Articles | Volume 17, issue 8
https://doi.org/10.5194/essd-17-3893-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-3893-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Statistical atlas of European agriculture: gridded data from the agricultural census 2020 and the spatial distribution of CAP contextual indicators
Nicolas Lampach
CORRESPONDING AUTHOR
Eurostat, Unit E.1. Agricultural and Fisheries Statistics, 5 rue Alphonse Weicker, 2721 Luxembourg, Luxembourg
BOKU University, Institute of Sustainable Economic Development, Gregor-Mendel-Straße 33, Vienna, Austria
Jon Olav Skøien
ARHS Developments, Boulevard du Jazz 13, 4370 Belvaux, Luxembourg
Helena Ramos
Eurostat, Unit E.1. Agricultural and Fisheries Statistics, 5 rue Alphonse Weicker, 2721 Luxembourg, Luxembourg
Julien Gaffuri
Eurostat, Unit E.4. Regional Statistics and Geographical Information, 5 rue Alphonse Weicker, 2721 Luxembourg, Luxembourg
Renate Koeble
ARHS Developments, Boulevard du Jazz 13, 4370 Belvaux, Luxembourg
Linda See
International Institute for Applied Systems Analysis (IIASA), Schloßplatz 1, 2361 Laxenburg, Austria
Marijn van der Velde
CORRESPONDING AUTHOR
European Commission, Joint Research Centre (JRC), Via E. Fermi, 2749, 21027 Ispra VA, Italy
Related authors
No articles found.
Myroslava Lesiv, Steffen Fritz, Martina Duerauer, Ivelina Georgieva, Marcel Buchhorn, Luc Bertels, Nandika Tsendbazar, Ruben Van De Kerchove, Daniele Zanaga, Dmitry Schepaschenko, Linda See, Martin Herold, Bruno Smets, Michael Cherlet, and Ian Mccallum
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-468, https://doi.org/10.5194/essd-2025-468, 2025
Preprint under review for ESSD
Short summary
Short summary
This paper presents a unique global reference data set for land cover mapping at a 10 m resolution, aligned with Sentinel-2 imagery for the year 2015. It contains more than 16.5 million data records at a 10 m resolution (or 165 K data records at 100 m) and information on 12 different land cover classes. The data set was collected by a group of experts through visual interpretation of very high resolution imagery, along with other sources of information provided in the Geo-Wiki platform.
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024, https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) Copernicus 2022 is a large and systematic in situ field survey of 137 966 polygons over the European Union in 2022. The data contain 82 land cover classes and 40 land use classes.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Giulia Ronchetti, Luigi Nisini Scacchiafichi, Lorenzo Seguini, Iacopo Cerrani, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 1623–1649, https://doi.org/10.5194/essd-16-1623-2024, https://doi.org/10.5194/essd-16-1623-2024, 2024
Short summary
Short summary
We present a dataset of EU-wide harmonized subnational crop area, production, and yield statistics with information on data sources, processing steps, missing and derived data, and quality checks. Statistical records (344 282) collected from 1975 to 2020 for soft and durum wheat, winter and spring barley, grain maize, sunflower, and sugar beet were aligned with the EUROSTAT crop legend and the 2016 territorial classification for 961 regions. Time series have a median length of 21 years.
Raphaël d'Andrimont, Momchil Yordanov, Laura Martinez-Sanchez, Peter Haub, Oliver Buck, Carsten Haub, Beatrice Eiselt, and Marijn van der Velde
Earth Syst. Sci. Data, 14, 4463–4472, https://doi.org/10.5194/essd-14-4463-2022, https://doi.org/10.5194/essd-14-4463-2022, 2022
Short summary
Short summary
Between 2006 and 2018, 875 661 LUCAS cover (i.e. close-up) photos were taken over a systematic sample of the European Union. This geo-located photo dataset has been curated and is being made available along with the surveyed label data, including land cover and plant species.
Simone Persiano, Alessio Pugliese, Alberto Aloe, Jon Olav Skøien, Attilio Castellarin, and Alberto Pistocchi
Earth Syst. Sci. Data, 14, 4435–4443, https://doi.org/10.5194/essd-14-4435-2022, https://doi.org/10.5194/essd-14-4435-2022, 2022
Short summary
Short summary
For about 24000 river basins across Europe, this study provides a continuous representation of the streamflow regime in terms of empirical flow–duration curves (FDCs), which are key signatures of the hydrological behaviour of a catchment and are widely used for supporting decisions on water resource management as well as for assessing hydrologic change. FDCs at ungauged sites are estimated by means of a geostatistical procedure starting from data observed at about 3000 sites across Europe.
Vera Thiemig, Goncalo N. Gomes, Jon O. Skøien, Markus Ziese, Armin Rauthe-Schöch, Elke Rustemeier, Kira Rehfeldt, Jakub P. Walawender, Christine Kolbe, Damien Pichon, Christoph Schweim, and Peter Salamon
Earth Syst. Sci. Data, 14, 3249–3272, https://doi.org/10.5194/essd-14-3249-2022, https://doi.org/10.5194/essd-14-3249-2022, 2022
Short summary
Short summary
EMO-5 is a free and open European high-resolution (5 km), sub-daily, multi-variable (precipitation, temperatures, wind speed, solar radiation, vapour pressure), multi-decadal meteorological dataset based on quality-controlled observations coming from almost 30 000 stations across Europe, and is produced in near real-time. EMO-5 (v1) covers the time period from 1990 to 2019. In this paper, we have provided insight into the source data, the applied methods, and the quality assessment of EMO-5.
Francesco Dottori, Lorenzo Alfieri, Alessandra Bianchi, Jon Skoien, and Peter Salamon
Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, https://doi.org/10.5194/essd-14-1549-2022, 2022
Short summary
Short summary
We present a set of hazard maps for river flooding for Europe and the Mediterranean basin. The maps depict inundation extent and depth for flood probabilities for up to 1-in-500-year flood hazards and are based on hydrological and hydrodynamic models driven by observed climatology. The maps can identify two-thirds of the flood extent reported by official flood maps, with increasing skill for higher-magnitude floods. The maps are used for evaluating present and future impacts of river floods.
Raphaël d'Andrimont, Astrid Verhegghen, Michele Meroni, Guido Lemoine, Peter Strobl, Beatrice Eiselt, Momchil Yordanov, Laura Martinez-Sanchez, and Marijn van der Velde
Earth Syst. Sci. Data, 13, 1119–1133, https://doi.org/10.5194/essd-13-1119-2021, https://doi.org/10.5194/essd-13-1119-2021, 2021
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) is a regular in situ land cover and land use ground survey exercise that extends over the whole of the European Union. A new LUCAS module specifically tailored to Earth observation was introduced in 2018: the LUCAS Copernicus module. This paper summarizes the LUCAS Copernicus survey and provides the unique resulting data: 58 426 polygons with level-3 land cover (66 specific classes including crop type) and land use (38 classes).
Michele Ferri, Uta Wehn, Linda See, Martina Monego, and Steffen Fritz
Hydrol. Earth Syst. Sci., 24, 5781–5798, https://doi.org/10.5194/hess-24-5781-2020, https://doi.org/10.5194/hess-24-5781-2020, 2020
Short summary
Short summary
As part of the flood risk management strategy of the
Brenta-Bacchiglione catchment (Italy), a citizen observatory for flood risk management is currently being implemented. A cost–benefit analysis of the citizen observatory was undertaken to demonstrate the value of this approach in monetary terms. Results show a reduction in avoided damage of 45 % compared to a scenario without implementation of the citizen observatory. The idea is to promote this methodology for future flood risk management.
Miao Lu, Wenbin Wu, Liangzhi You, Linda See, Steffen Fritz, Qiangyi Yu, Yanbing Wei, Di Chen, Peng Yang, and Bing Xue
Earth Syst. Sci. Data, 12, 1913–1928, https://doi.org/10.5194/essd-12-1913-2020, https://doi.org/10.5194/essd-12-1913-2020, 2020
Short summary
Short summary
Global cropland distribution is critical for agricultural monitoring and food security. We propose a new Self-adapting Statistics Allocation Model (SASAM) to develop the global map of cropland distribution. SASAM is based on the fusion of multiple existing cropland maps and multilevel statistics of cropland area, which is independent of training samples. The synergy map has higher accuracy than the input datasets and better consistency with the cropland statistics.
Cited articles
Allaire, G., Poméon, T., Maigné, E., Cahuzac, E., Simioni, M., and Desjeux, Y.: Territorial analysis of the diffusion of organic farming in France: Between heterogeneity and spatial dependence, Ecol. Indic., 59, 70–81, 2015. a
Almeida, M. A.: The use of rural areas in Portugal: Historical perspective and the new trends, Revista Galega De Economía, 29, 1–17, https://doi.org/10.15304/rge.29.2.6750, 2020. a
Baker-Smith, K.: Farm succession in Romania, Tech. rep., Eco Ruralis, https://www.accesstoland.eu/IMG/pdf/farm_succession_report_eco_ruralis_en_web.pdf (last access: 23 May 2025), 2016. a
Ballot, R., Guilpart, N., and Jeuffroy, M.-H.: The first map of crop sequence types in Europe over 2012–2018, Earth Syst. Sci. Data, 15, 5651–5666, https://doi.org/10.5194/essd-15-5651-2023, 2023. a
Bastida, M., Pinto, L. H., Olveira Blanco, A., and Cancelo, M.: Female entrepreneurship: Can cooperatives contribute to overcoming the gender gap? A Spanish first step to equality, Sustainability, 12, 2478, https://doi.org/10.3390/su12062478, 2020. a, b, c, d
Beard, N. and Swinbank, A.: Decoupled payments to facilitate CAP reform, Food Policy, 26, 121–145, 2001. a
Bičík, I. and Gabrovec, M.: Long-term land-use changes: A comparison between Czechia and Slovenia, Acta Geogr. Slov., 59, 91–106, https://doi.org/10.3986/AGS.7005, 2019. a
Bjørkhaug, H. and Blekesaune, A.: Development of organic farming in Norway: A statistical analysis of neighbourhood effects, Geoforum, 45, 201–210, 2013. a
Blaće, A., Čuka, A., and Šiljković, Ž.: How dynamic is organic? Spatial analysis of adopting new trends in Croatian agriculture, Land Use Policy, 99, 105036, https://doi.org/10.1016/j.landusepol.2020.105036, 2020. a
Boncinelli, F., Bartolini, F., Brunori, G., and Casini, L.: Spatial analysis of the participation in agri-environment measures for organic farming, Renewable Agriculture and Food Systems, 31, 375–386, 2016. a
Burke, M., Oleson, K., McCullough, E., and Gaskell, J.: A global model tracking water, nitrogen, and land inputs and virtual transfers from industrialized meat production and trade, Environ. Model.Assess., 14, 179–193, 2009. a
Cardoso, I. L.: 5 The real and imaginary Alentejo, Gastronomy and Local Development: The Quality of Products, Places and Experiences, Cahp. 5, Routledge, https://doi.org/10.4324/9781315188713, 2018. a
Carmona, A., Nahuelhual, L., Echeverría, C., and Báez, A.: Linking farming systems to landscape change: An empirical and spatially explicit study in southern Chile, Agr. Ecosyst. Environ., 139, 40–50, 2010. a
Coyle, D., Diepeveen, S., Wdowin, J., Tennison, J., and Kay, L.: The Value of Data – Policy Implications, Tech. rep., Bennett Institute for Public Policy, Open Data Institute, Cambridge, 2020. a
Cranfield, J., Henson, S., and Holliday, J.: The motives, benefits, and problems of conversion to organic production, Agr. Hum. Values, 27, 291–306, 2010. a
Davidova, S.: Small and semi-subsistence farms in the EU: Significance and development paths, EuroChoices, 13, 5–9, 2014. a
Davidova, S., Fredriksson, L., and Bailey, A.: Subsistence and semi-subsistence farming in selected EU new member states, Agr. Econ., 40, 733–744, 2009. a
Delbaere, B. and Nieto Serradilla, A.: Environmental risks from agriculture in Europe: Locating environmental risk zones in Europe using agri-environmental indicators, European Centre for Nature Conservation (ECNC), Tilburg, the Netherlands, 2004. a
Djurfeldt, G.: Defining and operationalizing family farming from a sociological perspective, Sociol. Ruralis, 36, 340–351, 1996. a
Eastwood, R., Lipton, M., and Newell, A.: Farm size, Handbook of agricultural economics, 4, 3323–3397, 2010. a
ECA: Gender mainstreaming in the EU budget: time to turn words into action, Publications office of the European Union, https://doi.org/10.2865/238048, 2021. a
EPRS: The common agricultural policy at 60: a growing role and influence for the European Parliament, European Parliament, https://doi.org/10.2861/004146, 2022. a
Erjavec, K. and Erjavec, E.: “Greening the CAP”–Just a fashionable justification? A discourse analysis of the 2014–2020 CAP reform documents, Food Policy, 51, 53–62, 2015. a
European Commission: REGULATION (EU) 2013/1305 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 July 2018 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD) and repealing Council Regulation (EC) No. 1698/2005 Regulations, Official Journal L, 347, 487–548, 2013. a
European Commission: A European Green Deal, https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (last access: 6 January 2025), 2019. a
European Commission: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee of the regions on an action plan for the development of organic farming, https://eur-lex.europa.eu/resource.html?uri=cellar:13dc912c-a1a5-11eb-b85c-01aa75ed71a1.0003.02/DOC_1&format=PDF (last access: 6 January 2025), 2021. a
European Commission: Context Indicator 17: Agricultural Holdings, https://agridata.ec.europa.eu/extensions/IndicatorsSectorial/AgriculturalHoldings.html (last access: 15 May 2025), 2023b. a
European Commission: Context Indicators (CMEF)., https://agridata.ec.europa.eu/extensions/DataPortal/context_indicators.html (last access: 15 May 2025), 2023c. a
European Commission: Glossary:Livestock unit (LSU), https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Livestock_unit_(LSU) (last access: 22 November 2024), 2024a. a
European Commission: Organics at a glance, https://agriculture.ec.europa.eu/farming/organic-farming/organics-glance_en (last access: 21 May 2025), 2024b. a
European Commission: The common agricultural policy at a glance, https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en (last access: 21 May 2025), 2024c. a
European Commission: Income support explained, https://agriculture.ec.europa.eu/common-agricultural-policy/income-support/income-support-explained_en (last access: 21 May 2025), 2024d. a
European Commission: Principal quality characteristics of EU countries' Agricultural Censuses for 2020–2024 edition, Publications Office of the European Union, https://doi.org/10.2785/08528, 2024e. a
European Commission: CAP Indicators. Agri-food Data Portal, https://agridata.ec.europa.eu/extensions/DataPortal/cap_indicators.html, last access: 15 May 2025. a
European Institute for Gender Equality: Gender Equality Index, https://eige.europa.eu/gender-equality-index/2023 (last access: 8 January 2025), 2023. a
European Parliament: Financing of the CAP: facts and figures. Fact Sheets on the European Union, https://www.europarl.europa.eu/factsheets/en/sheet/106/financing-of-the-cap (last access: 26 May 2025), 2023. a
Eurostat: Data: Farm indicators by legal status of the holdings, utilised agricultural area, type and economic size of the farm and NUTS 2 region (ef_m_farmleg), https://ec.europa.eu/eurostat/databrowser/view/ef_m_farmleg/default/table?lang=en (last access: 9 December 2025), 2024a. a
Eurostat: Gender statistics, https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Gender_statistics (last access: 14 December 2025), 2024b. a
Eurostat: Statistics explained article: Developments in organic farming, https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Developments_in_organic_farming&oldid=629504 (last access: 21 May 2025), 2024. a
Eurostat: Geospatial data from agricultural census, IFSGRID (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.14852709, 2025. a, b, c, d
Fandiño, M., Álvarez, C. J., Ramos, R., and Marey, M. F.: Agricultural Cooperatives as Transforming Agents in Rural Development: The Case of Galicia, Outlook Agr., 35, 191–197, https://doi.org/10.5367/000000006778536710, 2006. a
FAO: The state of food and agriculture 2014: innovation in family farming, UN, ISBN 978-92-5-108537-0, 2014. a
FAO: World programme for the census of agriculture 2020. Volume 1 Programme, concepts and definitions, no. 15 in FAO Statistical Development Series, Food and Agriculture Organization of the United Nations, Rome, ISBN 978-92-5-108865-4, oCLC: 1091006801, 2017a. a
FAO: World programme for the census of agriculture 2020. Volume 2 Operational guidelines, no. 16 in FAO Statistical Development Series, Food and Agriculture Organization of the United Nations, Rome, ISBN 978-92-5-108865-4, oCLC: 1091006801, 2017b. a
Ferrás-Sexto, C. and O'Flanagan, P.: Small-holdings and sustainable family farming in Galicia and Ireland. A comparative case study, Norois, 224, 61–76, 2012. a
Fettering, C.: The European Green Deal, ESDN Report, ESDN Office, Vienna, 2020. a
Fraser, M., Vallin, H., and Roberts, B.: Animal board invited review: Grassland-based livestock farming and biodiversity, Animal, 16, 100671, https://doi.org/10.1016/j.animal.2022.100671, 2022. a
Gaffuri, J. and Davies, J.: Gridviz, https://eurostat.github.io/gridviz/ (last access: 15 January 2025), 2024. a
Giannakis, E. and Bruggeman, A.: Exploring the labour productivity of agricultural systems across European regions: A multilevel approach, Land Use Policy, 77, 94–106, https://doi.org/10.1016/j.landusepol.2018.05.037, 2018. a
Gilbert, M., Nicolas, G., Cinardi, G., Van Boeckel, T. P., Vanwambeke, S. O., Wint, G. R. W., and Robinson, T. P.: Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010, Sci. Data, 5, 180227, https://doi.org/10.1038/sdata.2018.227, 2018. a
Gilbert, M., Cinardi, G., Da Re, D., Wint, W. G. R., Wisser, D., and Robinson, T. P.: Global cattle distribution in 2015 (5 minutes of arc), Publisher DataOne [data set], https://doi.org/10.7910/DVN/LHBICE, 2022. a
GISCO: Geographic Information System of European Commission, https://ec.europa.eu/eurostat/web/gisco (last access: 25 November 2024), 2024. a
Giuliani, A. and Baron, H.: The CAP (Common Agricultural Policy): A short history of crises and major transformations of European agriculture, Forum for Social Economics, 54, 1–27, https://doi.org/10.1080/07360932.2023.2259618, 2023. a
Graeub, B. E., Chappell, M. J., Wittman, H., Ledermann, S., Kerr, R. B., and Gemmill-Herren, B.: The state of family farms in the world, World Dev., 87, 1–15, 2016. a
Green, S., Cawkwell, F., and Dwyer, E.: Cattle stocking rates estimated in temperate intensive grasslands with a spring growth model derived from MODIS NDVI time-series, Int. J. Appl. Earth Obs., 52, 166–174, 2016. a
Henry, C., Foss, L., and Ahl, H.: Gender and entrepreneurship research: A review of methodological approaches, Int. Small Bus. J., 34, 217–241, 2016. a
Hrabák, J. and Konečnỳ, O.: Multifunctional agriculture as an integral part of rural development: Spatial concentration and distribution in Czechia, Norsk. Geogr. Tidsskr., 72, 257–272, 2018. a
Huyghe, C., De Vliegher, A., and Golinski, P.: European grasslands overview: temperate region, in: Grassland Science in Europe, 29–40, European Grassland Federation, ISBN 978-0-9926940-1-2, 2014. a
Ilbery, B. and Maye, D.: Clustering and the spatial distribution of organic farming in England and Wales, Area, 43, 31–41, 2011. a
Jančák, V., Eretová, V., and Hrabák, J.: The development of agriculture in Czechia after the collapse of the Eastern Bloc in European context, Three decades of transformation in the east-central european countryside, Springer, Cham, https://doi.org/10.1007/978-3-030-21237-7_3, 55–71, 2019. a
Kasiske, T., Dauber, J., Harpke, A., Klimek, S., Kühn, E., Settele, J., and Musche, M.: Livestock density affects species richness and community composition of butterflies: A nationwide study, Ecol. Indic., 146, 109866, https://doi.org/10.1016/j.ecolind.2023.109866, 2023. a
Kempen, M., Elbersen, B. S., Staritsky, I., Andersen, E., and Heckelei, T.: Spatial allocation of farming systems and farming indicators in Europe, Agr. Ecosyst. Environ., 142, 51–62, 2011. a
Khan, J., Powell, T., and Harwood, A.: Land use in the UK, https://seea.un.org/content/land-use-uk (last access: 12 November 2025), 2013. a
Kok, A., de Olde, E., De Boer, I., and Ripoll-Bosch, R.: European biodiversity assessments in livestock science: A review of research characteristics and indicators, Ecol. Indic., 112, 105902, https://doi.org/10.1016/j.ecolind.2019.105902, 2020. a
Kostov, P. and Lingard, J.: Subsistence farming in transitional economies: lessons from Bulgaria, J. Rural Stud., 18, 83–94, 2002. a
Kostov, P. and Lingard, J.: Subsistence agriculture in transition economies: Its roles and determinants, J. Agr. Econ., 55, 565–579, 2004. a
Lampach, N. and Maríınez-Solano, D.: Strategy to Modernise Agricultural Statistics: New Pathways for the Future, Publications Office of the European Union, https://doi.org/10.2785/860462, 2023. a
Lampach, N., Nguyen-Van, P., and To-The, N.: Robustness analysis of organic technology adoption: evidence from Northern Vietnamese tea production, Eur. Rev. Agric. Econ., 47, 529–557, 2020. a
Macdonald, S.: Counting cows and cabbages – Web-based extraction, delivery and discovery of geoReferenced data, IASSIST, Quarterly Spring, 5–14, https://iassistquarterly.com/public/pdfs/iqvol281macdonald.pdf (last access: 7 November 2024), 2004. a
Papadopoulos, A. G.: EU rural development policy: the drive for policy integration within the second pillar of CAP, Policy Integration for Complex Environmental Problems: The Example of Mediterranean Desertification. Aldershot: Ashgate, 120–158, ISBN 9781315246598, 2005. a
Parré, J. L., Chagas, A. L. S., and Arends-Kuenning, M. P.: The effect of farm size and farmland use on agricultural diversification: a spatial analysis of Brazilian municipalities, Agr. Food Econ., 12, 27, https://doi.org/10.1186/s40100-024-00323-9, 2024. a
Prügl, E.: Feminism and the postmodern state: Gender mainstreaming in European rural development, Signs: Journal of Women in Culture and Society, 35, 447–475, 2010. a
Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J. A.: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000, Global Biogeochem. Cy., 22, GB1003, https://doi.org/10.1029/2007GB002952, 2008. a
Ribas Bonet, M. A.: Mujer y trabajo en la economía social, Consejo Económico y Social, Madrid, ISBN 9788481882520, 2005. a
Ronchetti, G., Nisini Scacchiafichi, L., Seguini, L., Cerrani, I., and van der Velde, M.: Harmonized European Union subnational crop statistics can reveal climate impacts and crop cultivation shifts, Earth Syst. Sci. Data, 16, 1623–1649, https://doi.org/10.5194/essd-16-1623-2024, 2024. a
Salvador, M. L. E., Castel, A. F. G., and Sanz, F. J. P.: ?`Presentan las cooperativas contextos favorables para la igualdad de género?: Especial referencia a la provincia de Teruel, CIRIEC-España, revista de economía pública, social y cooperativa, 61–92, 2016. a
Samet, H.: The quadtree and related hierarchical data structures, ACM Comput. Surv., 16, 187–260, https://doi.org/10.1145/356924.356930, 1984. a
Schmidtner, E., Lippert, C., Engler, B., Häring, A. M., Aurbacher, J., and Dabbert, S.: Spatial distribution of organic farming in Germany: does neighbourhood matter?, Eur. Rev. Agric. Econ., 39, 661–683, 2012. a
Schneider, M., Schelte, T., Schmitz, F., and Körner, M.: Eurocrops: The largest harmonized open crop dataset across the european union, Sci. Data, 10, 612, https://doi.org/10.1038/s41597-023-02517-0, 2023. a
Selenius, J., Wirtz, C., Florescu, D., and Lazar, A. C.: Agricultural census 2020–how to reduce costs and burden? The european statistical system approach, Statistical Journal of the IAOS, 37, 327–332, 2021. a
Senent, M.: Principios Cooperativos, Equidad de Género y Gobierno Corporativo, Actas del 27 Congreso Internacional CIRIEC, Sevilla, 30–31, http://www.coceta.coop/Publicaciones/GuiaIgualdadCOCETA.pdf (last access: 5 August 2025), 2008. a
Senent Vidal, M.: ?`Cómo pueden aprovechar las cooperativas el talento de las mujeres? Responsabilidad social empresarial e igualdad real, Revista de Estudios Cooperativos, 57–847, 2011. a
Shortall, S. and Marangudakis, V.: Is agriculture an occupation or a sector? Gender inequalities in a European context, Sociol. Ruralis, 62, 746–762, 2022. a
Shortall, S. and Marangudakis, V.: Power and culture: Understanding EU policies on agriculture and gender equality, Sociol. Ruralis, 64, 307–324, 2024. a
Sinabell, F. and Schmid, E.: CAP Reforms: Effects on Agriculture and, Ethics, Law and Society: Volume I, 1, Routledge, ISBN 9781138273306, 2017. a
Skøien, O. J. and Lampach, N.: R Package MRG, Comprehensive R Archive Network [code], https://doi.org/10.32614/CRAN.package.MRG, 2025. a
Tang, F. H. M., Nguyen, T. H., Conchedda, G., Casse, L., Tubiello, F. N., and Maggi, F.: CROPGRIDS: a global geo-referenced dataset of 173 crops, Sci. Data, 11, 413, https://doi.org/10.1038/s41597-024-03247-7, 2024. a
Tattari, S., Jaakkola, E., Koskiaho, J., Räsänen, A., Huitu, H., Lilja, H., Salo, T., Ojanen, H., Norman Haldén, A., Djodjic, F., Collentine, D., Norrgren, L., Boqvist, S., Ottoson, J. R., Leverin, S. S., Pakhomau, A., Borgeson, C. D., Rubaek, G., and Krisciukaitiene, I.: Mapping erosion-and phosphorus-vulnerable areas in the Baltic Sea Region-data availability, methods and biosecurity aspects, MTT Agrifood Research, ISBN 978-952-487-405-2, 2012. a
Toader, M. and Roman, G. V.: Family farming–examples for rural communities development, Agric. Agric. Sci. Proc., 6, 89–94, 2015. a
Van, V. H., Heo, Y., and Doanh, N. K.: “They convert, I also convert”: the neighborhood effects and tea farmers' intention to convert to organic farming, Renew. Agr. Food Syst., 38, e11, https://doi.org/10.1017/S1742170523000030, 2023. a
Van de Steeg, J., Verburg, P., Baltenweck, I., and Staal, S. J.: Characterization of the spatial distribution of farming systems in the Kenyan Highlands, Appl. Geogr., 30, 239–253, 2010. a
van Vliet, J. A., Schut, A. G., Reidsma, P., Descheemaeker, K., Slingerland, M., van de Ven, G. W., and Giller, K. E.: De-mystifying family farming: Features, diversity and trends across the globe, Glob. Food Secur., 5, 11–18, 2015. a
Vidal, M. J. S.: Introducción a la perspectiva de género en la Economía social, in: Economía social: identidad, desafíos y estrategias, 423–440, Centro Internacional de Investigación e Información sobre la Economía, ISBN 9788494126017, 2014. a
Wang, J., Liu, Q., Hou, Y., Qin, W., Lesschen, J. P., Zhang, F., and Oenema, O.: International trade of animal feed: its relationships with livestock density and N and P balances at country level, Nutr. Cycl. Agroecosys., 110, 197–211, 2018. a
Wharton, C. R.: Subsistence agriculture: concepts and scope, in: Subsistence agriculture and economic development, 12–20, Routledge, ISBN 9781315130408, 2017. a
World Bank: Global Gridded Agricultural Gross Domestic Product (AgGDP), https://datacatalog.worldbank.org/search/dataset/0061507/Global-Gridded-Agricultural-Gross-Domestic-Product--AgGDP- (last access: 12 November 2024), 2023. a
World Economic Forum: Global Gender Gap Report 2024, World Economic Forum, ISBN 978-2-940631-89-6, 2024. a
Wriedt, G., Van Der Velde, M., Aloe, A., and Bouraoui, F.: A European irrigation map for spatially distributed agricultural modelling, Agr. Water Manage., 96, 771–789, https://doi.org/10.1016/j.agwat.2008.10.012, 2009. a
Younie, D. and Baars, T.: Organic grassland: principles, practices and potential, in: Grasslands, 207–232, CRC Press, https://doi.org/10.1201/9780429187872-9, 2019. a
Yu, Q., You, L., Wood-Sichra, U., Ru, Y., Joglekar, A. K. B., Fritz, S., Xiong, W., Lu, M., Wu, W., and Yang, P.: A cultivated planet in 2010 – Part 2: The global gridded agricultural-production maps, Earth Syst. Sci. Data, 12, 3545–3572, https://doi.org/10.5194/essd-12-3545-2020, 2020. a
Zajac, Z., Gomez, O., Gelati, E., Van Der Velde, M., Bassu, S., Ceglar, A., Chukaliev, O., Panarello, L., Koeble, R., Van Den Berg, M., Niemeyer, S., and Fumagalli, D.: Estimation of spatial distribution of irrigated crop areas in Europe for large-scale modelling applications, Agr. Water Manage., 266, 107527, https://doi.org/10.1016/j.agwat.2022.107527, 2022. a
Zollet, S. and Maharjan, K. L.: Overcoming the barriers to entry of newcomer sustainable farmers: Insights from the emergence of organic clusters in Japan, Sustainability, 13, 866, https://doi.org/10.3390/su13020866, 2021. a
Short summary
Eurostat and the Joint Research Centre developed a new methodology to make geospatial data from agricultural census available to users while ensuring that no confidential information from individuals is disclosed. The geospatial data presented in the article correspond to the contextual indicators of the monitoring framework of the Common Agricultural Policy. Our exploratory analysis reveals several interesting patterns which contribute to the broader debate on the future of European agriculture.
Eurostat and the Joint Research Centre developed a new methodology to make geospatial data from...
Altmetrics
Final-revised paper
Preprint