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Abstract. High-resolution climate datasets are of critical importance for the comprehension of spatial and tem-
poral variations in climate and hydrology. However, their development is significantly influenced by the avail-
ability, density, and quality of observational data. Building on the China global land surface air temperature 2.0
(C-LSAT 2.0) station data, we collected and integrated nearly 3000 additional station observations and conducted
quality control and homogenization processing to complete the updates to the C-LSAT 2.1 dataset. The coverage
of the C-LSAT 2.1 dataset has been significantly enhanced, further improving the representativeness of global
land diurnal temperature range (DTR) data with greater spatial heterogeneity. Compared to C-LSAT 2.0, C-LSAT
2.1 shows consistent overall trends, except for a slight post-2010 increase for the Southern Hemisphere LSAT
anomaly. Furthermore, we employed a “thin-plate spline (climatology) and adjusted inverse distance weighted
(anomaly fields)” technical framework to develop a high-resolution (0.5°× 0.5°) LSAT (C-LSAT HRv1) and
DTR (C-LDTR HRv1) dataset covering January 1901–December 2023. Apart from discrepancies in 1901–1950
due to the limited number of observational stations, the C-LSAT HRv1 and C-LDTR HRv1 datasets effectively
capture global and regional variation patterns for subsequent periods. The C-LSAT 2.1 dataset can be down-
loaded from https://doi.org/10.6084/m9.figshare.28255394.v1 (Wei et al., 2025a), while the C-LSAT HRv1 and
C-LDTR HRv1 datasets are available at https://doi.org/10.6084/m9.figshare.28255505.v2 (Wei et al., 2025c) and
https://doi.org/10.6084/m9.figshare.28255568.v2 (Wei et al., 2025b), respectively. They are also accessible via
http://www.gwpu.net (last access: 11 July 2025).

1 Introduction

Global surface temperature (GST) is one of the most impor-
tant indicators in the Earth’s climate system, serving as a
key metric for monitoring and understanding climate change
and directly reflecting global warming (IPCC, 2007, 2013,
2021). Likewise, land surface air temperature (LSAT), which
is closely related to GST, is also of critical importance. Since
the onset of global industrialization, the rising emissions
of greenhouse gases, such as carbon dioxide, have driven
rapid increases in LSAT, causing profound consequences for

ecosystem stability, human health, and economic production
(Jones et al., 2023; Loucks, 2021). The Intergovernmental
Panel on Climate Change (IPCC) has systematically summa-
rized and assessed climate change research through its as-
sessment reports. These documents reveal the current state,
future change, impacts, and adaptation measures of climate
change, providing the scientific basis for policy decisions
worldwide. According to IPCC AR6 (2021), global land
temperature during 2011–2020 increased by 1.59 °C (1.34–
1.83 °C) relative to pre-industrial levels.
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Figure 1. Updates to the C-LSAT 2.1 station data.

The diurnal temperature range (DTR) indicates the differ-
ence between daytime and nighttime temperatures; it is in-
fluenced by factors such as greenhouse gases, aerosols, and
land use changes (Kalnay and Cai, 2003; Stjern et al., 2020).
DTR exhibits significant spatial heterogeneity and seasonal
variations. In the latter half of the 20th century, observed
nighttime warming on land exceeded daytime warming. This
trend led to the narrowing of the global DTR (Zhong et al.,
2023). Furthermore, DTR changes are strongly correlated
with the probability of extreme high- and low-temperature
events. Since 1950, the global DTR has been decreasing,
with most of the reduction occurring between 1960 and 1980
(IPCC, 2021).

Meteorological observation stations vary significantly in
terms of spatial distribution, especially in high-altitude or
otherwise complex terrain. Moreover, disparities in temporal
coverage and incomplete homogenization affect the accuracy
of climate change analysis (Kumar et al., 2022; Sokol et al.,
2021; Viviroli et al., 2011; Zhao et al., 2020). The major rep-
resentative LSAT benchmark observational datasets world-
wide used in IPCC AR6 include CRUTEM (Osborn et al.,
2021), GHCN (Menne et al., 2018), GISTEMP (Lenssen
et al., 2024), Berkeley Earth (Rohde and Hausfather, 2020),
and C-LSAT (Li et al., 2021; Sun et al., 2021). Global land
DTR datasets include CRU TS (Harris et al., 2020), GHCN-
DEX (Menne et al., 2018), and the recently released C-LDTR
(Xu et al., 2025). Some datasets provide Tmax and Tmin, en-
abling the calculation of DTR, such as Berkeley Earth (Ro-
hde and Hausfather, 2020), HadEX3 (Dunn et al., 2024), and
HadGHCND (Caesar et al., 2006).

Improving spatial resolution is essential for investigating
regional climate change, especially in quantifying the effects
of topography and in supporting climate research at medium
and small scales, which can provide more accurate support
for climate prediction, regional model refinement, and cli-
mate risk evaluation (Beck et al., 2018; Harris et al., 2014,
2020; Kotlarski et al., 2014; Sun et al., 2018). Global high-
resolution LSAT datasets have been continuously developed
in recent years. However, they remain constrained in captur-
ing climate change in some regions (Karger et al., 2017; Li
et al., 2021, 2024a; Wang et al., 2024). Accordingly, system-
atically integrating additional observational networks is cru-
cial to improve dataset accuracy and better resolve regional
climate change (Haylock et al., 2008; Li et al., 2017, 2020;
Menne et al., 2012; Wu and Gao, 2013; Xu et al., 2013).
Long-term series datasets are conventionally generated by
separately interpolating climatology and anomaly fields and
then combining them into a complete dataset (Cheng et al.,
2020; Harris et al., 2020; New et al., 1999, 2000; Schamm
et al., 2014). For climatology field interpolation, common
methods include thin-plate spline (TPS) (Wahba, 1990), the
Precipitation-elevation Regressions on Independent Slopes
Model (PRISM) (Daly et al., 1994), and Kriging (Cressie,
1990). When interpolating the anomaly field, the inverse
distance weighted (IDW), multiple regression, and bilinear
interpolations are frequently employed. Among the above-
mentioned datasets, the Climatic Research Unit (CRU) de-
veloped a 0.5°×0.5° high-resolution global LSAT dataset by
applying TPS for the climatology field and angular distance
weighting (ADW) (New et al., 1999, 2000) for the anomaly
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field. The Berkeley Earth team employed Kriging and IDW
to construct a high-resolution global LSAT dataset with a
1°× 1° resolution (Rohde et al., 2013). Fick and Hijmans
(2017) developed a global 1 km LSAT dataset using TPS.

The C-LSAT dataset integrates observational datasets
from over 10 global, regional, and national sources, continu-
ously improving data completeness and accuracy (Li, 2019;
Li et al., 2021, 2023, 2024b; Sun et al., 2021c, 2022; Sun
and Li, 2021a, b; Xu et al., 2018, 2024, 2025; Yun et al.,
2019). To date, the C-LSAT team provides only 5°×5° grid-
ded products (C-LSAT 2.0, including monthly mean temper-
ature (Tavg), monthly mean maximum temperature (Tmax),
and monthly mean minimum temperature (Tmin)) (http://
www.gwpu.net, last access: 5 February 2025) and recently
released C-LDTR (Xu et al., 2025). This study aims to uti-
lize the recently updated C-LSAT 2.1 station data to update
the C-LSAT 2.1 (5°× 5°) gridded data (Wei et al., 2025a)
and to develop corresponding global high-resolution LSAT
(C-LSAT HRv1) and DTR (C-LDTR HRv1) datasets at a
0.5°× 0.5° resolution (Wei et al., 2025b, c). Consequently,
this study is organized into seven main sections. Section 2
details the updates and pre-processing of the C-LSAT 2.1
station data. Section 3 presents the updated 5°× 5° C-LSAT
2.1 gridded product. The development and validation of the
C-LSAT HRv1 and C-LDTR HRv1 datasets are presented
in Sect. 4. Section 5 analyses the spatiotemporal patterns of
global and regional LSAT and DTR using high-resolution
datasets (0.5°× 0.5°). Section 6 discusses the availability of
these datasets. Section 7 concludes with the key findings of
this study.

2 Updates and pre-processing of C-LSAT 2.1 station
data

2.1 Data sources and updates

2.1.1 Data integration

This study builds on C-LSAT 2.0 station data (Xu et al.,
2018; Yun et al., 2019), combined with additional observa-
tions integrated from various countries, regions, and global
sources, covering the period from 2013 to 2023. Compared
to version 2.0, the C-LSAT 2.1 station data significantly in-
creased the number of observation stations (Tavg increased
from 15 936 to 25 085 stations, Tmax increased from 13 648
to 25 086 stations, and Tmin increased from 13 629 to 25 083
stations, as shown in Fig. 1 of Xu et al., 2025).

Various data sources commonly assign different station
IDs to the same station. Therefore, matching the data from
various sources with the corresponding stations in the C-
LSAT station data is a problem that requires urgent resolu-
tion. Most stations have a core five-digit ID. For example, the
core ID for the “JAN MAYEN” station is “01001”. In GSOD,
this appears as “01001099999”; in the CLIMATE Report,
this appears as “01001”; and in C-LSAT station data, this ap-

Table 1. Quality control results for C-LSAT 2.1 station data (unit:
station month).

Steps Results of QC

Tavg DTR

First step
(check for outliers)

13 984 (0.11 %) 19 293 (0.20 %)

Second step (spatial
consistency check)

38 090 (0.31 %) 12 600 (0.13 %)

Third step (internal
consistency check)

5061 (0.04 %) 0 (0 %)

Table 2. The number of breakpoints adjusted at each step of ho-
mogenization.

Breaks Tmax Tmin

One 244 440
Two 106 195
Three 48 67
Four or more 22 52
Total breaks 726 1276
Total adjusted stations 420 754
Total stations 25 086 25 083

pears as “601001001000”. For stations lacking a consistent
core ID, we employ the station name or identify nearby sta-
tions to locate the corresponding stations and complete the
updates. Notably, when the sequence of a station is derived
from multiple data sources, there may be homogenization
discrepancies. In such cases, the application of calibration
procedures for the specific station is necessary.

2.1.2 Eliminating duplicate stations

When updating data from multiple sources, duplicate sta-
tions are inevitable. They arise either because different data
sources assign distinct IDs to the same station or because iter-
ative updates generate new duplicates. Duplicate stations can
affect the interpolation of both the climatology and anomaly
fields, causing deviations in the interpolation results. To ad-
dress this issue, it is essential to eliminate duplicate stations.
Based on the same core IDs and similar station names, the C-
LSAT 2.1 station data are filtered to identify and select dupli-
cate stations. Subsequently, time series from each duplicate
and its corresponding update sources or nearby stations are
plotted for comparison. A reference station with the longest
and most consistent record is then chosen. The data from
the duplicate stations are selectively merged with the refer-
ence station or retained unmodified, ensuring the retention of
a single representative station for each group of duplicates
(Rennie et al., 2014; Xu et al., 2018).
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Table 3. Interpolation schemes for climatology field (lat: latitude;
long: longitude; ele: elevation).

Experiments Independent Covariates Order of
spline variables spline

A1 Lat, long Ele 2
A2 Lat, long Ele 3
A3 Lat, long Ele 4
B1 Lat, long, ele / 2
B2 Lat, long, ele / 3
B3 Lat, long, ele / 4

2.1.3 Updates to climatology

The Tavg variable contains climatology (1961–1990) in the
C-LSAT 2.1 station data including 13 746 stations (Fig. 1).
Among these, 11 975 stations calculate Tavg using the av-
erage of Tmax and Tmin. The remaining 1771 stations,
which lack either Tmax or Tmin, are primarily derived from
datasets such as CRUTEM4, HISTALP, and SCAR. Com-
pared to other datasets, the C-LSAT 2.1 station data demon-
strate substantial improvements in station coverage in multi-
ple regions, especially in East Asia. Figure 1 illustrates the C-
LSAT 2.1 station data updates; compared to version 2.0, the
number of stations increased significantly for Tmax, Tmin,
and Tavg, particularly after the 1970s. These additional sta-
tions substantially expand spatial coverage, thereby enhanc-
ing the accuracy of data and reducing uncertainty after grid-
ding. For temporal coverage, the majority of stations provide
data for 50–80 years, with a few covering 80–100 years (Ta-
ble S1 in the Supplement).

2.2 Data pre-processing

2.2.1 Quality control

Data quality control is a crucial step to ensure the accuracy
and reliability of datasets. By identifying and eliminating
outliers, invalid data, and measurement errors, this process
reduces the influence of observational biases, ensuring the
consistency and integrity of the data.

First, when updating station data, if a station has a data
record exceeding 15 years, its new observations are subjected
to quality control. Any anomaly – defined as the difference
between the updated data and the prior monthly mean – that
exceeds 5 times the standard deviation is classified as an out-
lier and set to missing.

Subsequently, quality control is performed on all station
data during gridded-data generation. This study follows the
methods proposed by Lawrimore et al. (2011) and Menne
et al. (2009) to implement the necessary quality control steps
for C-LSAT 2.1 station data. The number of data values ex-
cluded during the quality control procedure is shown in Ta-
ble 1.

Figure 2. The LSAT anomalies for the globe (a), Northern Hemi-
sphere (b), and Southern Hemisphere (c) from 1901 to 2023 for
C-LSAT 2.1 and other datasets.

1. Climatic outlier check. Stations with monthly records
exceeding 10 years were selected, with the period from
1961 to 1990 as the climatology. The monthly climato-
logical mean value was subtracted from the selected sta-
tions to calculate anomalies for each station. The stan-
dard deviation (SD) for each month during the climatol-
ogy period was subsequently calculated. Any anomaly
exceeding 5 times the SD for the corresponding month
was flagged as an outlier and excluded.

2. Spatial consistency check. Based on Eq. (1), the
anomaly data were evaluated by examining all stations.
For each station i, all stations located within a 500 km
radius were identified, up to a maximum of 20 neigh-
bouring stations (n≤ 20). The mean (X) and SD of the
anomalies for these n+ 1 stations were calculated. If
the absolute value of the difference between the value at
station i and X exceeded 3 times the SD, this value was
classified as an outlier and removed.

|Xi −X|> 3SD (1)
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Figure 3. Spatial distribution of meteorological observational stations for LSAT (a) and DTR (b), along with the division of the 20 global
interpolation regions.

Table 4. Performance metrics for climatology interpolation schemes.

Variables Experiments SNR RTGCV RTMSR RTVAR

LSAT A1 0.41 0.98 0.70 0.83
A2 0.28 1.00 0.79 0.89
A3 0.19 1.06 0.90 0.97
B1 0.27 0.98 0.77 0.87
B2 0.37 0.91 0.68 0.78
B3 0.34 0.91 0.68 0.78

DTR A1 0.37 1.65 1.23 1.42
A2 0.31 1.68 1.31 1.48
A3 0.23 1.72 1.43 1.56
B1 0.42 1.65 1.21 1.41
B2 0.36 1.62 1.22 1.40
B3 0.34 1.63 1.24 1.42
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Figure 4. Cross-validation results for LSAT climatology field.

Figure 5. Cross-validation results for DTR climatology field.
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Figure 6. MAE, RMSE, and DISO validation results of the climatology fields for C-LSAT HRv1 (a–c) and C-LDTR HRv1 (d–f).

3. Internal consistency check. The Tmax, Tmin, and Tavg
of station data were assessed. If Tavg was larger than
Tmax or if Tavg was smaller than Tmin then these val-
ues were identified as outliers and removed.

2.2.2 Homogenization

Data homogenization is crucial for understanding climate
change. Although its influence on a global or large scale may
be limited, its impacts on local regions are often substantial
(Peterson et al., 1998; Ribeiro et al., 2016). Homogenization
removes data discontinuities caused by non-climatic factors
such as station relocations, instrument changes, and environ-
mental transformations (e.g. urbanization), ensuring that the
data accurately reflect signals of climate change (Eccel et al.,
2012; Jiao et al., 2023). Homogenized data enhance reliabil-
ity and reduce error propagation.

The homogenization process of C-LSAT station data fol-
lows the work of Xu et al. (2025). Using the method proposed
by Peterson and Easterling (1994), a reference series was
constructed by selecting three to five neighbouring stations
with correlation coefficients greater than 0.8 relative to the
target station. Based on the spatial distances of these stations,
a reference LSAT series was generated through a weighted
average of first-order differences. Subsequently, the RHTest
V4 software was used to detect and correct discontinuities
in the target series (Wang and Feng 2013). The PMTred al-
gorithm (derived from the penalized maximal t test, PMT)
in RHTest V4 served as the primary algorithm to detect dis-
continuities in the target station’s monthly average Tmax and

Tmin series at a significance level of 5 %. For any confirmed
breakpoints, the differences between the target series and the
reference series were uniformly allocated using the mean ad-
justment (Wang et al., 2008a, b). According to this proce-
dure, 726 breakpoints (in 420 stations) for the 25 086 Tmax
stations and 1276 breakpoints (in 754 stations) for the 25 083
Tmin stations of the C-LSAT station data were adjusted. The
homogenized Tmax and Tmin data were then combined into
the LSAT and DTR datasets (Table 2).

3 Updates to C-LSAT 2.1

Based on the C-LSAT 2.1 station data, this study applied
the climate anomaly method (CAM) for gridding and recon-
structed the gridded data with high- and low-frequency com-
ponent decomposition and empirical orthogonal telecorrela-
tion (EOT) reconstruction methods (Sun et al., 2021c), en-
hancing the coverage of early-period grid data. Subsequently,
observational constraints were applied to increase the reli-
ability of the data, ultimately resulting in a high-coverage,
high-accuracy C-LSAT 2.1 dataset (5°× 5°).

Figure 2 shows a comparison of the LSAT anomaly time
series among the updated C-LSAT 2.1, C-LSAT 2.0, and
other LSAT datasets across global, Northern Hemisphere,
and Southern Hemisphere regions. C-LSAT 2.1 shows strong
agreement with other LSAT datasets in capturing long-term
warming trends, particularly the accelerated warming since
the 1970s. The warming rates for C-LSAT 2.0 are 0.133±
0.014, 0.145±0.016, and 0.098±0.011°Cdecade−1 for the
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Figure 7. MAE, RMSE, and DISO validation results of the anomaly fields for C-LSAT HRv1 (a–c) and C-LDTR HRv1 (d–f).

Figure 8. The LSAT for the C-LSAT HRv1 climatology field.

globe, Northern Hemisphere, and Southern Hemisphere, re-
spectively, while those for C-LSAT 2.1 are 0.131± 0.015,
0.141±0.017, and 0.101±0.011°Cdecade−1. The serial cor-
relation of the time series has been taken into account in
the calculation of trend uncertainties (Li et al., 2021). In
C-LSAT 2.1, the warming rates for the global, Northern
Hemisphere, and Southern Hemisphere regions present slight

changes in comparison to version 2.0. For the global, North-
ern Hemisphere, and Southern Hemisphere regions, C-LSAT
2.1 is higher than C-LSAT 2.0 both before 1950 and after
2000 (this is particularly pronounced for the Southern Hemi-
sphere). The increase before 1950 is primarily driven by im-
proved data coverage, while changes in other periods may
stem from the eliminating duplication process and updates
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Figure 9. Spatial distribution of the LSAT for the C-LSAT HRv1 climatology field.

to new data sources. These results suggest that C-LSAT 2.1
provides a more accurate representation of LSAT trends.

4 Development of C-LSAT HRv1 and C-LDTR HRv1

Building upon Cheng et al. (2020), this study also uses the
TPS and adjusted inverse distance weighted (AIDW) meth-
ods to interpolate the climatology and anomaly fields of
the C-LSAT 2.1 station data, ultimately generating the C-
LSAT HRv1 and C-LDTR HRv1 datasets with a resolution
of 0.5°× 0.5°.

4.1 Interpolation and validation of the climatology field

4.1.1 Interpolation and region division

TPS interpolation was used to generate the climatology fields
(1961–1990) of LSAT and DTR in this study. This was origi-
nally proposed by Wahba (1990) and later optimized and im-
proved by Hutchinson et al. (Hutchinson, 1991, 1995, 1998a,
b; Hutchinson and Gessler, 1994), evolving into the partial
TPS, which integrates covariate-dependent interpolation, ex-
tending the previous method that was limited to calculations
based on independent variables. Based on the TPS, Hutchin-
son (1991) designed and developed the software ANUS-
PLIN, which enables multivariable data interpolation. This
software has been widely adopted for meteorological data
interpolation. This study employed ANUSPLIN for clima-
tology field interpolation.

Due to the strong correlation between temperature and el-
evation, longitude, latitude, and elevation were selected as
variables for interpolating LSAT and DTR climatology field.

The elevation data used in this study were obtained from
the ETOPO2022 published by NOAA (National Oceanic
and Atmospheric Administration) (available at https://www.
ncei.noaa.gov/products/etopo-global-relief-model, last ac-
cess: 3 January 2024). This dataset integrates topography,
bathymetry, and coastline data from regional and global
datasets, providing a comprehensive and high-resolution rep-
resentation of the Earth’s geophysical features (MacFerrin et
al., 2025).

Because of the Earth’s spherical shape, the TPS cannot
provide a globally consistent surface interpolation. Thus, the
globe was divided into regions for separate interpolation.
This study refers to the global partitioning scheme from the
CRU (New et al., 1999) and WorldClim2 (Fick and Hijmans,
2017) datasets, dividing the globe into 20 regions for interpo-
lation. The spatial distribution is shown in Fig. 3. In terms of
station density, the highest density is observed around 40° N
and 40° S, while the lowest density occurs at the poles and
the Equator. After interpolating the data for each region, the
data from the 20 regions are merged into the global dataset. A
known limitation of ANUSPLIN interpolation is the occur-
rence of larger errors near regional boundaries. To address
this, when interpolating the 20 regions, the boundaries of
each region are extended (by 5° latitudinally and 10° longitu-
dinally). After interpolation, the extended areas are clipped,
and then merged into the global dataset. This approach helps
minimize boundary-related errors of the dataset.

4.1.2 Validation of the climatology field

Longitude and latitude are typically used as independent
variables for meteorological interpolation. However, whether
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elevation should be treated as an independent variable or
a covariate demands careful evaluation. There are three
main indicators for evaluating the interpolation accuracy of
the climatology field: the square root of generalized cross-
validation (RTGCV), the mean square residual (RTMSR),
and the data error variance estimate (RTVAR). The RTGCV
quantifies the overall error of data fitting during the cross-
validation process, measuring the model’s generalization ca-
pability. The RTMSR reflects how well the model fits the
input data, and the RTVAR evaluates the uncertainty in the
data. Another indicator, the signal-to-noise ratio (SNR), is
typically used to indicate the complexity of the fitted surface.
It represents the ratio between the signal and the error value
in the ANUSPLIN software output file. This value generally
needs to be less than 1 to indicate that the chosen interpola-
tion experiment is feasible.

Parameter schemes (Table 3) and their corresponding re-
sults (Table 4, Figs. 4 and 5) are presented below. Overall,
DTR interpolation errors exceed those for LSAT, and inter-
polation errors (not included in Table 4) increase markedly
at spline order 4 compared to orders 2 and 3. As a result,
all order-4 experiments (A3 and B3) are excluded. For the
Antarctic (region 20), the four error metrics of LSAT demon-
strated substantial increases, indicating high uncertainty in
this area. This is attributed to the notably low and uneven sta-
tion distributed for the Antarctic. Considering the increased
error mentioned before, both LSAT and DTR for the Antarc-
tic are excluded from this study. Thus, the subsequent con-
tents of this study exclude the Antarctic (region 20). After ex-
cluding region 20, the SNR, RTGCV, RTMSR, and RTVAR
are compared across the remaining 19 regions. For LSAT,
experiment B2 demonstrates optimal performance; however,
with respect to the DTR, although experiment B2 achieves
the highest overall effectiveness, it produces negative val-
ues in some regions and is therefore excluded, leading to the
adoption of experiment B1 (Table 4).

Based on the cross-validation results, the mean absolute
error (MAE), the root mean squared error (RMSE), and
the distance between indices of simulation and observa-
tion (DISO) are computed for C-LSAT HRv1 and C-LDTR
HRv1 climatology field evaluation (Fig. 6). DISO is a com-
prehensive performance evaluation index that combines the
correlation coefficient (r), absolute error (AE), and RMSE,
and the closer its value is to 0, the better the agreement
between the simulation and observation (Hu et al., 2019,
2022; Zhou et al., 2021). For C-LSAT HRv1, the MAE,
RMSE, and DISO for the Southern Hemisphere fall below
the global means, whereas Northern Hemisphere values ex-
ceed the global means. In contrast, the C-LDTR HRv1 MAE
and RMSE are higher for the Southern Hemisphere than
globally. However, the comprehensive index DISO confirms
that the Southern Hemisphere’s overall performance still sur-
passes that of both the Northern Hemisphere and the global
average. For high-altitude and complex terrain regions, the
Tibetan Plateau is selected for validation. The results indi-

Figure 10. The LSAT anomalies for the globe (a), Northern Hemi-
sphere (b), and Southern Hemisphere (c) from 1901 to 2023 for
C-LSAT HRv1 and C-LSAT 2.1.

cate that all LSAT indices in this region surpass their global
and hemispheric levels, whereas DTR performance remains
consistent (Fig. S1 in the Supplement). This discrepancy
can be attributed to a combination of factors, including a
limited observational network, significant topographic varia-
tions, land use, and so on. To improve data reliability, future
work should refine spatial resolution and optimize variable
selection.

4.2 Interpolation and validation of the anomaly field

In this study, AIDW (Cheng et al., 2020) was employed for
spatial interpolation of the monthly anomalies from 1901 to
2023.

IDW assumes that spatially neighbouring data points ex-
hibit higher spatial autocorrelation, and the closer a sample
point is to the prediction point, the greater its influence on the
predicted value. It assigns weights to sample points based on
the inverse of the distance and then calculates the weighted
average of the values from each sample point. The equation
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Figure 11. Spatial distribution of the LSAT change rate for C-LSAT HRv1 anomaly field from 1901 to 2023.

Figure 12. Spatial distribution of the LSAT change rates for C-LSAT HRv1 anomaly field during 1901–1950 (a), 1951–2023 (b), 1979–2023
(c), and 1998–2023 (d).
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Table 5. The LSAT change rates and their 95 % confidence intervals (“*”) for C-LSAT HRv1 over five periods for the globe, Northern
Hemisphere, and Southern Hemisphere (°Cdecade−1).

1901–1950 1901–2023 1951–2023 1979–2023 1998–2023

Global 0.098± 0.033* 0.132± 0.015* 0.243± 0.026* 0.330± 0.041* 0.307± 0.086*
Northern Hemisphere 0.110± 0.037* 0.140± 0.017* 0.266± 0.030* 0.373± 0.047* 0.335± 0.091*
Southern Hemisphere 0.064± 0.034* 0.106± 0.011* 0.178± 0.022* 0.207± 0.041* 0.226± 0.110*

Figure 13. The LSAT anomalies for C-LSAT HRv1 and C-LSAT 2.1 on different continents from 1901 to 2023.

is as follows:

T =
∑n

i=1
WiTi, (2)

Wi =
d−αi∑n
i=1d

−α
i

. (3)

T represents the value at the prediction point, Ti is the value
at a given sample point,Wi is the weight of the sample point,
n is the number of selected sample points, di is the distance
from the sample point to the prediction point, and α is the
parameter that controls how the weight decays with distance.
When using traditional IDW interpolation, the weight ex-
hibits a rapid increase, even reaching infinity, as the distance
between two points approaches zero. This leads to the sam-
ple point having an excessively high weight, which distorts
the final estimated value. Building upon the ADW method
(New et al., 2000), this study modifies the weight calculation
method of the original IDW. The equation is as follows:

Wi =
(edi/d0 )−α∑n
i=1(edi/d0 )−α

. (4)

d0 is the decay distance. Following the CRU05 (New et al.,
2000), we adopted values of 1200 km for LSAT interpola-

tion and 750 km for DTR interpolation. Empirical testing re-
vealed that the optimal results were achieved when n= 6 and
α = 4 (Cheng et al., 2020). The AIDW method introduces an
exponential decay relationship between distance and weight,
ensuring that the maximum weight does not exceed 1. The
decay curve is moderated, leading to a more reasonable dis-
tribution of weights.

Figure 7 demonstrates that the trends in LSAT and DTR
exhibit strong coherence, both showing initial declines,
reaching a minimum during the 1960–1990 period, and re-
bounding thereafter. This is correlated with the number of
stations, and their trends are essentially opposite. The trend
for the Northern Hemisphere is largely consistent with the
global trend. For LSAT, the indices in the Southern Hemi-
sphere are lower than those in the Northern Hemisphere and
global values from 1901 to 1960 but become slightly higher
after 1960. Regarding DTR, the variabilities in MAE and
RMSE for the Southern Hemisphere are significantly higher
than those for the Northern Hemisphere and globe. During
the 1901–1960 period, the global and hemispheric levels are
almost identical, but after 1960, the MAE and RMSE for
the Southern Hemisphere remain consistently higher than
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Figure 14. The DTR for the C-LDTR HRv1 climatology field.

Figure 15. Spatial distribution of the DTR for the C-LDTR HRv1 climatology field.

those for the Northern Hemisphere and globe. Furthermore,
with regard to DISO, the Southern Hemisphere outperforms
both the global and Northern Hemispheric averages. Over
the Tibetan Plateau, the LSAT and DTR validation results
are essentially comparable to global and hemispheric values
(Fig. S2 in the Supplement).

5 Spatiotemporal analysis of global LSAT and DTR

5.1 C-LSAT HRv1 climatology field

The performance of the C-LSAT HRv1 climatology field is
evaluated for the global, Northern Hemisphere, and South-
ern Hemisphere areas. The highest LSAT values for the
global and Northern Hemisphere means are observed in July,
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reaching 20.3 and 21.3 °C, respectively, while the lowest are
recorded in January at 5.3 and −1.4°C. For the Southern
Hemisphere, LSAT peaks in January (24.6 °C) and reaches
a minimum in July (17.4 °C) (Fig. 8). Excluding Antarctic
data reduces Southern Hemisphere land area, thereby reduc-
ing its contribution to the global LSAT average. Spatially,
LSAT shows a dependency on both latitude and elevation,
with this being significantly lower in high-latitude regions
(such as northern North America and northern Asia) and
high-elevation areas (e.g. the Tibetan Plateau and the Andes)
compared to other regions (Fig. 9).

5.2 C-LSAT HRv1 anomaly field

5.2.1 Global and hemispheric scales

The LSAT anomaly variations of C-LSAT HRv1 and C-
LSAT 2.1 from 1901 to 2023 for the globe, Northern Hemi-
sphere, and Southern Hemisphere are presented in Fig. 10.
The anomaly trends obtained in C-LSAT HRv1 are largely
consistent with those of C-LSAT 2.1, with warming rates of
0.132±0.015, 0.140±0.017, and 0.106±0.011°Cdecade−1

for the globe, Northern Hemisphere, and Southern Hemi-
sphere, respectively. The LSAT change trends for the globe
and Northern Hemisphere demonstrate comparable patterns,
with warming being predominantly concentrated in two pe-
riods: the 1900–1930s and the 1970–2020s, with accelerated
warming in the latter period. A slight cooling trend occurs in
the middle period, from the 1940s to the 1960s. The warming
for the Southern Hemisphere is relatively slower and contin-
ues throughout the entire 1901–2023 period without experi-
encing the cooling trend observed for the global and North-
ern Hemisphere during the 1940–1960s. Its warming rate
also undergoes a pronounced acceleration after the 1970s.

Annual warming rates for C-LSAT HRv1 (Table 5) are
lowest for 1901–1950, rise sharply after 1951 to peak in
1979, and then decline moderately by 1998. This slowdown
corresponds to the 1998–2014 warming hiatus; although no
cooling is detected, the warming rate is reduced.

Spatially, the LSAT change trend indicates continuous
warming globally from 1901 to 2023, with the fastest warm-
ing occurring in regions such as northern North America,
eastern South America, eastern Europe, and eastern Asia
(Fig. 11). Regarding different periods, the fastest warm-
ing was observed between 1998–2023 (particularly in areas
north of 60° N), while the slowest warming occurred during
1901–1950 (Fig. 12).

5.2.2 Continental scale

At the continental scale, both C-LSAT HRv1 and C-LSAT
2.1 show a warming trend across all six continental domains
since the early 20th century, with this trend intensifying after
the 1970s and manifesting regional differences (Fig. 13). The
warming is pronounced in Asia, Europe, and North America,

Figure 16. The DTR anomalies for the globe (a), Northern Hemi-
sphere (b), and Southern Hemisphere (c) from 1901 to 2023 for
C-LDTR HRv1 and C-LDTR.

whereas it remains comparatively moderated in South Amer-
ica, Africa, and Oceania, reflecting the different responses
of the climate system to global warming. Both datasets are
consistent in terms of their long-term trends; however, dif-
ferences in short-term fluctuations may stem from variations
in spatial resolution and processing methods.

5.3 C-LDTR HRv1 climatology field

Figure 14 shows that the monthly average DTR of the C-
LDTR HRv1 climatology field undergoes a seasonal inflec-
tion in May for the global mean, Northern Hemisphere, and
Southern Hemisphere. The global DTR reaches a maximum
in April (11.9 °C) and a minimum in December (10.9 °C).
For the Northern Hemisphere, the DTR peaks in March
(12.2 °C) and reaches its minimum in November (10.7 °C),
while, for the Southern Hemisphere, the peak occurs in
August (13.0 °C), and the minimum occurs in February
(11.0 °C). The Southern Hemisphere shows the largest DTR
variation, significantly larger than that of the global mean
and Northern Hemispheres, primarily attributed to its smaller
land area, resulting in higher sensitivity. This difference re-
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Table 6. The DTR change rates and their 95 % confidence intervals (“*”) for C-LDTR HRv1 over five periods for the globe, Northern
Hemisphere, and Southern Hemisphere (°Cdecade−1).

1901–1950 1901–2023 1951–2023 1979–2023 1998–2023

Global 0.005± 0.022 −0.031± 0.006* −0.022± 0.013* 0.045± 0.018* 0.097± 0.032*
Northern Hemisphere 0.008± 0.021 −0.038± 0.006* −0.031± 0.013* 0.032± 0.020* 0.087± 0.035*
Southern Hemisphere −0.003± 0.049 −0.011± 0.011 0.001± 0.022 0.081± 0.034* 0.125± 0.085*

Figure 17. Spatial distribution of the DTR change rate for the C-LDTR HRv1 anomaly field from 1901 to 2023.

flects the combined impact of solar radiation, surface charac-
teristics, and seasonal changes on the climate system. Spa-
tially, DTR is influenced by elevation, land use, and land
cover. DTR is elevated over high-elevation regions (moun-
tains and plateaus) and in arid areas such as deserts (Fig. 15).

5.4 C-LDTR HRv1 anomaly field

5.4.1 Global and hemispheric scales

The DTR anomaly changes of C-LDTR HRv1 for the global
mean, Northern Hemisphere, and Southern Hemisphere from
1901 to 2023 are presented in Fig. 16. During 1950–2010,
C-LDTR HRv1 remains highly consistent with C-LDTR,
with change rates of −0.031± 0.006, −0.038± 0.006, and
−0.011± 0.011°C decade−1 for the globe, Northern Hemi-
sphere, and Southern Hemisphere, respectively. However,
there are notable discrepancies before 1950 and after 2010.
From 1901 to 1950, the station number is limited, which re-

sulted in greater uncertainty. Consequently, the differences
between the two datasets are more pronounced. This is
particularly apparent for the Southern Hemisphere, where
the DTR fluctuations and the differences between the two
datasets are significantly larger than those for the globe and
Northern Hemisphere. After 2010, the reduction in DTR (or
Tmax and Tmin) station data leads to the differences between
C-LDTR HRv1 and C-LDTR, which is further reflected in
other DTR datasets (Xu et al., 2025). The DTR is stable dur-
ing the 1900s–1940s and 1980s–1990s, declines during the
1950s–1970s, and shows a slight increase after the 2000s.

Table 6 shows the DTR change rates of C-LDTR HRv1
for different periods. The change rate is stable from 1901
to 1950, then initiates a decline in 1951, stabilizes again
in 1979, and peaks at 1998. The DTR change rates for the
Southern Hemisphere are more pronounced than those for
the globe and Northern Hemisphere after 1979.

It is noteworthy that there is no obvious spatial pattern in
the changes in DTR. During the period of most significant

https://doi.org/10.5194/essd-17-4985-2025 Earth Syst. Sci. Data, 17, 4985–5005, 2025



5000 S. Wei et al.: Updates to C-LSAT 2.1 and the development of high-resolution LSAT and DTR datasets

Figure 18. Spatial distribution of the DTR change rates for the C-LDTR HRv1 anomaly field during 1901–1950 (a), 1951–2023 (b), 1979–
2023 (c), and 1998–2023 (d).

change, 1998–2023, the regions with the most rapid DTR
increases are North America, Europe, and Oceania, whereas
other regions, including Northeast Africa, South Asia, and
the Middle East, demonstrate a pronounced downward trend
(Figs. 17 and 18).

5.4.2 Continental scale

Based on the C-LDTR HRv1 and C-LDTR datasets, Fig. 19
illustrates the complex variation characteristics and signifi-
cant regional differences of DTR across six continents be-
tween 1901 and 2023. DTR anomalies in Asia, Africa,
and South America show the downward trend, whereas the
changes in Europe, North America, and Oceania remain rel-
atively stable. Europe demonstrates a general upward trend
throughout the entire 1901–2023 period, while DTR for the
remaining five continents declines before the 1970s but re-
bounds after 2010.

6 Data availability

The C-LSAT 2.1 dataset is publicly available on the
website at https://doi.org/10.6084/m9.figshare.28255394.v1
(Wei et al., 2025a). C-LSAT HRv1 can be down-

loaded at https://doi.org/10.6084/m9.figshare.28255505.v2
(Wei et al., 2025c). C-LDTR HRv1 can be downloaded at
https://doi.org/10.6084/m9.figshare.28255568.v2 (Wei et al.,
2025b). They can also be accessed at http://www.gwpu.net
(last access: 11 July 2025) for free.

7 Conclusions

This study provides a comprehensive overview of the updates
made to the C-LSAT 2.1 station data and grid data (5°× 5°).
On this basis, the high-resolution (0.5°× 0.5°) LSAT (C-
LSAT HRv1) and DTR (C-LDTR HRv1) datasets are devel-
oped. The key characteristics of the C-LSAT 2.1 station data
and the C-LSAT 2.1, C-LSAT HRv1, and C-LDTR HRv1
datasets are summarized below:

1. C-LSAT 2.1 station data supplemented and integrated
meteorological observational data from various sources,
resulting in a substantial enhancement in global station
coverage. After filtering based on the reference period
(1961–1990), the number of stations for LSAT and DTR
is 13 746 and 11 900, respectively. The number of sta-
tions peaks in the 1970–1980s, followed by a slight de-
cline.
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Figure 19. The DTR anomalies for C-LDTR HRv1 and C-LDTR on different continents from 1901 to 2023.

2. The updated station data were utilized for gridded inter-
polation and EOT reconstruction (C-LSAT 2.1). Com-
pared to the 2.0 version, the LSAT change trends at
global and hemispheric scales exhibit no significant
change in C-LSAT 2.1.

3. The results of comparative analysis of C-LSAT HRv1
with other LSAT datasets show minor discrepancies in
the period from 1901 to 1950, but the trends there-
after demonstrate strong coherence. During the clima-
tology period (1961–1990), the highest LSAT values in
C-LSAT HRv1 are 20.3 °C (July) for the globe, 21.3 °C
(July) for the Northern Hemisphere, and 24.6 °C (Jan-
uary) for the Southern Hemisphere. The lowest LSAT
values are 5.3 °C (January), −1.4°C (January), and
17.4 °C (July) for the globe, Northern Hemisphere, and
Southern Hemisphere. The 1901–2023 warming rates
for C-LSAT HRv1 are 0.132±0.015°Cdecade−1 glob-
ally, 0.140±0.017°Cdecade−1 for the Northern Hemi-
sphere, and 0.106±0.011°Cdecade−1 for the Southern
Hemisphere.

4. The C-LDTR HRv1 dataset differs from other DTR
datasets before 1950 and after 2010, especially for the
Southern Hemisphere. The monthly variation in the
DTR during the climatology period differs significantly
from that of LSAT, with the highest DTR reaching
11.9 °C (April) globally, 12.2 °C (March) for the North-
ern Hemisphere, and 13.0 °C (August) for the Southern
Hemisphere, whereas the lowest values are 10.9 °C (De-
cember) globally, 10.7 °C (November) for the North-
ern Hemisphere, and 11.0 °C (February) for the South-

ern Hemisphere. Over 1901–2023, the C-LDTR HRv1
shows change rates of −0.031± 0.006°Cdecade−1

globally, −0.038± 0.006°Cdecade−1 for the Northern
Hemisphere, and −0.011± 0.011°Cdecade−1 for the
Southern Hemisphere.

Overall, C-LSAT HRv1 exhibits high consistency with estab-
lished LSAT datasets. In contrast, the differences observed in
C-LDTR HRv1 are primarily due to limited station availabil-
ity in the early period and a reduction in Tmax and/or Tmin
data in recent years.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-4985-2025-supplement.
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