Articles | Volume 16, issue 12
https://doi.org/10.5194/essd-16-5625-2024
https://doi.org/10.5194/essd-16-5625-2024
Data description paper
 | 
09 Dec 2024
Data description paper |  | 09 Dec 2024

CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany

Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova

Related authors

CAMELS-LUX: Highly Resolved Hydro-Meteorological and Atmospheric Data for Physiographically Characterized Catchments around Luxembourg
Judith Nijzink, Ralf Loritz, Laurent Gourdol, Davide Zoccatelli, Jean François Iffly, and Laurent Pfister
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-482,https://doi.org/10.5194/essd-2024-482, 2025
Preprint under review for ESSD
Short summary
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025,https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
How well do hydrological models learn from limited discharge data? A comparison of process- and data-driven models
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076,https://doi.org/10.5194/egusphere-2025-1076, 2025
Short summary
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025,https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
Unveiling the Limits of Deep Learning Models in Hydrological Extrapolation Tasks
Sanika Baste, Daniel Klotz, Eduardo Acuña Espinoza, Andras Bardossy, and Ralf Loritz
EGUsphere, https://doi.org/10.5194/egusphere-2025-425,https://doi.org/10.5194/egusphere-2025-425, 2025
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
Mapping the world's inland surface waters: an upgrade to the Global Lakes and Wetlands Database (GLWD v2)
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025,https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
One year of high-frequency monitoring of groundwater physico-chemical parameters in the Weierbach experimental catchment, Luxembourg
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data, 17, 2217–2229, https://doi.org/10.5194/essd-17-2217-2025,https://doi.org/10.5194/essd-17-2217-2025, 2025
Short summary
Discrete global grid system-based flow routing datasets in the Amazon and Yukon basins
Chang Liao, Darren Engwirda, Matthew G. Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data, 17, 2035–2062, https://doi.org/10.5194/essd-17-2035-2025,https://doi.org/10.5194/essd-17-2035-2025, 2025
Short summary
GRILSS: opening the gateway to global reservoir sedimentation data curation
Sanchit Minocha and Faisal Hossain
Earth Syst. Sci. Data, 17, 1743–1759, https://doi.org/10.5194/essd-17-1743-2025,https://doi.org/10.5194/essd-17-1743-2025, 2025
Short summary
A worldwide event-based debris flow barrier dam dataset from 1800 to 2023
Haiguang Cheng, Kaiheng Hu, Shuang Liu, Xiaopeng Zhang, Hao Li, Qiyuan Zhang, Lan Ning, Manish Raj Gouli, Pu Li, Anna Yang, Peng Zhao, Junyu Liu, and Li Wei
Earth Syst. Sci. Data, 17, 1573–1593, https://doi.org/10.5194/essd-17-1573-2025,https://doi.org/10.5194/essd-17-1573-2025, 2025
Short summary

Cited articles

Acuña Espinoza, E., Loritz, R., Álvarez Chaves, M., Bäuerle, N., and Ehret, U.: To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization, Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, 2024. 
Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Correction of global precipitation products for orographic effects, J. Climate, 19, 15–38, https://doi.org/10.1175/JCLI3604.1, 2006. 
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Bergström, S. and Forsman, A.: Development of a Conceptual Deterministic Rainfall-runoff Model, Hydrol. Res., 4, 147–170, https://doi.org/10.2166/nh.1973.0012, 1973. 
Brunner, M. I., Slater, L., Tallaksen, L. M., and Clark, M.: Challenges in modeling and predicting floods and droughts: A review, WIREs Water, 8, e1520, https://doi.org/10.1002/wat2.1520, 2021. 
Download
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Share
Altmetrics
Final-revised paper
Preprint