Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-5859-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5859-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Absolute gravity measurements at Brest (France) between 1998 and 2022
Marie-Françoise Lalancette
Shom, CS 92803, 29228 Brest, France
LIENSs, CNRS – La Rochelle University, 17000 La Rochelle, France
Sylvain Lucas
Shom, CS 92803, 29228 Brest, France
Roger Bayer
Géosciences Montpellier, 34095 Montpellier, France
Jean-Daniel Bernard
EOST, CNRS – Université Strasbourg, 67084 Strasbourg, France
Jean-Paul Boy
ITES, CNRS – Université Strasbourg – ENGEES, 67084 Strasbourg, France
Nicolas Florsch
LIENSs, CNRS – La Rochelle University, 17000 La Rochelle, France
Jacques Hinderer
ITES, CNRS – Université Strasbourg – ENGEES, 67084 Strasbourg, France
Nicolas Le Moigne
Géosciences Montpellier, 34095 Montpellier, France
Muriel Llubes
GET, CNRS – Université Paul Sabatier, 31400 Toulouse, France
Bernard Luck
EOST, CNRS – Université Strasbourg, 67084 Strasbourg, France
Didier Rouxel
Shom, CS 92803, 29228 Brest, France
Related authors
No articles found.
Alvaro Santamaría-Gómez, Jean-Paul Boy, Florent Feriol, Médéric Gravelle, Sylvain Loyer, Samuel Nahmani, Joëlle Nicolas, José Luis García Pallero, Aurélie Panetier, Arnaud Pollet, Pierre Sakic, and Guy Wöppelmann
Earth Syst. Sci. Data, 17, 5833–5840, https://doi.org/10.5194/essd-17-5833-2025, https://doi.org/10.5194/essd-17-5833-2025, 2025
Short summary
Short summary
Spotgins is a cooperative of several research groups producing a consistent and high-quality set of Global Navigation Satellite Systems (GNSS) daily position time series. Each group contributes to the global network using the same processing. The Spotgins series are valuable for the understanding of subtle deformations of the Earth's surface at the millimeter level that include tectonics, earthquakes, ground subsidence, post-glacial rebound, hydrological loading, and volcanic deformation.
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Médéric Gravelle, Guy Wöppelmann, Kevin Gobron, Zuheir Altamimi, Mikaël Guichard, Thomas Herring, and Paul Rebischung
Earth Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023, https://doi.org/10.5194/essd-15-497-2023, 2023
Short summary
Short summary
We produced a reanalysis of GNSS data near tide gauges worldwide within the International GNSS Service. It implements advances in data modelling and corrections, extending the record length by about 7 years. A 28 % reduction in station velocity uncertainties is achieved over the previous solution. These estimates of vertical land motion at the coast supplement data from satellite altimetry or tide gauges for an improved understanding of sea level changes and their impacts along coastal areas.
Thierry Garlan, Isabelle Gabelotaud, Elodie Marchès, Edith Le Borgne, and Sylvain Lucas
Proc. Int. Cartogr. Assoc., 4, 35, https://doi.org/10.5194/ica-proc-4-35-2021, https://doi.org/10.5194/ica-proc-4-35-2021, 2021
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Lucia Pineau-Guillou, Pascal Lazure, and Guy Wöppelmann
Ocean Sci., 17, 17–34, https://doi.org/10.5194/os-17-17-2021, https://doi.org/10.5194/os-17-17-2021, 2021
Short summary
Short summary
We investigated the long-term changes of the principal tidal component M2 along North Atlantic coasts, from 1846 to 2018. We analysed 18 tide gauges. We found that M2 variations are consistent at all the stations in the North-East Atlantic, whereas some discrepancies appear in the North-West Atlantic. The similarity between the North Atlantic Oscillation and M2 variations in the North-East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide.
Cited articles
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X.: ITRF2014: A new release of the Inernational Terrestrial Reference Frame modelling nonlinear station motions, J. Geophys. Res.: Solid Earth, 121, 6109–6131, 2016.
Amalvict, M., Willis, P., Wöppelmann, G., Ivins, E. R., Bouin, M.-N., Testut, L., and Hinderer, J.: Isostatic stability of the East Antartic station Dumont d'Urville from long-term geodetic observations and geophysical models, Polar Research, 28, 193–202, 2009.
Baker, T. F.: Absolute sea level measurements, climate change and vertical crustal movements, Global Planet. Change, 8, 149–159, 1993.
Ballu, V., Gravelle, M., Wöppelmann, G., de Viron, O., Rebischung, P., Becker, M., and Sakic, P.: Vertical land motion in the Southwest and Central Pacific from available GNSS solutions and implications for relative sea levels, Geophys. J. Int., 218, 1537–1551, https://doi.org/10.1093/gji/ggz247, 2019.
Blewitt, G., Altamimi, Z., Davis, J., Gross, R., Kuo, C.-Y., Lemoine, F. G., Moore, A. W., Neilan, R. E., Plag, H.-P., Rothacher, M., Shum, C. K., Sideris, M. G., Schöne, T., Tregoning, P., and Zerbini, S.: Geodetic observations and global reference frame contributions to understanding sea-level rise and variability, in: Understanding sea-level rise and variability, edited by: Church, J. A., Woodworth, P. L., Aarup, T., and Wilson, W. S., 256–284, London, Wiley-Blackwell, https://doi.org/10.1002/9781444323276.ch9, 2010.
Blewitt, G., Hammond, W. C., and Kreemer, C.: Harnessing the GPS data explosion for interdisciplinary science, Eos, 99, 1–2, https://doi.org/10.1029/2018EO104623, 2018.
Boy, J.-P.: Analyse de marées des series CG3M à l'EPSHOM (20030728–20041027), Shom, Internal Report, 16 Januay 2006, 2 pp., 2006.
Cagnard, F.: Carte géologique harmonisée du département du Finistère, BRGM: RP-56273 – FR, 435 pp., 12 fig., 2 tab. 3 pl. hors-texte, 2008.
Carter, W. E. (Ed.): Report of the surrey workshop of the IAPSO tide gauge benchmark fixing committee, Report of a meeting held 13–15 December 1993 at the Inst. of Oceanog. Sci., Deacon Lab., NOAA Tech. Rep., NOSOES0006, 1994.
Carter, W. E., Aubrey, D. G., Baker, T., Boucher, C., Le Provost, C., Pugh, D., Peltier, W. R., Zumberge, M., Rapp, R. H., Schutz, R. E., Emery, K. O., and Enfield, D. B.: Geodetic fixing of tide gauge bench marks, Whoods Hole Oceanographic Institution Technical Report, WHO-89-31, 1989.
Dehant, V., Defraigne, P., and Wahr, J. M.: Tides for a convective Earth, J. Geophys. Res., 104, 1035–1058, https://doi.org/10.1029/1998JB900051, 1999.
De Linage, C., Hinderer, J., and Rogister, Y.: A search for the ratio between gravity variation and vertical displacement due to a surface load, Geophys. J. Int., 171, 986–994, https://doi.org/10.1111/j.1365-246X.2007.03613.x, 2007.
De Viron, O., Van Camp, M., and Francis, O.: Revisiting absolute gravimeter intercomparisons, Metrologia, 48, 290–298, 2011.
Emery, K. O. and Aubrey, D. G.: Sea Levels, Land Levels, and Tide Gauges, New York, Springer, https://doi.org/10.1007/978-1-4613-9101-2, 1991.
Faller, J. E.: Thirty years of progress in absolute gravimetry: a scientific capability implemented by technological advances, Metrologia, 39, 425–428, 2002.
Francis, O.: Long time series of absolute gravity measurements in Kulusuk, southeast Greenland, Geoscience Data Journal, 10, 485–488, https://doi.org/10.1002/gdj3.183, 2023.
Francis, O. and van Dam, T. M.: Processing of the Absolute data of the ICAG01, Cahiers du Centre Européen de Géodynamique et de Séismologie, 22, 45–48, 2003.
Gravelle, M., Wöppelmann, G., Gobron, K., Altamimi, Z., Guichard, M., Herring, T., and Rebischung, P.: The ULR-repro3 GPS data reanalysis and its estimates of vertical land motion at tide gauges for sea level science, Earth Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023, 2023.
Hamlington, B. D., Gardner, A. S., Ivins, E., Lenaerts, J. T. M., Reager, J. T., Trossman, D. S., Zaron, E. D., Adhikari, S., Arendt, A., Aschwanden, A., Beckley, B. D., Bekaert, D. P. S., Blewitt, G., Caron, L., Chambers, D. P., Chandanpurkar, H. A., Christianson, K., Csatho, B., Cullather, R. I., DeConto, R. M., Fasullo, J. T., Frederikse, T., Freymueller, J. T., Gilford, D. M., Girotto, M., Hammond, W. C., Hock, R., Holschuh, N., Kopp, R. E., Landerer, F., Larour, E., Menemenlis, D., Merrifield, M., Mitrovica, J. X., Nerem, R. S., Nias, I. J., Nieves, V., Nowicki, S., Pangaluru, K., Piecuch, C. G., Ray, R. D., Rounce, D. R., Schlegel, N.‐J., Seroussi, H., Shirzaei, M., Sweet, W. V., Velicogna, I., Vinogradova, N., Wahl, T., Wiese, D. N., and Willis, M. J.: Understanding of contemporary regional sea-level change and the implications for the future, Rev. Geophys., 58, e2019RG000672, https://doi.org/10.1029/2019RG000672, 2020.
Heflin, M., Donnellan, A., Parker, J., Lyzenga, G., Moore, A., Ludwig, L. G., Rundle, J., Wang, J., and Pierce M.: Automated estimation and tools to extract positions, velocities, breaks, and seasonal terms from daily GNSS measurements: illuminating nonlinear Salton Trough deformation, Earth and Space Science, 7, e2019EA000644, https://doi.org/10.1029/2019EA000644, 2020.
Hinderer, J. and Luck, B.: Mesures absolues de pesanteur à l'EPSHOM du 17 au 21 janvier 2005, Rapport de mesures EOST, EPSHOM, 9 pp., 2005.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh, J.: New data systems and products at the permanent service formean sea level, Journal of Coastal Research, 29, 493–504, 2013.
IOC: Global Sea-Level Observing System (GLOSS) Implementation Plan, IOC Tech. Ser., 100, 2012.
Lalancette, M.-F., Lucas, S., and Wöppelmann, G.: Absolute gravity measurements at Brest (France) between 1998 and 2022, Shom [data set], https://doi.org/10.17183/DATASET_GRAVI_BREST, 2024.
Lambert, A., Courtier, N., and James, T. S.: Long-term monitoring by absolute gravimetry:tides to postglacial rebound, Journal of Geodynamics, 41, 307–317, 2006.
Lenôtre, N., Thierry, P., Blanchin, R., and Brochard, G.: Current vertical movement demonstrated by comparative levelling in Brittany (northwestern France), Tetonophysics, 301, 333–344, 1999.
Llubes, M., Florsch, N., Amalvict, M., Hinderer, J., Lalancette, M.-F., Orseau, D., and Simon B.: Gravimetric ocean loading observations: first experiment in Brittany, C.R. Acad. Sci. Paris, Ser. IIa 332, 77–82, 2001.
Lucas, S.: Note concernant la détermination des altitudes des repères gravimétriques au Shom, Note technique Shom, No. 17/2024/Shom/DOPS/STM/GEOPHY/NP, 4 pp., 2024.
Mazzotti, S., Lambert, A., Courtier, N., Nykolaishen, L., and Dragert, H.: Crustal uplift and sea level rise in northern Cascadia from GPS, absolute gravity, and tide gauge data, Geophys. Res. Lett., 34, L15306, https://doi.org/10.1029/2007GL030283, 2007.
Merlet, S., Le Moigne, N., Métivier, G. P., Bernard, J.-D., Little, F., Boy, J.-P., Rosat, S., Gabalda, G., Seoane, L., Bonvalot, S., Champollion, C., Mémin, A., Maia, M., and Charade, O.: French Gravimetry Organization and its Instrumental Park, IEEE Instrumentation & Measurement Magazine, 27, 24–31, https://doi.org/10.1109/MIM.2024.10654723, 2024.
Michel, A., Santamaria-Gomez, A., Boy, J.-P., Perosanz, F., and Loyer, S.: Analysis of GNSS displacements in Europe and their comparison with hydrological loading models, Remote Sensing, 13, 4523, https://doi.org/10.3390/rs13224523, 2021.
Micro-g Solutions Inc.: Operator's manual, FG5 absolute gravimeter, Erie, USA, 1999.
Micro-g LaCoste: g9 User's Manual, April 2012 version, Lafayette, Colorado, USA, 2012.
Neilan, R., Van Scoy, P. A., and Woodworth, P. L. (Eds.): Proceedings of the Workshop on Methods for Monitoring Sea Level: GPS and Tide Gauge Benchmark Monitoring and GPS Altimeter Calibration, Workshop organised by the IGS and PSMSL, Jet Propul. Lab., Pasadena, Calif., 1998.
Niebauer, T. M.: Gravimetric methods – Absolute and relative gravity meter: Instruments concepts and implementation, in: Treatise on Geophysics, 37–57, Amsterdam, Elsevier, https://doi.org/10.1016/B978-0-444-53802-4.00057-9, 2015.
Niebauer, T. M., Sasegawa, G. S., Faller, J. E., Hilt, R., and Klopping, F.: A new generation of absolute gravimeters, Metrologia, 32, 159–180, 1995.
Poitevin, C., Wöppelmann, G., Raucoules, D., Le Cozannet, G., Marcos, M., and Testut, L.: Vertical land motion and relative sea level changes along the coastline of Brest (France) from combined space-borne geodetic methods, Remote Sens. Environ., 222, 275–285, https://doi.org/10.1016/j.rse.2018.12.035, 2019.
Pálinkáš, V., Kostelecky, J., and Simek, J.: A feasability of absolute gravity measurements in geodynamics, Acta Geodyn. Geomater., 7, 61–69, 2010.
Pálinkáš, V., Liard, J., and Jiang, Z.: On the effective position of the free-fall solution and the self-attraction effect of the FG5 gravimeters, Metrologia, 49, 552–559, 2012.
Pálinkáš, V., Wziontek, H., and Val'ko, M.: Evaluation of comparisons of absolute gravimeters using correlated quantities: reprocessing and analyses of recent comparisons, J. Geod., 95, 21, https://doi.org/10.1007/s00190-020-01435-y, 2021.
Pugh, D. T. and Woodworth, P. L.: Sea-level science: Understanding tides, tsunamis, and mean sea-level changes, Cambridge, Cambridge University Press, ISBN 978-1-107-02819-7, 2014.
Shennan, I. and Horton, B.: Holocene land- and sea-level changes in Great Britain, J. Quaternary Sci., 17, 511–526, 2002.
Shom: Réalisation et calcul d'un rattachement gravimétrique, Note technique Shom du 14/06/2016, DOPS/HOM/CFuD, Shom, 32 pp., 2016.
Shom: Réalisation et calcul d'un gradient vertical de pesanteur, Note technique Shom du 18/01/2018, DOPS/HOM/GEOPHY, Shom, 45 pp., 2018.
Tamisiea, M. E.: Ongoing glacial isostatic contributions to observations of sea level change, Geophysical Journal International, 186, 1036–1044, 2011.
Teferle, F. N., Bingley, R. M., Orliac, E. J., Williams, S. D. P., Woodworth, P. L., McLaughlin, D., Baker, T. F., Shennan, I., Milne, G. A., Bradley, S. L., and Hansen, D. N.: Crustal motions in Great Britain: evidence from continuous GPS, absolute gravity and Holocene sea level data, Geophy. J. Int., 178, 23–46, https://doi.org/10.1111/j.1365-246X.2009.04185.x, 2009.
Timmen, L.: Precise definition of the effective measurement height of free-fall absolute gravimeters. Metrologia, 40, 62–65, 2003.
Van Camp, M., Williams, S. D. P., and Francis, O.: Uncertainty of absolute gravity measurements, J. Geophys. Res., 110, B05406, https://doi.org/10.1029/2004JB003497, 2005.
Van Camp, M., de Viron, O., and Avouac, J.-P.: Separating climate-induced mass transfers and instrumental effects from tectonic signal in repeated absolute gravity measurements: Uncertainty of absolute gravity data, Geophys. Res. Lett., 43, 4313–4320, https://doi.org/10.1002/2016GL068648, 2016.
Van Camp, M., de Viron, O., Watlet, A., Meurers, B., Francis, O., and Caudron, C.: Geophysics from terrestrial time-variable gravity measurements, Rev. Geophys., 55, 938–992, https://doi.org/10.1002/2017RG000566, 2017.
Vey, S., Calais, E., Llubes, M., Florsch, N., Woppelmann, G. Hinderer, J., Amalvict, M., Lalancette, M. F., Simon, B., Duquenne, F., and Haase, J. S.: GPS measurements of ocean loading and its impact on zenith tropospheric delay estimates: a case study in Brittany, France, J. Geodesy, 76, 419–427, 2002.
Wahr, J., Dazhong, H., and Turpin, A.: Predictions of vertical uplift caused by changing Polar ice volumes on a viscoelastic earth, Geophys. Res. Lett., 22, 977–980, 1995.
Wenzel, H. G.: The nanogal software: Earth tide data processing package ETERNA 3.30, Bull. Inf. Marges Terrestres, 124, 9425–9439, 1996.
Wenzel, H.-G.: Eterna – Programs for tidal analysis and prediction, Karlsruhe Institute of Technology [code], https://doi.org/10.35097/746, 2022.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic Mapping Tools: Improved version released, Eos, Transactions American Geophysical Union, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
Williams, S. D. P., Baker, T. F., and Jeffries, G.: Absolute gravity measurements at UK tide gauges, Geophys. Res. Lett., 28, 2317–2320, https://doi.org/10.1029/2000GL012438, 2001.
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key to understanding sea level change and variability, Rev. Geophys., 54, 64–92, 2016.
Wöppelmann, G., Pouvreau, N., and Simon, B.: Brest sea level record: a time series construction back to the early eighteenth century, Ocean Dynamics, 56, 487–497, 2006.
Wöppelmann, G., Pouvreau, N., Coulomb, A., Simon, B., and Woodworth, P. L.: Tide gauge datum continuity at Brest since 1711: France's longest sea-level record, Geophys. Res. Lett., 35, L22605, https://doi.org/10.1029/2008GL035783, 2008.
Wziontek, H., Bonvalot, S., Falk, R., Gabalda, G., Mäkinen, J., Palinkas, V., Rülke, A., and Vitushkin, L.: Status of the International Gravity Reference System and Frame, J. Geodesy, 95, 7, https://doi.org/10.1007/s00190-020-01438-9, 2021.
Zerbini, S., Plag, H.-P., Baker, T., Becker, M., Billiris, H., Bürki, B., Kahle, H.-G., Marson, I., Pezzoli, L., Richter, B., Romagnoli, C., Sztobryn, M., Tomasi, P., Tsimplis, M., Veis, G., and Verrone, G.: Sea level in the Mediterranean: A first step towards separating crustal movements and absolute sea-level variations, Global Planet. Change, 14, 1–48, 1996.
Short summary
This study presents 25 years of carefully processed gravity measurements from western France, offering a unique dataset to support investigations of long-term land motion and sea level change. The data are consistent with satellite-based observations and are made available for use in future geophysical and climate-related research.
This study presents 25 years of carefully processed gravity measurements from western France,...
Altmetrics
Final-revised paper
Preprint