Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4985-2025
https://doi.org/10.5194/essd-17-4985-2025
Data description paper
 | 
29 Sep 2025
Data description paper |  | 29 Sep 2025

Updates to C-LSAT 2.1 and the development of high-resolution land surface air temperature and diurnal temperature range datasets

Sihao Wei, Qingxiang Li, Qiya Xu, Zichen Li, Hanyu Zhang, and Jiaxue Lin

Related authors

A Unified System for Evaluating, Ranking and Clustering in Diverse Scientific Domains
Zengyun Hu, Xi Chen, Deliang Chen, Zhuo Zhang, Qiming Zhou, and Qingxiang Li
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-82,https://doi.org/10.5194/gmd-2024-82, 2024
Preprint withdrawn
Short summary
An integrated and homogenized global surface solar radiation dataset and its reconstruction based on a convolutional neural network approach
Boyang Jiao, Yucheng Su, Qingxiang Li, Veronica Manara, and Martin Wild
Earth Syst. Sci. Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023,https://doi.org/10.5194/essd-15-4519-2023, 2023
Short summary
Description of the China global Merged Surface Temperature version 2.0
Wenbin Sun, Yang Yang, Liya Chao, Wenjie Dong, Boyin Huang, Phil Jones, and Qingxiang Li
Earth Syst. Sci. Data, 14, 1677–1693, https://doi.org/10.5194/essd-14-1677-2022,https://doi.org/10.5194/essd-14-1677-2022, 2022
Short summary
Construction of homogenized daily surface air temperature for the city of Tianjin during 1887–2019
Peng Si, Qingxiang Li, and Phil Jones
Earth Syst. Sci. Data, 13, 2211–2226, https://doi.org/10.5194/essd-13-2211-2021,https://doi.org/10.5194/essd-13-2211-2021, 2021
Short summary

Cited articles

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at 1 km resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018. 
Caesar, J., Alexander, L., and Vose, R.: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set, J. Geophys. Res.-Atmos., 111, https://doi.org/10.1029/2005JD006280, 2006. 
Cheng, J., Li, Q., Chao, L., Maity, S., Huang, B., and Jones, P.: Development of High Resolution and Homogenized Gridded Land Surface Air Temperature Data: A Case Study Over Pan-East Asia, Front. Environ. Sci., 8, https://doi.org/10.3389/fenvs.2020.588570, 2020. 
Cressie, N.: The origins of kriging, Math. Geol., 22, 239–252, https://doi.org/10.1007/BF00889887, 1990. 
Daly, C., Neilson, R. P., and Phillips, D. L.: A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain, J. Appl. Meteorol. Clim., 33, 140–158, https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2, 1994. 
Download
Short summary
This study introduces the update to the C-LSAT 2.1 station data and its gridded dataset (5° × 5°) for 1850–2024, into which nearly 3000 additional stations were merged. Building on this, high‑resolution (0.5° × 0.5°) land surface air temperature (C‑LSAT HRv1) and diurnal temperature range (C‑LDTR HRv1) datasets for 1901–2023 were produced via thin-plate spline interpolation of the climatology fields and adjusted inverse distance weighted interpolation of the anomaly fields.
Share
Altmetrics
Final-revised paper
Preprint