stratified Ocean Chlorophyll-a and Nutrient Availability in the Eastern Tropical Indian Ocean during La Nina 2022–2023, Egypt. J. Aquat. Biol. Fish., 29, 297–320, https://doi.org/10.21608/ejabf.2025.404325, 2025c.
Purba, N. P., Faid, G. M., Adithya, R. A., Wahyu, Z., Pandoe, W., Fadli, M., and Faizal, I.: Two Centuries of Oceanographic Data in the Indonesian Seas and Surroundings: Historical Trends, Gaps, and Future C, Mendeley Data, Version 1, Mendeley Data [data set], https://doi.org/10.17632/fnn6tsjckn.1, 2025d.
Putriani, P. Y., Atmadipoera, A. S., and Nugroho, D.: Interannual variability of Indonesian throughflow in the Flores Sea, IOP Conf. Ser. Earth Environ. Sci., 1–13, https://doi.org/10.1088/1755-1315/278/1/012064, 2019.
Qian, J. H., Robertson, A. W., and Moron, V.: Interactions among ENSO, the Monsoon, and Diurnal Cycle in Rainfall Variability over Java, Indonesia, J. Atmos. Sci., 67, 3509–3524, https://doi.org/10.1175/2010JAS3348.1, 2010.
Rachmayani, R., Ningsih, N. S., Februarianto, M., and Abdullah, F. A. R.: Response of upwelling variability to the local and remote forcing in the Banda Sea, IOP Conf. Ser. Earth Environ. Sci., https://doi.org/10.1088/1755-1315/339/1/012024, 2019.
Rayner, R., Jolly, C., and Gouldman, C.: Ocean observing and the blue economy, Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00330, 2019.
Roemmich, D., Alford, M. H., Claustre, H., Johnson, K. S., King, B., Moum, J., Oke, P. R., Owens, W. B., Pouliquen, S., Purkey, S., Scanderbeg, M., Suga, T., Wijffels, S. E., Zilberman, N., Bakker, D., Baringer, M. O., Belbeoch, M., Bittig, H. C., Boss, E., Calil, P., Carse, F., Carval, T., Chai, F., Conchubhair, D. O., D'Ortenzio, F., Dall'Olmo, G., Desbruyères, D., Fennel, K., Fer, I., Ferrari, R., Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B., Hallberg, R., Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., Johnson, G. C., Kang, K. R., Kolodziejczyk, N., Koertzinger, A., Le Traon, P. Y., Lenn, Y. D., Maze, G., Mork, K. A., Morris, T., Nagai, T., Nash, J., Garabato, A. N., Olsen, A., Pattabhi, R. R., Prakash, S., Riser, S., Schmechtig, C., Shroyer, E., Sterl, A., Sutton, P., Talley, L., Tanhua, T., Thierry, V., Thomalla, S., Toole, J., Troisi, A., Trull, T., Turton, J. D., Velez-Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., Waterhouse, A., Watson, A., Wilson, C., Wong, A. P., Xu, J., and Yasuda, I.: On the future of Argo: A global, full-depth, multi-disciplinary array, Front. Mar. Sci., 6, 1–28, https://doi.org/10.3389/fmars.2019.00439, 2019.
Rugebregt, M. J., Hudiyono, S., Utomo, S. W., Nurhati, I. S., Susanto, P. D., Fadli, M., Pesilette, R. N., and Ruli, F.: Indonesian Through-Flow Water Mass Circulation in the Makassar Strait and Lombok Strait, Indonesia, Migrat. Lett., 20, 1190–1198, 2023.
Sarker, S., Krug, L. A., Islam, K. M., Basak, S. C., Huda, A. N. M. S., Hossain, M. S., Das, N., Riya, S. C., Liyana, E., and Chowdhury, G. W.: An integrated coastal ecosystem monitoring strategy: Pilot case in Naf-Saint Martin Peninsula, Bangladesh, Sci. Total Environ., 913, https://doi.org/10.1016/j.scitotenv.2023.169718, 2024.
Schlitzer, R.: Ocean Data View, https://epic.awi.de/id/eprint/56921/ (last access: 8 December 2025), 2024.
Schuckmann, K., Le Traon, P.-Y., Smith, N., Pascual, A., Djavidnia, S., Gattuso, J.-P., Grégoire, M., and Nolan, G.: Copernicus Marine Service Ocean State Report, Issue 3, J. Oper. Oceanogr., 12, s1–s123, https://doi.org/10.1080/1755876X.2019.1633075, 2019.
Shinoda, T., Han, W., Metzger, E. J., and Hurlburt, H. E.: Seasonal Variation of the Indonesian Throughflow in Makassar Strait, J. Phys. Oceanogr., 42, 1099–1123, https://doi.org/10.1175/JPO-D-11-0120.1, 2012.
Sidik, T. D. A., Febriani, C., Ilmi, M. H., Azizah, F. N., Ramadhanti, D. S., Faid, G. M., Faizal, I., Martasuganda, M. K., and Purba, N. P.: Sea Surface Conditions of the Milky Sea Phenomenon in the Southern Java Sea: Analysis of SST, Chlorophyll-a, and Nutrient Fluctuations, Egypt. J. Aquat. Biol. Fish., 29, 997–1021, https://doi.org/10.21608/EJABF.2025.407761, 2025.
Silveira, T. M., Carapuço, M. M., and Miranda, J. M.: The Ever-Changing and Challenging Role of Ocean Observation: From Local Initiatives to an Oceanwide Collaborative Effort, Front. Mar. Sci., 8, https://doi.org/10.3389/fmars.2021.778452, 2022.
Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Dwi Susanto, R., Sloyan, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani, A., Arifin, Z., Wahyudi, A. J., Zhou, H., Nagai, T., Ansong, J. K., Bourdalle-Badié, R., Chanut, J., Lyard, F., Arbic, B. K., Ramdhani, A., and Setiawan, A.: Detecting change in the Indonesian seas, Front. Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00257, 2019.
Susanto, R. D., Fang, G., Soesilo, I., Zheng, Q., Qiao, F., Wei, Z., and Sulistyo, B.: New surveys of a branch of the Indonesian throughflow, Eos (Washington D.C.), 91, 261–263, https://doi.org/10.1029/2010EO300002, 2010.
Tillinger, D. and Gordon, A. L.: Fifty years of the Indonesian throughflow, J. Climate, 22, 6342–6355, https://doi.org/10.1175/2009JCLI2981.1, 2009.
Valdany, F. A., Ihsan, Y. N., Yuliadi, L. P., and Purba, N. P.: The Condition of Acidity, Phosphate, And Nitrate in Indonesian Waters, Omni-Akuatika, 18, 90, https://doi.org/10.20884/1.oa.2022.18.2.912, 2022.
van Aken, H. M.: Dutch Oceanographic Research in Indonesia in Colonial Times, Oceanography, 18, 30–41, https://doi.org/10.5670/oceanog.2005.03, 2005.
Vance, T. C., Wengren, M., Burger, E. F., Hernandez, D., Kearns, T., Merati, N., O'Brien, K. M., O'Neil, J., Potemra, J., Signell, R. P., and Wilcox, K.: From the Oceans to the Cloud: Opportunities and challenges for data, models, computation and workflows, Front. Mar. Sci., 6, 1–18, https://doi.org/10.3389/fmars.2019.00211, 2019.
von Schuckmann, K., Holland, E., Haugan, P., and Thomson, P.: Ocean science, data, and services for the UN 2030 Sustainable Development Goals, Mar. Policy, 121, 104154, https://doi.org/10.1016/j.marpol.2020.104154, 2020.
Wang, J., Yuan, D., and Zhao, X.: Impacts of Indonesian Throughflow on seasonal circulation in the equatorial Indian Ocean, Chin. J. Oceanol. Limnol., 35, 1261–1274, https://doi.org/10.1007/s00343-017-6196-0, 2017.
Webb, P.: Introduction to oceanography, Roger Williams University, https://rwu.pressbooks.pub/webboceanography/ (last access: 17 June 2025), 2021.
Weller, R. A., Baker, D. J., Glackin, M. M., Roberts, S. J., Schmitt, R. W., Twigg, E. S., and Vimont, D. J.: The challenge of sustaining ocean observations, Front. Mar. Sci., 6, 1–18, https://doi.org/10.3389/fmars.2019.00105, 2019.
Whitt, C., Pearlman, J., Polagye, B., Caimi, F., Muller-Karger, F., Copping, A., Spence, H., Madhusudhana, S., Kirkwood, W., Grosjean, L., Fiaz, B. M., Singh, S., Singh, S., Manalang, D., Gupta, A. Sen, Maguer, A., Buck, J. J. H., Marouchos, A., Atmanand, M. A., Venkatesan, R., Narayanaswamy, V., Testor, P., Douglas, E., de Halleux, S., and Khalsa, S. J.: Future Vision for Autonomous Ocean Observations, Front. Mar. Sci., 7, https://doi.org/10.3389/fmars.2020.00697, 2020.
Wijffels, S. E., Meyers, G., and Godfrey, S. J.: A 20-yr average of the Indonesian throughflow: Regional currents and the interbasin exchange, J. Phys. Oceanogr., 38, 1965–1978, https://doi.org/10.1175/2008JPO3987.1, 2008.
Wisetya Dewi, Y., Wirasatriya, A., Nugroho Sugianto, D., Helmi, M., Marwoto, J., and Maslukah, L.: Effect of ENSO and IOD on the Variability of Sea Surface Temperature (SST) in Java Sea, IOP Conf. Ser. Earth Environ. Sci., https://doi.org/10.1088/1755-1315/530/1/012007, 2020.
WOCE International Project Office: WOCE observations 1990–1998: a summary of the WOCE global data resource, WOCE Rep. 179/02, Alfred Wegener Institute/WOCE IPO, Southampton, https://epic.awi.de/id/eprint/28794/1/WOC2003a.pdf (last access: 8 December 2025), 2003.
Woo, M. U. N. and Pattiaratchi, C. B.: How the Capes current ends: an investigation of a west Australian coastal current using an autonomous ocean glider, in: Proceedings of the 15th Physics of Estuaries and Coastal Seas (PECS) conference, 14–17 September 2010, Colombo, Sri Lanka, 14–17, https://doi.org/10.13140/2.1.4854.6244, 2010.
Zweng, M. M., Boyer, T. P., Baranova, O. K., Reagan, J. R., Seidov, D., and Smolyar, I. V.: An inventory of Arctic Ocean data in the World Ocean Database, Earth Syst. Sci. Data, 10, 677–687, https://doi.org/10.5194/essd-10-677-2018, 2018.
Short summary
Indonesia's seas link the Pacific and Indian Oceans and shape weather and climate. We analyzed more than 460 000 ocean measurements and found major gaps, especially in deep waters and coastal areas. Most data come from ship routes, leaving many regions unobserved. These gaps limit our ability to understand currents and climate patterns. We propose expanding modern ocean monitoring tools to improve future predictions.
Indonesia's seas link the Pacific and Indian Oceans and shape weather and climate. We analyzed...
Altmetrics
Final-revised paper
Preprint