Articles | Volume 17, issue 10
https://doi.org/10.5194/essd-17-5601-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5601-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modern pollen dataset of the Tibetan Plateau
Mengna Liao
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Kai Li
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Yili Jin
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Lina Liu
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Xianyong Cao
Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
Related authors
Mengna Liao, Kai Li, Weiwei Sun, and Jian Ni
Clim. Past, 17, 2291–2303, https://doi.org/10.5194/cp-17-2291-2021, https://doi.org/10.5194/cp-17-2291-2021, 2021
Short summary
Short summary
The long-term trajectories of precipitation, hydrological balance and soil moisture are not completely consistent in southwest China. Hydrological balance was more sensitive to temperature change on a millennial scale. For soil moisture, plant processes also played a big role in addition to precipitation and temperature. Under future climate warming, surface water shortage in southwest China can be even more serious and efforts at reforestation may bring some relief to the soil moisture deficit.
Fang Tian, Weiyu Cao, Xiaohan Liu, Zixin Liu, and Xianyong Cao
Earth Syst. Sci. Data, 17, 5529–5542, https://doi.org/10.5194/essd-17-5529-2025, https://doi.org/10.5194/essd-17-5529-2025, 2025
Short summary
Short summary
We completed a modern pollen dataset obtained from 90 lakes from the Tibetan Plateau (TP), and integrated it with previous modern lacustrine pollen datasets. The comprehensive modern pollen dataset covers the full range of climatic gradients across the TP and all vegetation types. The modern pollen dataset has good predictive power in estimating net primary production and annual precipitation.
Chenzhi Li, Anne Dallmeyer, Jian Ni, Manuel Chevalier, Matteo Willeit, Andrei A. Andreev, Xianyong Cao, Laura Schild, Birgit Heim, Mareike Wieczorek, and Ulrike Herzschuh
Clim. Past, 21, 1001–1024, https://doi.org/10.5194/cp-21-1001-2025, https://doi.org/10.5194/cp-21-1001-2025, 2025
Short summary
Short summary
We present global megabiome dynamics and distributions derived from pollen-based reconstructions over the last 21 000 years, which are suitable for the evaluation of Earth-system-model-based paleo-megabiome simulations. We identified strong deviations between pollen- and model-derived megabiome distributions in the circum-Arctic and Tibetan Plateau areas during the Last Glacial Maximum and early deglaciation and in northern Africa and the Mediterranean region during the Holocene.
Xiaohuan Hou, Nannan Wang, Zhe Sun, Kan Yuan, Xianyong Cao, and Juzhi Hou
Clim. Past, 20, 335–348, https://doi.org/10.5194/cp-20-335-2024, https://doi.org/10.5194/cp-20-335-2024, 2024
Short summary
Short summary
We present an ice-free season temperature based on brGDGTs over last 15 kyr on the eastern Tibetan Plateau (TP). The result shows that Holocene Thermal Maximum occurred during 8–3.5 ka, which lags behind pollen-based temperature recorded in same core, indicating a significant seasonal bias between different proxies. We also investigated previously published brGDGT-based temperatures on the TP to determine the pattern of Holocene temperature changes and possible reasons for the diverse records.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, https://doi.org/10.5194/cp-19-1481-2023, 2023
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1908 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global mean.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Manuel Chevalier, Anne Dallmeyer, Nils Weitzel, Chenzhi Li, Jean-Philippe Baudouin, Ulrike Herzschuh, Xianyong Cao, and Andreas Hense
Clim. Past, 19, 1043–1060, https://doi.org/10.5194/cp-19-1043-2023, https://doi.org/10.5194/cp-19-1043-2023, 2023
Short summary
Short summary
Data–data and data–model vegetation comparisons are commonly based on comparing single vegetation estimates. While this approach generates good results on average, reducing pollen assemblages to single single plant functional type (PFT) or biome estimates can oversimplify the vegetation signal. We propose using a multivariate metric, the Earth mover's distance (EMD), to include more details about the vegetation structure when performing such comparisons.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Yili Jin, Haoyan Wang, Jie Xia, Jian Ni, Kai Li, Ying Hou, Jing Hu, Linfeng Wei, Kai Wu, Haojun Xia, and Borui Zhou
Earth Syst. Sci. Data, 15, 25–39, https://doi.org/10.5194/essd-15-25-2023, https://doi.org/10.5194/essd-15-25-2023, 2023
Short summary
Short summary
The TiP-Leaf dataset was compiled from direct field measurements and included 11 leaf traits from 468 species of 1692 individuals, covering a great proportion of species and vegetation types on the highest plateau in the world. This work is the first plant trait dataset that represents all of the alpine vegetation on the TP, which is not only an update of the Chinese plant trait database, but also a great contribution to the global trait database.
Nannan Wang, Lina Liu, Xiaohuan Hou, Yanrong Zhang, Haicheng Wei, and Xianyong Cao
Clim. Past, 18, 2381–2399, https://doi.org/10.5194/cp-18-2381-2022, https://doi.org/10.5194/cp-18-2381-2022, 2022
Short summary
Short summary
We reconstructed the vegetation and climate change since the last 14.2 ka BP from a fossil pollen record together with multiple proxies (grain size, contents of total organic carbon and total nitrogen) on the northeast Tibetan Plateau. The results reveal that an arid climate occurs in the early Holocene and the vegetation could be disturbed by human activities to some extent after ca. 0.24 ka BP (1710 CE).
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Chenzhi Li, Alexander K. Postl, Thomas Böhmer, Xianyong Cao, Andrew M. Dolman, and Ulrike Herzschuh
Earth Syst. Sci. Data, 14, 1331–1343, https://doi.org/10.5194/essd-14-1331-2022, https://doi.org/10.5194/essd-14-1331-2022, 2022
Short summary
Short summary
Here we present a global chronology framework of 2831 palynological records, including globally harmonized chronologies covering up to 273 000 years. A comparison with the original chronologies reveals a major improvement according to our assessment. Our chronology framework and revised chronologies will interest a broad geoscientific community, as it provides the opportunity to make use in synthesis studies of, for example, pollen-based vegetation and climate change.
Mengna Liao, Kai Li, Weiwei Sun, and Jian Ni
Clim. Past, 17, 2291–2303, https://doi.org/10.5194/cp-17-2291-2021, https://doi.org/10.5194/cp-17-2291-2021, 2021
Short summary
Short summary
The long-term trajectories of precipitation, hydrological balance and soil moisture are not completely consistent in southwest China. Hydrological balance was more sensitive to temperature change on a millennial scale. For soil moisture, plant processes also played a big role in addition to precipitation and temperature. Under future climate warming, surface water shortage in southwest China can be even more serious and efforts at reforestation may bring some relief to the soil moisture deficit.
Xianyong Cao, Fang Tian, Kai Li, Jian Ni, Xiaoshan Yu, Lina Liu, and Nannan Wang
Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, https://doi.org/10.5194/essd-13-3525-2021, 2021
Short summary
Short summary
The Tibetan Plateau is quite remote, and it is difficult to collect samples on it; the previous modern pollen data are located on a nearby road, and there is a large geographic gap in the eastern and central Tibetan Plateau. Our novel pollen data can fill the gap and will be valuable in establishing a complete dataset covering the entire Tibetan Plateau, thus helping us to get a comprehensive understanding. In addition, the dataset can also be used to investigate plant species distribution.
Cited articles
Adeleye, M. A., Haberle, S. G., Gallagher, R., Andrew, S. C., and Herbert, A.: Changing plant functional diversity over the last 12,000 years provides perspectives for tracking future changes in vegetation communities, Nat. Ecol. Evol., 7, 224–235, https://doi.org/10.1038/s41559-022-01943-4, 2023.
Birks, H. J. B.: Reflections on the use of ecological attributes and traits in quaternary botany, Front. Ecol. Evol., 8, 166, https://doi.org/10.3389/fevo.2020.00166, 2020.
Blaus, A., Reitalu, T., Gerhold, P., Hiiesalu, I., Massante, J. C., and Veski, S.: Modern pollen–plant diversity relationships inform Palaeoecological reconstructions of functional and phylogenetic diversity in calcareous fens, Front. Ecol. Evol., 8, 207, https://doi.org/10.3389/fevo.2020.00207, 2020.
Cao, X.-Y., Herzschuh, U., Telford, R. J., and Ni, J.: A modern pollen–climate dataset from China and Mongolia: Assessing its potential for climate reconstruction, Rev. Palaeobot. Palynol., 211, 87–96, https://doi.org/10.1016/j.revpalbo.2014.08.007, 2014.
Cao, X., Tian, F., Li, K., Ni, J., Yu, X., Liu, L., and Wang, N.: Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions, Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, 2021.
Carvalho, F., Brown, K. A., Waller, M. P., Bunting, M. J., Boom, A., and Leng, M. J.: A method for reconstructing temporal changes in vegetation functional trait composition using Holocene pollen assemblages, PLoS One, 14, e0216698, https://doi.org/10.1371/journal.pone.0216698, 2019.
Chen, D. L., Xu, B. Q., Yao, T. D., Guo, Z. T., Peng, C., Chen, F. H., Zhang, R. H., Zhang, X. Z., Zhang, Y. L., and Jie, F.: Assessment of past, present and future environmental changes on the Tibetan Plateau, Chin. Sci. Bull., 60, 3025–3035, https://doi.org/10.1360/N972014-01370, 2015 (in Chinese).
Chen, H.-Y., Xu, D.-Y., Liao, M.-N., Li, K., Ni, J., Cao, X.-Y., Cheng, B., Hao, X.-D., Kong, Z.-C., and Li, S.-F.: A modern pollen dataset of China, Chin. J. Plant Ecol., 45, 799–808, https://doi.org/10.17521/cjpe.2021.0024, 2021 (in Chinese).
Connor, S. E., van Leeuwen, J. F., van der Knaap, W., Akindola, R. B., Adeleye, M. A., and Mariani, M.: Pollen and plant diversity relationships in a Mediterranean montane area, Veg. Hist. Archaeobot., 30, 583–594, https://doi.org/10.1007/s00334-020-00811-0, 2021.
Cui, A., Fan, B., Xu, D., Zheng, Z., Xu, Q., Luo, Y., Huang, K., Li, Y., Shen, C., and Cao, X.: The quality assessment, integration and application of Chinese modern pollen datasets, Quat. Sci., 44, 605–622, https://doi.org/10.11928/j.issn.1001-7410.2024.03.01, 2024 (in Chinese).
Cui, Y., Qin, F., Zhao, Y., Cui, Q., Geng, R., and Li, Q.: Does palynological diversity reflect floristic diversity? A case study from Northeast China, Sci. China Earth Sci., 66, 2097–2108, https://doi.org/10.1007/s11430-022-1131-y, 2023.
Davis, B. A., Zanon, M., Collins, P., Mauri, A., Bakker, J., Barboni, D., Barthelmes, A., Beaudouin, C., Bjune, A. E., and Bozilova, E.: The European modern pollen database (EMPD) project, Veg. Hist. Archaeobot., 22, 521–530, https://doi.org/10.1007/s00334-012-0388-5, 2013.
Ding, W.-N., Ree, R. H., Spicer, R. A., and Xing, Y.-W.: Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora, Science, 369, 578–581, https://doi.org/10.1126/science.abb4484, 2020.
Ehlers, T. A., Chen, D., Appel, E., Bolch, T., Chen, F., Diekmann, B., Dippold, M. A., Giese, M., Guggenberger, G., and Lai, H.-W.: Past, present, and future geo-biosphere interactions on the Tibetan Plateau and implications for permafrost, Earth-Sci. Rev., 234, 104197, https://doi.org/10.1016/j.earscirev.2022.104197, 2022.
Felde, V. A., Peglar, S. M., Bjune, A. E., Grytnes, J.-A., and Birks, H. J. B.: Modern pollen–plant richness and diversity relationships exist along a vegetational gradient in southern Norway, Holocene, 26, 163–175, https://doi.org/10.1177/0959683615596843, 2016.
Flantua, S. G., Hooghiemstra, H., Grimm, E. C., Behling, H., Bush, M. B., González-Arango, C., Gosling, W. D., Ledru, M.-P., Lozano-García, S., and Maldonado, A.: Updated site compilation of the Latin American pollen database, Rev. Palaeobot. Palynol., 223, 104–115, https://doi.org/10.1016/j.revpalbo.2015.09.008, 2015.
Fyfe, R. M., Woodbridge, J., and Roberts, N.: From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach, Glob. Change Biol., 21, 1197–1212, https://doi.org/10.1111/gcb.12776, 2015.
Gao, J., Hou, G., Xiao, Y., E, C., Wei, H., Sun, Y., Sun, M., Xue, H., Wende, Z., and Jin, S.: Vegetation history and survival patterns of the earliest village on the Qinghai–Tibetan Plateau, Front. Plant Sci., 13, 903192, https://doi.org/10.3389/fpls.2022.903192, 2022.
Goring, S., Lacourse, T., Pellatt, M. G., and Mathewes, R. W.: Pollen assemblage richness does not reflect regional plant species richness: a cautionary tale, J. Ecol., 101, 1137–1145, https://doi.org/10.1111/1365-2745.12135, 2013.
Hastie, T. and Tibshirani, R.: Generalized additive models: some applications, J. Am. Stat. Assoc. 82, 371–386, https://doi.org/10.1080/01621459.1987.10478440, 1987.
Herzschuh, U., Kramer, A., Mischke, S., and Zhang, C.: Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra, Quat. Res., 71, 162–171, https://doi.org/10.1016/j.yqres.2008.09.003, 2009.
Herzschuh, U., Birks, H., Mischke, S., Zhang, C., and Böhner, J.: A modern pollen–climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains, J. Biogeogr., 37, 752–766, https://doi.org/10.1111/j.1365-2699.2009.02245.x, 2010.
Hu, X., Shi, S., Zhou, B., and Ni, J.: A 1 km monthly dataset of historical and future climate changes over China, Science Data Bank [data set], https://cstr.cn/31253.11.sciencedb.13546, 2024.
Jin, Y.-L., Wang, H.-Y., Wei, L.-F., Hou, Y., Hu, J., Wu, K., Xia, H.-J., Xia, J., Zhou, B.-R., Li, K., and Ni, J.: A plot-based dataset of plant community on the Qingzang Plateau, Chin. J. Plant Ecol., 46, 846–854, https://doi.org/10.17521/cjpe.2022.0174, 2022 (in Chinese).
Jin, Y., Wang, H., Xia, J., Ni, J., Li, K., Hou, Y., Hu, J., Wei, L., Wu, K., Xia, H., and Zhou, B.: TiP-Leaf: a dataset of leaf traits across vegetation types on the Tibetan Plateau, Earth Syst. Sci. Data, 15, 25–39, https://doi.org/10.5194/essd-15-25-2023, 2023.
Kaufman, D. S. and Broadman, E.: Revisiting the Holocene global temperature conundrum, Nature, 614, 425–435, https://doi.org/10.1038/s41586-022-05536-w, 2023.
Li, Z., Wang, Y., Herzschuh, U., Cao, X., Ni, J., and Zhao, Y.: Pollen-based biome reconstruction on the Qinghai-Tibetan Plateau during the past 15,000 years, Palaeogeogr. Palaeoclimatol. Palaeoecol., 604, 111190, https://doi.org/10.1016/j.palaeo.2022.111190, 2022.
Liao, M. and Ni, J.: A dataset of modern pollen on the Tibetan Plateau (2018–2021), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/Paleoenv.tpdc.302015, 2025.
Liao, M., Jin, Y., Li, K., Liu, L., Wang, N., Ni, J., and Cao, X.: Modern pollen-plant diversity relationship in open landscapes of Tibetan Plateau, Palaeogeogr. Palaeoclimatol. Palaeoecol., 641, 112131, https://doi.org/10.1016/j.palaeo.2024.112131, 2024.
Liu, L., Wang, N., Zhang, Y., Yu, X., and Cao, X.: Performance of vegetation cover reconstructions using lake and soil pollen samples from the Tibetan Plateau, Veg. Hist. Archaeobot., 32, 157–169, https://doi.org/10.1007/s00334-022-00891-0, 2023.
Liu, L., Wang, N., Zhang, Y., Liang, J., Ni, J., and Cao, X.: Spatial and temporal variations of vegetation cover on the central and eastern Tibetan Plateau since the Last glacial period, Glob. Planet. Change, 240, 104536, https://doi.org/10.1016/j.gloplacha.2024.104536, 2024.
Lu, H., Wu, N., Liu, K.-b., Zhu, L., Yang, X., Yao, T., Wang, L., Li, Q., Liu, X., and Shen, C.: Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes, Quat. Sci. Rev., 30, 947–966, https://doi.org/10.1016/j.quascirev.2011.01.008, 2011.
Ma, L., Li, Z., Xu, Q., Li, H., Zhang, K., Li, Y., Zhang, R., Cao, X., and Zhang, S.: Modern pollen assemblages from the hinterland of the Tibetan Plateau and their significance for reconstructions of past vegetation, Boreas, 53, 42–55, https://doi.org/10.1111/bor.12641, 2024a.
Ma, Q., Zhu, L., Ju, J., Wang, J., Wang, Y., Huang, L., and Haberzettl, T.: A modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau, Earth Syst. Sci. Data, 16, 311–320, https://doi.org/10.5194/essd-16-311-2024, 2024b.
Meltsov, V., Poska, A., Odgaard, B. V., Sammul, M., and Kull, T.: Palynological richness and pollen sample evenness in relation to local floristic diversity in southern Estonia, Rev. Palaeobot. Palynol., 166, 344–351, https://doi.org/10.1016/j.revpalbo.2011.06.008, 2011.
Moore, P. D., Webb, J. A., and Collison, M. E. (Eds.): Pollen Analysis, 2nd Edn., Blackwell Scientific Publications, Oxford, UK, 216 pp., ISBN 0632021764, 1991.
Nakagawa, T., Brugiapaglia, E., Digerfeldt, G., Reille, M., Beaulieu, J. L. D., and Yasuda, Y.: Dense-media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: comparison with the conventional method, Boreas, 27, 15–24, https://doi.org/10.1111/j.1502-3885.1998.tb00864.x, 1998.
Odgaard, B. V.: Fossil pollen as a record of past biodiversity, J. Biogeogr., 26, 7–17, https://doi.org/10.1046/j.1365-2699.1999.00280.x, 1999.
Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C., and Weedon, J.: vegan: Community Ecology Package, R package version 2.6-2 [code], https://CRAN.R-project.org/package=vegan, 2022.
Prentice, C., Guiot, J., Huntley, B., Jolly, D., and Cheddadi, R.: Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka, Clim. Dyn., 12, 185–194, https://doi.org/10.1007/BF00211617, 1996.
Reitalu, T., Bjune, A. E., Blaus, A., Giesecke, T., Helm, A., Matthias, I., Peglar, S. M., Salonen, J. S., Seppä, H., and Väli, V.: Patterns of modern pollen and plant richness across northern Europe, J. Ecol., 107, 1662–1677, https://doi.org/10.1111/1365-2745.13134, 2019.
Smith, S. A. and Brown, J. W.: Constructing a broadly inclusive seed plant phylogeny, Am. J. Bot., 105, 302–314, https://doi.org/10.1002/ajb2.1019, 2018.
Sugita, S.: Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition, Holocene, 17, 229–241, https://doi.org/10.1177/0959683607075837, 2007a.
Sugita, S.: Theory of quantitative reconstruction of vegetation II: all you need is LOVE, Holocene, 17, 243–257, https://doi.org/10.1177/0959683607075838, 2007b.
Tang, L., Mao, L., Shu, J., Li, C., Shen, C., and Zhou, Z. (Eds.): An Illustrated Handbook of Quaternary Pollen and Spores in China, Science Press, Beijing, 620 pp., ISBN 9787030505682, 2016.
Wang, F., Qian, N., Zhang, Y., and Yang, H. (Eds.): Pollen Flora of China, 2nd Edn., Science Press, Beijing, 461 pp., ISBN 7030036352, 1995.
Wang, H., Jin, Y., Li, K., Liao, M., Liu, Y., Ma, C., Ye, W., Zhang, Y., Luo, Y., and Ni, J.: Holocene Neolithic human activity shaped ecosystem functions through the altering of vegetation traits in Zhejiang, eastern China, Quat. Sci. Rev., 335, 108762, https://doi.org/10.1016/j.quascirev.2024.108762, 2024.
Wang, N., Liu, L., Zhang, Y., and Cao, X.: A modern pollen data set for the forest–meadow–steppe ecotone from the Tibetan Plateau and its potential use in past vegetation reconstruction, Boreas, 51, 847–858, https://doi.org/10.1111/bor.12589, 2022.
Wang, T., Huang, X., Zhang, J., Luo, D., Zheng, M., Xiang, L., Sun, M., Ren, X., Sun, Y., and Zhang, S.: Vegetation cover dynamics on the northeastern Qinghai-Tibet Plateau since late Marine Isotope Stage 3, Quat. Sci. Rev., 318, 108292, https://doi.org/10.1016/j.quascirev.2023.108292, 2023.
Weng, C., Hooghiemstra, H., and Duivenvoorden, J. F.: Challenges in estimating past plant diversity from fossil pollen data: statistical assessment, problems, and possible solutions, Divers. Distrib., 12, 310–318, https://doi.org/10.1111/j.1366-9516.2006.00230.x, 2006.
Whitmore, J., Gajewski, K., Sawada, M., Williams, J., Shuman, B., Bartlein, P., Minckley, T., Viau, A., Webb Iii, T., and Shafer, S.: Modern pollen data from North America and Greenland for multi-scale paleoenvironmental applications, Quat. Sci. Rev., 24, 1828–1848, https://doi.org/10.1016/j.quascirev.2005.03.005, 2005.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. R. Stat. Soc., B: Stat. Methodol., 73, 3–36, https://doi.org/10.1111/j.1467-9868.2010.00749.x, 2011.
Xu, Q., Zhang, S., Gaillard, M.-J., Li, M., Cao, X., Tian, F., and Li, F.: Studies of modern pollen assemblages for pollen dispersal-deposition-preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact: A review based on case studies in China, Quat. Sci. Rev., 149, 151–166, https://doi.org/10.1016/j.quascirev.2016.07.017, 2016.
Yao, T., Thompson, L. G., Mosbrugger, V., Zhang, F., Ma, Y., Luo, T., Xu, B., Yang, X., Joswiak, D. R., and Wang, W.: Third pole environment (TPE), Environ. Dev., 3, 52–64, https://doi.org/10.1016/j.envdev.2012.04.002, 2012.
Yu, G., Tang, L., Yang, X., Ke, X., and Harrison, S. P.: Modern pollen samples from alpine vegetation on the Tibetan Plateau, Glob. Ecol. Biogeogr., 10, 503–519, https://doi.org/10.1046/j.1466-822X.2001.00258.x, 2001.
Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., McGlinn, D. J., O'Meara, B. C., Moles, A. T., and Reich, P. B.: Three keys to the radiation of angiosperms into freezing environments, Nature, 506, 89–92, https://doi.org/10.1038/nature12872, 2014.
Zhang, N., Cao, X., Xu, Q., Huang, X., Herzschuh, U., Shen, Z., Peng, W., Liu, S., Wu, D., and Wang, J.: Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation, Catena, 210, 105892, https://doi.org/10.1016/j.catena.2021.105892, 2022.
Zhang, X. (Ed.): Vegetation Map of the People's Republic of China (1:1 000 000), Geology Press, Beijing, 274 pp., ISBN 9787116045132, 2007.
Zhang, Y., Li, B., Liu, L., and Zheng, D.: Redetermine the region and boundaries of Tibetan Plateau, Geogr. Res., 40, 1543–1553, https://doi.org/10.11821/dlyj020210138, 2021 (in Chinese).
Zheng, Z., Wei, J., Huang, K., Xu, Q., Lu, H., Tarasov, P., Luo, C., Beaudouin, C., Deng, Y., and Pan, A.: East Asian pollen database: modern pollen distribution and its quantitative relationship with vegetation and climate, J. Biogeogr., 41, 1819–1832, https://doi.org/10.1111/jbi.12361, 2014.
Zhou, S., Zhang, J., Cheng, B., Zhu, H., and Lin, J.: Holocene pollen record from Lake Gahai, NE Tibetan Plateau and its implications for quantitative reconstruction of regional precipitation, Quat. Sci. Rev., 326, 108504, https://doi.org/10.1016/j.quascirev.2024.108504, 2024.
Zhu, C., Ma, C., YU, S. Y., Tang, L., Zhang, W., and Lu, X.: A detailed pollen record of vegetation and climate changes in Central China during the past 16 000 years, Boreas, 39, 69–76, https://doi.org/10.1111/j.1502-3885.2009.00098.x, 2010.
Short summary
We present a modern pollen dataset comprising 555 pollen count records from 307 sites across the Tibetan Plateau (28–40° N and 75–103° E). This open-access dataset has diverse potential applications in paleoecological and paleoclimatic research. It provides a scientific basis for reconstructing temporal changes in climate and vegetation, and enables the assessment of pollen assemblages' reliability in representing the dynamics of vegetation cover, plant diversity, and functional traits.
We present a modern pollen dataset comprising 555 pollen count records from 307 sites across the...
Altmetrics
Final-revised paper
Preprint