Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4799-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4799-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CHN-CH4: a gridded (0.1° × 0.1°) anthropogenic methane emission inventory of China from 1990 to 2020
Fengxiang Guo
Department of Geography, The University of Hong Kong, Hong Kong, PR China
Fan Dai
CORRESPONDING AUTHOR
Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, PR China
Peng Gong
Department of Geography, The University of Hong Kong, Hong Kong, PR China
Yuyu Zhou
CORRESPONDING AUTHOR
Department of Geography, The University of Hong Kong, Hong Kong, PR China
Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, PR China
Related authors
No articles found.
Yishuo Cui, Shouzhi Chen, Yufeng Gong, Mingwei Li, Zitong Jia, Yuyu Zhou, and Yongshuo H. Fu
Earth Syst. Sci. Data, 17, 4005–4022, https://doi.org/10.5194/essd-17-4005-2025, https://doi.org/10.5194/essd-17-4005-2025, 2025
Short summary
Short summary
Global changes have significantly altered vegetation phenology, affecting terrestrial carbon cycles. While various remote-sensing-based phenology datasets exist, they often suffer from inconsistencies and uncertainties. To address this, we developed a new phenology dataset spanning 1982–2020 using a reliability ensemble averaging method. Validated against ground data, our dataset demonstrates substantially improved accuracy, providing a novel and reliable source for global ecological studies.
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025, https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary
Short summary
The absence of globally consistent and spatially continuous urban surface input has long hindered large-scale high-resolution urban climate modeling. Using remote sensing, cloud computing, and machine learning, we developed U-Surf, a 1 km dataset providing key urban surface properties worldwide. U-Surf enhances urban representation across scales and supports kilometer-scale urban-resolving Earth system modeling unprecedentedly, with broader applications in urban studies and beyond.
Shuang Chen, Jie Wang, Qiang Liu, Xiangan Liang, Rui Liu, Peng Qin, Jincheng Yuan, Junbo Wei, Shuai Yuan, Huabing Huang, and Peng Gong
Earth Syst. Sci. Data, 16, 5449–5475, https://doi.org/10.5194/essd-16-5449-2024, https://doi.org/10.5194/essd-16-5449-2024, 2024
Short summary
Short summary
The inconsistent coverage of Landsat data due to its long revisit intervals and frequent cloud cover poses challenges to large-scale land monitoring. We developed a global 30 m 23-year (2000–2022) daily seamless data cube (SDC) of surface reflectance based on Landsat 5, 7, 8, and 9 and MODIS products. The SDC exhibits enhanced capabilities for monitoring land cover changes and robust consistency in both spatial and temporal dimensions, which are important for global environmental monitoring.
Ying Tu, Shengbiao Wu, Bin Chen, Qihao Weng, Yuqi Bai, Jun Yang, Le Yu, and Bing Xu
Earth Syst. Sci. Data, 16, 2297–2316, https://doi.org/10.5194/essd-16-2297-2024, https://doi.org/10.5194/essd-16-2297-2024, 2024
Short summary
Short summary
We developed the first 30 m annual cropland dataset of China (CACD) for 1986–2021. The overall accuracy of CACD reached up to 0.93±0.01 and was superior to other products. Our fine-resolution cropland maps offer valuable information for diverse applications and decision-making processes in the future.
Xiangan Liang, Qiang Liu, Jie Wang, Shuang Chen, and Peng Gong
Earth Syst. Sci. Data, 16, 177–200, https://doi.org/10.5194/essd-16-177-2024, https://doi.org/10.5194/essd-16-177-2024, 2024
Short summary
Short summary
The state-of-the-art MODIS surface reflectance products suffer from temporal and spatial gaps, which make it difficult to characterize the continuous variation of the terrestrial surface. We proposed a framework for generating the first global 500 m daily seamless data cubes (SDC500), covering the period from 2000 to 2022. We believe that the SDC500 dataset can interest other researchers who study land cover mapping, quantitative remote sensing, and ecological science.
Wanru He, Xuecao Li, Yuyu Zhou, Zitong Shi, Guojiang Yu, Tengyun Hu, Yixuan Wang, Jianxi Huang, Tiecheng Bai, Zhongchang Sun, Xiaoping Liu, and Peng Gong
Earth Syst. Sci. Data, 15, 3623–3639, https://doi.org/10.5194/essd-15-3623-2023, https://doi.org/10.5194/essd-15-3623-2023, 2023
Short summary
Short summary
Most existing global urban products with future projections were developed in urban and non-urban categories, which ignores the gradual change of urban development at the local scale. Using annual global urban extent data from 1985 to 2015, we forecasted global urban fractional changes under eight scenarios throughout 2100. The developed dataset can provide spatially explicit information on urban fractions at 1 km resolution, which helps support various urban studies (e.g., urban heat island).
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
Short summary
In the study, the first 1 km global cropland proportion dataset for 10 000 BCE–2100 CE was produced through the harmonization and downscaling framework. The mapping result coincides well with widely used datasets at present. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial heterogeneity. The dataset will be valuable for long-term simulations and precise analyses. The framework can be extended to specific regions or other land use types.
Cited articles
Behrendt, J., Smith, S. J., Yu, S., Chen, S., Zhang, H., Zhu, M., Williams, J., Cheng, X., Dule, A. A., Li, W., Cui, R., and Hultman, N.: United States and China Anthropogenic Methane Emissions: A Review of Uncertainties and Collaborative Opportunities, Earth's Future, 13, e2024EF005298, https://doi.org/10.1029/2024EF005298, 2025.
Bo-Feng, C., Jian-Guo, L., Qing-Xian, G., Xiao-Qin, N., Dong, C., Lan-Cui, L., Ying, Z., and Zhan-Sheng, Z.: Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources, Adv. Clim. Change Res., 5, 81–91, https://doi.org/10.3724/SP.J.1248.2014.081, 2014.
Cai, B., Lou, Z., Wang, J., Geng, Y., Sarkis, J., Liu, J., and Gao, Q.: CH4 mitigation potentials from China landfills and related environmental co-benefits, Sci. Adv., 4, eaar8400, https://doi.org/10.1126/sciadv.aar8400, 2018.
China Climate Change Group: China Climate Change Country Study (CCCCS), Tsinghua University Press, Beijing, ISBN 9787302013525, 2000.
Chen, Z.: Temporospatial Analysis of methane trend in China over the last decade – Estimation of Anthropogenic Methane Emission and Contributions from Different Anthropogenic Sources, IOP Conf. Ser.: Earth Environ. Sci., 687, 012004, https://doi.org/10.1088/1755-1315/687/1/012004, 2021.
Chen, Z., Jacob, D. J., Nesser, H., Sulprizio, M. P., Lorente, A., Varon, D. J., Lu, X., Shen, L., Qu, Z., Penn, E., and Yu, X.: Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations, Atmos. Chem. Phys., 22, 10809–10826, https://doi.org/10.5194/acp-22-10809-2022, 2022.
Du, M., Peng, C., Wang, X., Chen, H., Wang, M., and Zhu, Q.: Quantification of methane emissions from municipal solid waste landfills in China during the past decade, Renew. Sustain. Energ. Rev., 78, 272–279, https://doi.org/10.1016/j.rser.2017.04.082, 2017.
Du, M., Zhu, Q., Wang, X., Li, P., Yang, B., Chen, H., Wang, M., Zhou, X., and Peng, C.: Estimates and Predictions of Methane Emissions from Wastewater in China from 2000 to 2020, Earth's Future, 6, 252–263, https://doi.org/10.1002/2017EF000673, 2018.
Du, W.: Primary study on greenhouse gas–CH4 emission from MSW landfill, MSc thesis, Nanjing University of Information Science and Technology, Nanjing, 2006.
European Commission and Joint Research Centre: EDGAR (emissions database for global atmospheric research) community global greenhouse gas database (version 8.0). European Commission and Joint Research Centre, https://edgar.jrc.ec.europa.eu/dataset_ghg80#p1 (last access: 17 Ocotober 2024), 2023.
European Commission and United States of America: Global methane pledge, https://www.globalmethanepledge.org (last access: 17 September 2024), 2021.
Fu, C. and Yu, G.: Estimation and Spatiotemporal Analysis of Methane Emissions from Agriculture in China, Environ. Manage., 46, 618–632, https://doi.org/10.1007/s00267-010-9495-1, 2010.
Gao, J., Guan, C., Zhang, B., and Li, K.: Decreasing methane emissions from China's coal mining with rebounded coal production, Environ. Res. Lett., 16, 124037, https://doi.org/10.1088/1748-9326/ac38d8, 2021.
Gilbert, M., Nicolas, G., Cinardi, G., Van Boeckel, T. P., Vanwambeke, S. O., Wint, G. R. W., and Robinson, T. P.: Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010, Sci. Data, 5, 180227, https://doi.org/10.1038/sdata.2018.227, 2018.
Gilbert, M., Cinardi, G., Da Re, D., Wint, G. R., Wisser, D., and Robinson, T. P.: Global buffaloes distribution in 2015 (5 minutes of arc), V1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/I1WCAB, 2022.
Gong, S. and Shi, Y.: Evaluation of comprehensive monthly-gridded methane emissions from natural and anthropogenic sources in China, Sci. Total Environ., 784, 147116, https://doi.org/10.1016/j.scitotenv.2021.147116, 2021.
Guo, F., Dai, F., Gong, P., and Zhou, Y.: CHN-CH4: A Gridded (0.1°×0.1°) Anthropogenic Methane Emission Inventory of China from 1990 to 2020, Zenodo [data set], https://doi.org/10.5281/zenodo.15107383, 2025.
Gütschow, J., Jeffery, M. L., Gieseke, R., Gebel, R., Stevens, D., Krapp, M., and Rocha, M.: The PRIMAP-hist national historical emissions time series, Earth Syst. Sci. Data, 8, 571–603, https://doi.org/10.5194/essd-8-571-2016, 2016.
Gütschow, J., Busch, D., and Pflüger, M.: The PRIMAP-hist national historical emissions time series v2.6 (1750–2023), Zenodo [data set], https://doi.org/10.5281/zenodo.13752654, 2024.
Hoesly, R. and Smith, S.: CEDS v_2024_04_01 release emission data (version v_2024_04_01), Zenodo [data set], https://doi.org/10.5281/zenodo.10904361, 2024.
Höglund-Isaksson, L., Gómez-Sanabria, A., Klimont, Z., Rafaj, P., and Schöpp, W.: Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe – results from the GAINS model, Environ. Res. Commun., 2, 025004, https://doi.org/10.1088/2515-7620/ab7457, 2020.
Huang, X., Li, J., Yang, J., Zhang, Z., Li, D., and Liu, X.: 30 m global impervious surface area dynamics and urban expansion pattern observed by Landsat satellites: From 1972 to 2019, Sci. China Earth Sci., 64, 1922–1933, https://doi.org/10.1007/s11430-020-9797-9, 2021.
IEA: World Energy Statistics 2019 Edition, Database Documentation, http://wds.iea.org/wds/pdf/WORLDBES_Documentation.pdf (last access: 17 September 2024), 2019.
IPCC – Intergovernmental Panel on Climate Change: 2006 IPCC guidelines for national greenhouse gas inventories, IGES, Japan, https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (last access: 18 September 2024), 2006.
IPCC – Intergovernmental Panel on Climate Change: Climate Change 2013: The Physical Science Basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, https://www.ipcc.ch/report/ar5/wg1/ (last access: 18 September 2024), 2013.
IPCC – Intergovernmental Panel on Climate Change: 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories, Agricult. Forest. Other Land Use, 4, 824, 2019.
Khalil, M. A. K., Shearer, M. J., and Rasmussen, R. A.: Methane sources in China: historical and current emissions, Chemosphere, 26, 127–142, https://doi.org/10.1016/0045-6535(93)90417-4, 1993.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C., Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., Van Der Werf, G. R., Voulgarakis, A., Van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks, Nat. Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013.
Kolluru, V., John, R., Saraf, S., Chen, J., Hankerson, B., Robinson, S., Kussainova, M., and Jain, K.: Gridded livestock density database and spatial trends for Kazakhstan, Sci. Data, 10, 839, https://doi.org/10.1038/s41597-023-02736-5, 2023.
Li, S., Wang, C., Gao, P., Zhao, B., Jin, C., Zhao, L., He, B., and Xue, Y.: High-Spatial-Resolution Methane Emissions Calculation Using TROPOMI Data by a Divergence Method, Atmosphere, 14, 388, https://doi.org/10.3390/atmos14020388, 2023.
Lin, X., Zhang, W., Crippa, M., Peng, S., Han, P., Zeng, N., Yu, L., and Wang, G.: A comparative study of anthropogenic CH4 emissions over China based on the ensembles of bottom-up inventories, Earth Syst. Sci. Data, 13, 1073–1088, https://doi.org/10.5194/essd-13-1073-2021, 2021.
Liu, Q., Teng, F., Nielsen, C. P., Zhang, Y., and Wu, L.: Large methane mitigation potential through prioritized closure of gas-rich coal mines, Nat. Clim. Change, 14, 652–658, https://doi.org/10.1038/s41558-024-02004-3, 2024.
Lu, X., Jacob, D. J., Zhang, Y., Maasakkers, J. D., Sulprizio, M. P., Shen, L., Qu, Z., Scarpelli, T. R., Nesser, H., Yantosca, R. M., Sheng, J., Andrews, A., Parker, R. J., Boesch, H., Bloom, A. A., and Ma, S.: Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations, Atmos. Chem. Phys., 21, 4637–4657, https://doi.org/10.5194/acp-21-4637-2021, 2021.
Ma, Z., and Gao, Q. X.: Guidelines for calculating GHG emissions of waste disposal, Science Press, Beijing, ISBN 978-7-03-032009-4, 2011.
Ma, Z.-Y., Feng, P., Gao, Q.-X., Lu, Y.-N., Liu, J.-R., and Li, W.-T.: CH4 emissions and reduction potential in wastewater treatment in China, Adv. Clim. Change Res., 6, 216–224, https://doi.org/10.1016/j.accre.2015.11.006, 2015.
Maasakkers, J. D., McDuffie, E. E., Sulprizio, M. P., Chen, C., Schultz, M., Brunelle, L., Thrush, R., Steller, J., Sherry, C., Jacob, D. J., Jeong, S., Irving, B., and Weitz, M.: A Gridded Inventory of Annual 2012–2018 U.S. Anthropogenic Methane Emissions, Environ. Sci. Technol., 57, 16276–16288, https://doi.org/10.1021/acs.est.3c05138, 2023.
Miller, S. M., Michalak, A. M., Detmers, R. G., Hasekamp, O. P., Bruhwiler, L. M. P., and Schwietzke, S.: China's coal mine methane regulations have not curbed growing emissions, Nat. Commun., 10, 303, https://doi.org/10.1038/s41467-018-07891-7, 2019.
Ministry of Ecology and Environment of China: National Methane Action Plan, https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202311/W020231107750707766959.pdf (last access: 24 September 2024), 2023.
NDRC – The National Development and Reform Commission: The People's Republic of China national Greenhouse gas inventory, 2014, China Environmental Press, Beijing, https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/P020240704447132863172.pdf (last access: 24 September 2024), 2014.
Ocholla, I. A., Pellikka, P., Karanja, F. N., Vuorinne, I., Odipo, V., and Heiskanen, J.: Livestock detection in African rangelands: Potential of high-resolution remote sensing data, Remote Sens. Appl., 33, 101139, https://doi.org/10.1016/j.rsase.2024.101139, 2024.
Peng, S., Piao, S., Bousquet, P., Ciais, P., Li, B., Lin, X., Tao, S., Wang, Z., Zhang, Y., and Zhou, F.: Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010, Atmos. Chem. Phys., 16, 14545–14562, https://doi.org/10.5194/acp-16-14545-2016, 2016.
PKU-CH4_v2: PKU-CH4_2, figshare [data set], https://figshare.com/s/b38a368111749f1412be?file=28320369 (last access: 18 September 2024), 2021.
Qiu, B., Hu, X., Chen, C., Tang, Z., Yang, P., Zhu, X., Yan, C., and Jian, Z.: Maps of cropping patterns in China during 2015–2021, Sci. Data, 9, 479, https://doi.org/10.1038/s41597-022-01589-8, 2022.
Qu, Z., Jacob, D. J., Shen, L., Lu, X., Zhang, Y., Scarpelli, T. R., Nesser, H., Sulprizio, M. P., Maasakkers, J. D., Bloom, A. A., Worden, J. R., Parker, R. J., and Delgado, A. L.: Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments, Atmos. Chem. Phys., 21, 14159–14175, https://doi.org/10.5194/acp-21-14159-2021, 2021.
Saunois, M., Martinez, A., Poulter, B., Zhang, Z., Raymond, P., Regnier, P., Canadell, J. G., Jackson, R. B., Patra, P. K., Bousquet, P., Ciais, P., Dlugokencky, E. J., Lan, X., Allen, G. H., Bastviken, D., Beerling, D. J., Belikov, D. A., Blake, D. R., Castaldi, S., Crippa, M., Deemer, B. R., Dennison, F., Etiope, G., Gedney, N., Höglund-Isaksson, L., Holgerson, M. A., Hopcroft, P. O., Hugelius, G., Ito, A., Jain, A. K., Janardanan, R., Johnson, M. S., Kleinen, T., Krummel, P., Lauerwald, R., Li, T., Liu, X., McDonald, K. C., Melton, J. R., Mühle, J., Müller, J., Murguia-Flores, F., Niwa, Y., Noce, S., Pan, S., Parker, R. J., Peng, C., Ramonet, M., Riley, W. J., Rocher-Ros, G., Rosentreter, J. A., Sasakawa, M., Segers, A., Smith, S. J., Stanley, E. H., Thanwerdas, J., Tian, H., Tsuruta, A., Tubiello, F. N., Weber, T. S., Van Der Werf, G., Worthy, D. E., Xi, Y., Yoshida, Y., Zhang, W., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.: Global Methane Budget 2000–2020, Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, 2025.
Scarpelli, T. R., Jacob, D. J., Grossman, S., Lu, X., Qu, Z., Sulprizio, M. P., Zhang, Y., Reuland, F., Gordon, D., and Worden, J. R.: Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations, Atmos. Chem. Phys., 22, 3235–3249, https://doi.org/10.5194/acp-22-3235-2022, 2022.
Schwietzke, S., Griffin, W. M., Matthews, H. S., and Bruhwiler, L. M. P.: Global Bottom-Up Fossil Fuel Fugitive Methane and Ethane Emissions Inventory for Atmospheric Modeling, ACS Sustain. Chem. Eng., 2, 1992–2001, https://doi.org/10.1021/sc500163h, 2014.
Shen, L., Jacob, D. J., Gautam, R., Omara, M., Scarpelli, T. R., Lorente, A., Zavala-Araiza, D., Lu, X., Chen, Z., and Lin, J.: National quantifications of methane emissions from fuel exploitation using high resolution inversions of satellite observations, Nat. Commun., 14, 4948, https://doi.org/10.1038/s41467-023-40671-6, 2023.
Shen, R., Peng, Q., Li, X., Chen, X., and Yuan, W.: CCD-Rice: a long-term paddy rice distribution dataset in China at 30 m resolution, Earth Syst. Sci. Data, 17, 2193–2216, https://doi.org/10.5194/essd-17-2193-2025, 2025.
Sheng, J., Song, S., Zhang, Y., Prinn, R. G., and Janssens-Maenhout, G.: Bottom-Up Estimates of Coal Mine Methane Emissions in China: A Gridded Inventory, Emission Factors, and Trends, Environ. Sci. Technol. Lett., 6, 473–478, https://doi.org/10.1021/acs.estlett.9b00294, 2019.
Sheng, J., Tunnicliffe, R., Ganesan, A. L., Maasakkers, J. D., Shen, L., Prinn, R. G., Song, S., Zhang, Y., Scarpelli, T., Anthony Bloom, A., Rigby, M., Manning, A. J., Parker, R. J., Boesch, H., Lan, X., Zhang, B., Zhuang, M., and Lu, X.: Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area, Environ. Res. Lett., 16, 104018, https://doi.org/10.1088/1748-9326/ac24d1, 2021.
Sheng, J.-X., Jacob, D. J., Maasakkers, J. D., Sulprizio, M. P., Zavala-Araiza, D., and Hamburg, S. P.: A high-resolution (0.1°×0.1°) inventory of methane emissions from Canadian and Mexican oil and gas systems, Atmos. Environ., 158, 211–215, https://doi.org/10.1016/j.atmosenv.2017.02.036, 2017.
Song, L. L.: Primary study on methane emission from domestic wastewater, MSc thesis, Nanjing University of Information Science and Technology, Nanjing, 2011.
State Council of China: The Twelfth Five-Year Plan for Controlling Greenhouse Gas Emissions, http://www.gov.cn/zwgk/2012-01/13/content_2043645.htm (last access: 24 September 2024), 2011.
State Council of China: Opinions of The General Office of the State Council on promoting the smooth operation of the coal industry, http://www.gov.cn/zhengce/content/2013-11/27/content_2532.htm (last access: 24 September 2024), 2013.
State Council of China: The Thirteenth Five-Year Plan for Controlling Greenhouse Gas Emissions, http://sthj.gansu.gov.cn/sthj/c114861/201909/9f2c11a838a343159e196ec577dce861/files/91277859ddb44ae4be042c91fe9af14a.pdf (last access: 24 September 2024), 2016.
State Council of China: The 14th Five-Year Plan, https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm (last access: 24 September 2024), 2021.
Stavert, A. R., Saunois, M., Canadell, J. G., Poulter, B., Jackson, R. B., Regnier, P., Lauerwald, R., Raymond, P. A., Allen, G. H., Patra, P. K., Bergamaschi, P., Bousquet, P., Chandra, N., Ciais, P., Gustafson, A., Ishizawa, M., Ito, A., Kleinen, T., Maksyutov, S., McNorton, J., Melton, J. R., Müller, J., Niwa, Y., Peng, S., Riley, W. J., Segers, A., Tian, H., Tsuruta, A., Yin, Y., Zhang, Z., Zheng, B., and Zhuang, Q.: Regional trends and drivers of the global methane budget, Global Change Biol., 28, 182–200, https://doi.org/10.1111/gcb.15901, 2022.
Sun, J., Wang, M., Xu, X., Cheng, K., Yue, Q., and Pan, G.: Re-estimating methane emissions from Chinese paddy fields based on a regional empirical model and high-spatial-resolution data, Environ. Pollut., 265, 115017, hhttps://doi.org/10.1016/j.envpol.2020.115017, 2020.
Tian, H., Zhao, D., and Wang, Y.: Emission inventories of atmospheric pollutants discharged from biomass burning in China, Acta Scientiae Circumstantiae, 31, 349-357, 2010.
UNFCCC: Greenhouse Gas Inventory Data Interface, http://di.unfccc.int/detailed_data_by_party (last access: 24 August 2022), 2020.
US Environmental Protection Agency: Global non-CO2 greenhouse gas emission projections & mitigation 2015–2050, https://www.epa.gov/sites/default/files/2019-09/documents/epa_non-co2_greenhouse_gases_rpt-epa430r19010.pdf (last access: 24 September 2024), 2019.
Wang, C. and Wang, J.: Kilometer grid dataset of China's historical population spatial distribution (1990–2015), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.12078/2017121101, 2022a.
Wang, C. and Wang, J.: Kilometer grid dataset of China's historical GDP spatial distribution (1990–2015), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.12078/2017121102, 2022b.
Wang, D., Ye, W., Wu, G., Li, R., Guan, Y., Zhang, W., Wang, J., Shan, Y., and Hubacek, K.: Greenhouse gas emissions from municipal wastewater treatment facilities in China from 2006 to 2019, Sci. Data, 9, 317, https://doi.org/10.1038/s41597-022-01439-7, 2022.
Wang, F., Maksyutov, S., Janardanan, R., Tsuruta, A., Ito, A., Morino, I., Yoshida, Y., Tohjima, Y., Kaiser, J. W., Janssens-Maenhout, G., Lan, X., Mammarella, I., Lavric, J. V., and Matsunaga, T.: Interannual variability on methane emissions in monsoon Asia derived from GOSAT and surface observations, Environ. Res. Lett., 16, 024040, https://doi.org/10.1088/1748-9326/abd352, 2021a.
Wang, K., Zhang, J., Cai, B., and Liang, S.: Estimation of Chinese city-level anthropogenic methane emissions in 2015, Resour. Conserv. Recycl., 175, 105861, https://doi.org/10.1016/j.resconrec.2021.105861, 2021b.
Worden, J. R., Cusworth, D. H., Qu, Z., Yin, Y., Zhang, Y., Bloom, A. A., Ma, S., Byrne, B. K., Scarpelli, T., Maasakkers, J. D., Crisp, D., Duren, R., and Jacob, D. J.: The 2019 methane budget and uncertainties at 1° resolution and each country through Bayesian integration Of GOSAT total column methane data and a priori inventory estimates, Atmos. Chem. Phys., 22, 6811–6841, https://doi.org/10.5194/acp-22-6811-2022, 2022.
Xu, P., Liao, Y., Zheng, Y., Zhao, C., Zhang, X., Zheng, Z., and Luan, S.: Northward shift of historical methane emission hotspots from the livestock sector in China and assessment of potential mitigation options, Agr. Forest Meteorol., 272–273, 1–11, https://doi.org/10.1016/j.agrformet.2019.03.022, 2019.
Yamaji, K., Ohara, T., and Akimoto, H.: A country-specific, high-resolution emission inventory for methane from livestock in Asia in 2000, Atmos. Environ., 37, 4393–4406, https://doi.org/10.1016/S1352-2310(03)00586-7, 2003.
Yan, X., Ohara, T., and Akimoto, H.: Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries, Global Change Biol., 9, 237–254, https://doi.org/10.1046/j.1365-2486.2003.00564.x, 2003.
Yu, J., Peng, S., Chang, J., Ciais, P., Dumas, P., Lin, X., and Piao, S.: Inventory of methane emissions from livestock in China from 1980 to 2013, Atmos. Environ., 184, 69–76, https://doi.org/10.1016/j.atmosenv.2018.04.029, 2018.
Zhang, B. and Chen, G. Q.: Methane emissions by Chinese economy: Inventory and embodiment analysis, Energy Policy, 38, 4304–4316, https://doi.org/10.1016/j.enpol.2010.03.059, 2010.
Zhang, B. and Chen, G. Q.: Methane emissions in China 2007, Renew. Sustain. Energ. Rev., 30, 886–902, https://doi.org/10.1016/j.rser.2013.11.033, 2014.
Zhang, H., Ye, X., Cheng, T., Chen, J., Yang, X., Wang, L., and Zhang, R.: A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory, Atmos. Environ., 42, 8432–8441, https://doi.org/10.1016/j.atmosenv.2008.08.015, 2008.
Zhang, J., Smith, K. R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M. A. K., Rasmussen, R. A., and Thorneloe, S. A.: Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors, Atmos. Environ., 34, 4537–4549, https://doi.org/10.1016/S1352-2310(99)00450-1, 2000.
Zhang, Y., Jacob, D. J., Lu, X., Maasakkers, J. D., Scarpelli, T. R., Sheng, J.-X., Shen, L., Qu, Z., Sulprizio, M. P., Chang, J., Bloom, A. A., Ma, S., Worden, J., Parker, R. J., and Boesch, H.: Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations, Atmos. Chem. Phys., 21, 3643–3666, https://doi.org/10.5194/acp-21-3643-2021, 2021.
Zhang, Y., Fang, S., Chen, J., Lin, Y., Chen, Y., Liang, R., Jiang, K., Parker, R. J., Boesch, H., Steinbacher, M., Sheng, J.-X., Lu, X., Song, S., and Peng, S.: Observed changes in China's methane emissions linked to policy drivers, P. Natl. Acad. Sci. USA, 119, e2202742119, https://doi.org/10.1073/pnas.2202742119, 2022.
Zhao, N., Liu, Y., Cao, G., Samson, E. L., and Zhang, J.: Forecasting China's GDP at the pixel level using nighttime lights time series and population images, GISci. Remote Sens., 54, 407–425, https://doi.org/10.1080/15481603.2016.1276705, 2017.
Zhao, X., Jin, X. K., Guo, W., Zhang, C., Shan, Y. L., Du, M. X., Tillotson, M. R., Yang, H., Liao, X. W., and Li, Y. P.: China's Urban Methane Emissions From Municipal Wastewater Treatment Plant, Earth's Future, 7, 480–490, https://doi.org/10.1029/2018EF001113, 2019.
Zheng, S., Wang, Y., and Wang, Z.: Methane emissions to atmosphere from coal mine in China, Saf. Coal Mines, 36, 29-33, 2005.
Zhou, J. B., Jiang, M. M., and Chen, G. Q.: Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003, Energy Policy, 35, 3759–3767, https://doi.org/10.1016/j.enpol.2007.01.013, 2007.
Zhu, T., Bian, W., Zhang, S., Di, P., and Nie, B.: An Improved Approach to Estimate Methane Emissions from Coal Mining in China, Environ. Sci. Technol., 51, 12072–12080, https://doi.org/10.1021/acs.est.7b01857, 2017.
Short summary
China, the world’s largest methane emitter, faces challenges in accurately tracking. CHN-CH4, a map of anthropogenic methane emissions was created by combining satellite data, national statistics, and climate guidelines. Over 30 years, China emitted about 1157 Tg of methane, peaking in the 2010s. Shanxi province had the highest emissions. CHN-CH4 helps improve tracking, informs global climate models, and strengthens collaboration between science and policy to combat climate change.
China, the world’s largest methane emitter, faces challenges in accurately tracking. CHN-CH4, a...
Altmetrics
Final-revised paper
Preprint