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Abstract. Comprehensive large-sample hydrological datasets, particularly the CAMELS datasets (Catchment
Attributes and MEteorology for Large-sample Studies), have advanced hydrological research and education in
recent years. These datasets integrate extensive hydro-meteorological observations with landscape features, such
as geology and land use, across numerous catchments within a national framework. They provide harmonised
large-sample data for various purposes, such as assessing the impacts of climate change or testing hydrologi-
cal models on a large number of catchments. Furthermore, these datasets are essential for the rapid progress of
data-driven models in hydrology in recent years. Despite Germany’s extensive hydro-meteorological measure-
ment infrastructure, it has lacked a consistent, nationwide hydrological dataset, largely due to its decentralised
management across different federal states. This fragmentation has hindered cross-state studies and made the
preparation of hydrological data labour-intensive. The introduction of CAMELS-DE represents a step forward
in bridging this gap. CAMELS-DE includes 1582 streamflow gauges with hydro-meteorological time series data
covering up to 70 years (median length of 46 years and a minimum length of 10 years), from January 1951
to December 2020. It includes consistent catchment boundaries with areas ranging from 5 to 15 000 km2 along
with detailed catchment attributes covering soil, land cover, hydrogeologic properties, and data on human in-
fluences. Furthermore, it includes a regionally trained long short-term memory (LSTM) network and a locally
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trained HBV (Hydrologiska Byråns Vattenbalansavdelning) model that were used as quality control and that can
be used to fill gaps in discharge data or act as baseline models for the development and testing of new hydrolog-
ical models. Given the large number of catchments, including numerous relatively small ones (636 catchments
< 100 km2), and the time series length of up to 70 years (166 catchments with 70 years of discharge data),
CAMELS-DE is one of the most comprehensive national CAMELS datasets available and offers new opportu-
nities for research, particularly in studying long-term trends and runoff formation in small catchments and in
analysing catchments with strong human influences. This article describes CAMELS-DE version 1.0, which is
available at https://doi.org/10.5281/zenodo.13837553 (Dolich et al., 2024).

1 Introduction

The CAMELS (Catchment Attributes and MEteorology for
Large-sample Studies) datasets have become a cornerstone
within the hydrological community for their comprehensive
and consistent integration of hydrological and meteorolog-
ical data across entire countries, including the USA, UK,
Australia, Brazil, Chile, and others (e.g. Addor et al., 2017;
Coxon et al., 2020). These datasets combine catchment at-
tributes (e.g. land use, geology, and soil properties), hydro-
logical time series (e.g. water level and discharge), and me-
teorological time series (e.g. precipitation and temperature)
for a multitude of catchments typically within a single coun-
try. A distinctive feature of CAMELS datasets is their role
as a benchmark for hydrological modelling and large-sample
analysis, enabling the comparison of hydrological models
and the validation of water resources management strategies
across diverse landscapes and climates (Brunner et al., 2021).
Particularly the CAMELS-US dataset has thereby formed the
basis for the ongoing rise of machine learning methods in hy-
drology (e.g. Kratzert et al., 2019).

Despite the widespread adoption and utility of CAMELS
datasets in research, teaching, and practical applications
globally, Germany with its extensive hydro-meteorological
measurement network has no comprehensive and har-
monised dataset yet. While there are large-sample hydro-
logical datasets that either cover parts of Germany (Klin-
gler et al., 2021), i.e. only a fraction of the available na-
tional hydrological data (Färber et al., 2023), or focus on
catchment water quality and thus cover a lower sampling fre-
quency (Ebeling et al., 2022), the absence of a full CAMELS
dataset that includes harmonised, daily, high-quality national
hydrological and meteorological data together with catch-
ment attributes and catchment boundaries derived from na-
tional and international products limits the potential for com-
prehensive analyses and advancements in hydrological re-
search and practice. The CAMELS-DE dataset addresses
this gap (Dolich et al., 2024). CAMELS-DE compiles dis-
charge, water levels, catchment attributes, and catchment
boundaries together with a suite of meteorological time se-
ries and catchment attributes for 1582 catchments across
Germany. Furthermore, the dataset includes discharge sim-
ulations from two sources: a regionally trained long short-

term memory (LSTM) network (Hochreiter and Schmidhu-
ber, 1997; Hochreiter, 1998) and a locally trained concep-
tual HBV model (Hydrologiska Byråns Vattenbalansavdel-
ning; Bergström and Forsman, 1973; Seibert, 2005; Feng et
al., 2022). These simulations can serve as a benchmark for
future hydrological modelling studies in Germany or help
fill data gaps in hydrological time series. Each component
of the CAMELS-DE processing pipeline is fully container-
ised (see Sect. 7), which solves code dependency issues and
generally contributes to the traceability, comprehensiveness,
and reproducibility of the generation of CAMELS-DE. This
study introduces not only a comprehensive dataset but also
a suite of tools designed to generate reproducible hydrolog-
ical datasets from the provided raw data. In the following
sections, we provide a comprehensive description of all data
contained within CAMELS-DE, including (1) its source data,
(2) how the time series and attributes were produced, and
(3) a discussion of the associated limitations and uncertain-
ties. The structure of this paper (and also the corresponding
dataset) closely mirrors that of the CAMELS-UK (Coxon et
al., 2020) and CAMELS-CH (Höge et al., 2023) studies, en-
suring comparability of the datasets while maintaining dis-
tinct elements that are not identical but closely related.

2 Data sources and providers

CAMELS-DE brings together hydrological data, con-
sisting of daily measurements of discharge (m3 s−1) and
water levels (m) from 13 German federal state agencies,
namely the Landesanstalt für Umwelt Baden-Württemberg
(LUBW, “Nomenclature of territorial units for statis-
tics” (NUTS) level 1: DE1); Bayerisches Landesamt für
Umwelt (LfU-Bayern, DE2); Landesamt für Umwelt
Brandenburg (LfU-Brandenburg, DE4); Hessisches Lan-
desamt für Naturschutz, Umwelt und Geologie (HLNUG,
DE7); Landesamt für Umwelt, Naturschutz und Geologie
Mecklenburg-Vorpommern (LUNG MV, DE8); Niedersäch-
sischer Landesbetrieb für Wasserwirtschaft, Küsten- und
Naturschutz, Landesamt für Natur (NLWKN, DE9); Umwelt
und Verbraucherschutz Nordrhein-Westfalen (LANUV
NRW, DEA); Landesamt für Umwelt Rheinland-Pfalz
(LUA-Rheinland Pfalz, DEB); Landesamt für Umwelt-
und Arbeitsschutz Saarland (LUA, DEC); Landesamt für
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Umwelt, Landwirtschaft und Geologie Sachsen (LfULG,
DED); Landesamt für Umweltschutz Sachsen-Anhalt (LAU,
DEE); Landesamt für Landwirtschaft, Umwelt und ländliche
Räume Schleswig-Holstein (LLUR, DEF); and Thüringer
Landesamt für Umwelt, Bergbau und Naturschutz (TLUBN,
DEG). The only federal states not included are the city states
of Bremen, Hamburg, and Berlin, which together account
for less than 0.6 % of Germany’s area, ensuring that the
CAMELS-DE dataset remains representative for Germany.

Meteorological data, specifically precipitation, tempera-
ture, relative humidity, and radiation, were obtained from the
Deutscher Wetterdienst (DWD, German weather service),
from the HYRAS dataset (DWD-HYRAS, 2024). Spatially
aggregated catchment attributes were obtained from various
sources. From the European Union, we incorporated open-
access datasets from Copernicus, the EU’s earth observa-
tion programme, in particular the Copernicus GLO-30 DEM
(global 30 m digital elevation model; EU-DEM, 2022) for in-
formation about topography and the CORINE Land Cover
2018 dataset (CLC, 2018) for information about land cover.
Soil attributes were derived from the global SoilGrids250m
dataset (Poggio et al., 2021). Hydrogeological catchment
attributes were derived from the “Hydrogeologische Über-
sichtskarte von Deutschland 1 : 250.000” (HGM250, 2019),
provided by the Bundesanstalt für Geowissenschaften und
Rohstoffe (BGR), while information about human influ-
ences, e.g. dams or weirs, was sourced from Speckhann et
al. (2021).

3 Catchments

For CAMELS-DE, we sourced discharge (m3 s−1), water
level data (m), and metadata for 2964 gauges and water level
stations from the different federal state agencies (see Sect. 2).
We created a subset of the data by only selecting measure-
ment stations that contained all required information, such
as gauge name, location, and catchment area in their meta-
data (n= 2700 stations); have at least a total of 10 years
of discharge data, which must not necessarily be continu-
ous (n= 2227 stations); have a catchment area larger than
5 km2 and smaller than 15 000 km2 (n= 2586 stations); have
a catchment area located entirely within the borders of Ger-
many (n= 2298 stations); and meet the condition where the
derived catchment area does not differ by more than 20 %
from the reported value by the federal states (n= 2164 sta-
tions; see Sect. 3.1). These requirements were established
based on the following rationale: a minimum of 10 years of
discharge data are necessary to ensure an adequate time se-
ries length for hydrological modelling and for calculating hy-
drological signatures. The minimum catchment area of 5 km2

was chosen to match the 1× 1 km resolution of the precipi-
tation raster product, ensuring that multiple raster cells inter-
sect with the catchment boundary. The upper limit was set be-
cause catchments larger than 15 000 km2 are predominantly

influenced by human activities and often extend beyond Ger-
many’s borders, necessitating their exclusion. The 20 % dis-
crepancy between derived and reported catchment areas was
arbitrarily chosen as an acceptable threshold for mass bal-
ance errors. This threshold prevents the inclusion of catch-
ments with significantly inaccurate delineations while avoid-
ing the exclusion of too much data (see Fig. 2b). Catchments
partially located outside Germany’s borders were excluded to
avoid complications with cross-border data, especially given
the absence of open, high-quality meteorological data from
the DWD beyond Germany’s national borders from 1951 to
2020. These criteria resulted in a subset of 1582 gauges for
the CAMELS-DE dataset, which provides a reliable repre-
sentation of hydrological processes in Germany (Fig. 1c, d).

3.1 Catchment boundaries

Not all state authorities provided official catchment bound-
aries for their gauging stations, and the methods used by
the federal states to derive these boundaries are not uni-
form and remain unclear. Therefore, we tested two differ-
ent global catchment datasets, HydroSHEDS (Lehner et al.,
2021) and MERIT Hydro (Yamazaki et al., 2019), to derive
a consistent set of catchment boundaries across Germany for
the CAMELS-DE dataset. For that, we compared the catch-
ment areas determined with HydroSHEDS and MERIT Hy-
dro to the catchment areas reported by the state authori-
ties. This comparison was possible because all federal states
shared the area of the catchments while not always shar-
ing the actual catchment boundaries. Overall, the compari-
son revealed that MERIT Hydro has lower errors between
the reported and derived catchment areas compared to Hy-
droSHEDS. Among other reasons, this is because MERIT
Hydro derives the catchment boundaries directly at the gauge
locations provided by the federal states (see Sect. 3.2). The
comparison between MERIT Hydro and HydroSHEDS was
further supported by extensive manual assessments, involv-
ing the visual inspection of numerous catchments to evalu-
ate their shapes and alignments when the federal state pro-
vided the data. Consequently, MERIT Hydro was used for
the derivation of catchment boundaries for CAMELS-DE.
Note that the derivation of the catchment boundaries is a ma-
jor source of uncertainty as the meteorological time series
and the catchment attributes are dependent on the catchment
boundaries. To minimise the uncertainty of the catchment de-
lineation, we only included catchments with a deviation of
up to 20 % from the catchment area reported by the federal
agencies (Fig. 2b). We report the original catchment area as
(area_metadata) and the MERIT-Hydro-based area (area) in
the table of topographic attributes (Table 2).

3.2 Catchment boundaries derived from MERIT Hydro

MERIT (Multi-Error-Removed Improved-Terrain) Hydro
was released by Yamazaki et al. (2019), providing a global
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Figure 1. Panel (a) shows the German federal states labelled with
their NUTS level 1 ID as used for the CAMELS-DE gauge IDs.
Panel (b) shows all 1582 catchments provided in CAMELS-DE; the
geometries of the catchments are shown transparently, so a darker
colour means that the geometries of the catchments in that area
overlap; the darker the colour, the higher the density of catchments
in that area. Panel (c) and panel (d) show the location of all 1582
gauging stations in CAMELS-DE; in panel (c), the locations are
coloured according to the elevation of the gauging station, while in
panel (d) the locations are coloured according to their mean spe-
cific discharge value. Borders of Germany: © GeoBasis-DE/BKG
(VG250, 2023).

hydrography dataset based on the MERIT DEM and vari-
ous maps of water bodies (e.g. global 3 arcsec water body
map by Yamazaki et al., 2017). It includes information such
as flow direction, flow accumulation, adjusted elevations for
hydrological purposes, and the width of river channels. The
delineator.py package (Heberger, 2023) was used to delin-
eate catchment boundaries. The method automatically de-
rives catchment boundaries from the MERIT Hydro dataset
based on the longitude and latitude of a gauging station
and snaps the catchment pour point to the closest stream.
Figure 1b shows all derived CAMELS-DE catchments us-
ing MERIT Hydro within the German borders. The median
catchment area within CAMELS-DE is 129.1 km2 (Fig. 2a).

Compared to other CAMELS datasets, CAMELS-DE in-
cludes a large number of relatively small catchments with an
area of less than 100 km2 (i.e. 636 catchments, CAMELS-
GB: 242 catchments, CAMELS-US: 142). Uncertainties in
catchment delineation arise when comparing areas reported
by federal states with those derived from MERIT Hydro, as
shown in Fig. 2b, and these discrepancies are not uniformly
distributed across Germany. They tend to be higher in the
flat lowland regions with minimal topography (Fig. 2c), par-
ticularly in the federal states in the north and east of Ger-
many. Consequently, a large number of catchments are ex-
cluded from the CAMELS-DE dataset in the northern parts
of Germany due to mismatches between reported and esti-
mated areas. In the federal states of Brandenburg (DE4) and
Mecklenburg–Western Pomerania (DE8), for example, we
received 447 gauging stations, but given the uncertainty of
the delineation in flat areas, only 277 of them showed a devi-
ation of less than 20 % from the reported area. In contrast, in
the more mountainous state of Baden-Württemberg (DE1),
225 of 241 catchments met this criterion. As we report both
the catchment areas provided by the federal states and those
estimated by MERIT Hydro, the differences between these
two measurements can be used to select or exclude catch-
ments where there are significant uncertainties in the catch-
ment shape and correspondingly in the derived static and dy-
namic attributes.

4 Time series

CAMELS-DE includes three sets of hydro-meteorological
daily time series, as detailed in Table 1, covering the period
from 1 January 1951 to 31 December 2020. These datasets
are observed hydrologic time series (e.g. station discharge
and water levels), observed meteorologic time series (e.g.
precipitation, temperature, humidity, and radiation), and sim-
ulated hydro-meteorologic time series (e.g. discharge sim-
ulated by a LSTM and a HBV model, including estimated
evapotranspiration). Note that we do not include any in-
formation on evaporation in the non-simulated time series
data, as we only include observation-based data here. How-
ever, a time series of potential evaporation based on the
temperature-based Hargreaves methodology is included in
the simulated data (see Sect. 6.2 for more details). However,
due to the simplicity of the chosen approach, the potential
evapotranspiration time series are highly uncertain, and one
should exercise caution when using them.

All meteorological forcing data within CAMELS-DE are
sourced from the HYRAS datasets, which are based on the
interpolation of meteorological station data (DWD-HYRAS,
2024). This interpolation was conducted by the DWD (see
Sect. 4.1, 4.2, and 4.3). The reliability of these datasets can
be compromised by the individual interpolation methods em-
ployed (see Sect. 4.1 to 4.3). In addition, inaccuracies in me-
teorological measurements can introduce uncertainties in the
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Table 1. Catchment-specific hydro-meteorological variables available as daily time series in CAMELS-DE.

Time series class Time series name Description Unit Data source

Hydrologic time series
(1 January 1951–31 December 2020)

discharge_vol Observed catchment discharge calcu-
lated from the water level and gauge ge-
ometry

m3 s−1 Federal state agencies (see Sect. 2)

discharge_spec Observed catchment-specific discharge
(converted to millimetres per day using
catchment areas described in Sect. 3.1)

mm d−1

water_level Observed daily water level m

Meteorologic time series
(1 January 1951–31 December 2020)

precipitation_mean,
precipitation_median,
precipitation_min,
precipitation_max,
precipitation_stdev

Observed interpolated spatial mean,
median, minimum, maximum, and stan-
dard deviation of the daily precipitation
(original resolution 1× 1 km2)

mm d−1 Deutscher Wetterdienst HYRAS
(DWD-HYRAS, 2024)

temperature_min Observed interpolated spatial mean
daily minimum temperatures (original
resolution 5× 5 km2)

°C

temperature_mean Observed interpolated spatial mean
daily mean temperatures (original res-
olution 5× 5 km2)

°C

temperature_max Observed interpolated spatial mean
daily maximum temperatures (original
resolution 5× 5 km2)

°C

humidity_mean,
humidity_median,
humidity_min,
humidity_max,
humidity_stdev

Observed interpolated spatial mean,
median, minimum, maximum, and stan-
dard deviation of the daily humidity
(original resolution 5× 5 km2)

%

radiation_global_mean,
radiation_global_median,
radiation_global_min,
radiation_global_max,
radiation_global_stdev

Observed interpolated spatial mean,
median, minimum, maximum, and stan-
dard deviation of the global radiation
(original resolution 5× 5 km2)

W m2

Simulated hydrologic time series
(1 January 1951–31 December 2020)

pet_hargreaves Daily mean of potential evapotranspi-
ration calculated using the Hargreaves
equation

mm d−1

Regional LSTM model, HBV model,
and Hargreaves equation for poten-
tial evapotranspiration (see Sect. 6;
https://github.com/KIT-HYD/Hy2DL/
tree/v1.1, last access: 24 July 2024)

discharge_vol_obs Observed volumetric discharge m3 s−1

discharge_spec_obs Observed catchment-specific discharge mm d−1

discharge_vol_sim_lstm Volumetric discharge calculated from
discharge_spec_sim_lstm and the
catchment area

m3 s−1

discharge_spec_sim_lstm Catchment-specific discharge simulated
with the LSTM (see Sect. 6)

mm d−1

discharge_vol_sim_hbv Volumetric discharge calculated from
discharge_spec_sim_hbv and the catch-
ment area

m3 s−1

discharge_spec_sim_hbv Catchment-specific discharge simulated
with the HBV model (see Sect. 6)

mm d−1

simulation_period (train-
ing, validation, testing)

Flag indicating the simulation period
in which the daily value is contained
(training, validation, testing)

–
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Figure 2. Panel (a) shows the distribution of CAMELS-DE catchment areas on a logarithmic scale. Panel (b) shows the accuracy of catch-
ment areas derived using MERIT Hydro compared to the area reported by the federal agencies; the dashed lines indicate the ±20 % error
tolerance that was set for catchment selection. Panel (c) shows the absolute relative difference between the reported area by the federal
states and the MERIT Hydro area against the mean catchment elevation. The red line marks the threshold of 20 % allowed difference for the
inclusion of a catchment in the CAMELS-DE dataset.

generated grid fields, especially given the extended timescale
of 70 years, which may include changes in location and sen-
sor types. Another source of uncertainty is the fact that the
number of stations used in the interpolation process varies
over time, mirroring changes in the measurement network.
For example, the number of stations used for interpolating
precipitation data fluctuates, starting at around 4500 in 1951,
peaking at approximately 7500 in 2000, and then decreasing
to approximately 5000 by 2020. In contrast, the number of
stations used for radiation interpolation shows a consistent
increase over the years, though the total number remains sig-
nificantly lower, reaching about 900 stations by 2020. This
uncertainty is crucial to consider when comparing data across
different years, particularly if the focus is on a single or a
few catchments in a certain area. Finally, we use the “exact
extract” method, which ensures that raster cells that are only
partially covered are treated properly as they are weighted by
the proportion of the cell that is covered; that is, a raster cell
that is only 20 % covered by the catchment is only weighted
by 20 % when we aggregate to the spatial catchment mean
(Fig. 3a illustrates partially covered cells at the catchment
boundary). This is particularly important when deriving me-
teorological data for very small catchment areas. Although
this approach also aids in comparing products with different
resolutions, it is important to consider that the spatial resolu-
tion of the precipitation data, at 1× 1 km, offers finer detail
compared to the 5× 5 km resolution used for temperature,
humidity, and radiation data. This difference is crucial when
comparing these datasets within smaller catchments.

4.1 Precipitation

CAMELS-DE utilises precipitation data (mm d−1) with daily
resolution, sourced from the HYRAS-DE-PRE dataset v5.0
(HYRAS-DE-PRE, 2022). We have calculated daily spatial

minimum, mean, median, maximum, and standard deviation
of the rainfall field over the catchment for each day. We es-
timated these statistical measures, rather than just the mean,
because this allows us to capture spatial variations and pat-
terns that can be crucial for event characterisation or rainfall–
runoff modelling, as illustrated in Fig. 3. The HYRAS-DE-
PRE v5.0 dataset is produced using the REGNIE interpola-
tion method (Rauthe et al., 2013), which employs daily mea-
sured values from meteorological stations to generate an in-
terpolated product on a 1× 1 km grid. A detailed description
of the interpolation method and the related uncertainties can
be found in the official data description (HYRAS-DE-PRE,
2022).

4.2 Temperature and relative humidity

CAMELS-DE employs daily temperature (°C) and rel-
ative humidity (%), derived from the HYRAS-DE-TAS
(daily mean temperature; HYRAS-DE-TAS, 2022), TAS-
MIN (daily minimum temperature; HYRAS-DE-TASMIN,
2022), TASMAX (daily maximum temperature; HYRAS-
DE-TASMAX, 2022), and HURS (daily average relative
humidity; HYRAS-DE-HURS, 2022) datasets v5.0, which
cover the period from 1951 to 2020 on a 5 km× 5 km grid.
This includes the spatial mean, median, and standard devi-
ation of temperature from HYRAS-DE-TAS, alongside the
spatial minimum and maximum temperatures from TAS-
MIN and TASMAX, respectively. Additionally, for humid-
ity, we integrate daily minimum, mean, median, maximum,
and standard deviation values across the catchment area.
The temperature and humidity data are based on interpo-
lated station values (Razafimaharo et al., 2020). This in-
terpolation method involves a nonlinear regression at each
time step, aiming to estimate regional vertical temperature
profiles across 13 subregions. These subregions are delin-
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Figure 3. Panel (a) shows the catchment boundaries (black line) of the Kirchen-Hausen catchment in Baden-Württemberg overlaid by a
clipped daily precipitation field from the HYRAS dataset on the date of 20 February 1951. Panel (b) shows the spatial distribution of rainfall
during the same high precipitation event as (a) over the catchment on 20 February 1951 and the statistical moments (mean, median, standard
deviation, minimum, and maximum) derived from the spatial distribution.

eated based on criteria such as weather divides, proximity
to the coast, and the extent of north–south variation. A de-
tailed description of the interpolation method and the re-
lated uncertainties can be found in the corresponding data de-
scriptions (HYRAS-DE-TAS, 2022; HYRAS-DE-TASMIN,
2022; HYRAS-DE-TASMAX, 2022; HYRAS-DE-HURS,
2022).

4.3 Radiation

The CAMELS-DE dataset utilises daily mean global radia-
tion data (in W m−2), derived from the HYRAS-DE-RSDS
dataset v3.0 (HYRAS-DE-RSDS, 2023), that cover a pe-
riod from 1951 to 2020 with a 5 km× 5 km grid. We have
derived daily, spatial minimum, mean, median, maximum,
and standard deviation of the radiation field over the catch-
ment for each day. The global radiation dataset (RSDS) inte-
grates station measurement data (including sunshine duration
and global radiation), satellite data, and ERA5 data (Muñoz-
Sabater et al., 2021). A detailed description of the interpola-
tion method and the related uncertainties can be found in the
official data description (HYRAS-DE-RSDS, 2023).

4.4 Discharge and water levels

Observed discharge and water level data were requested from
13 state agencies (see Sect. 2) as time series recorded at the
gauging stations (Table 1). The number of stations with daily
discharge data available per year increases in time from 187
on 1 January 1951 to a maximum of 1486 between Novem-
ber 2010 and February 2011 (Fig. 4a). The number of sta-
tions with water level data is generally lower, starting at 110
stations on 1 January 1951 and reaching a maximum of 1471

stations between March 2015 and December 2015. The time
series span a maximum of 70 years, with each measuring sta-
tion providing at least 10 years of data between January 1951
and December 2020 (Fig. 4b). These 10 years do not need
to be consecutive but typically are. The median time series
length of discharge is 46 years, while the median time series
length of water level is 40 years. There is a sharp drop-off
in Fig. 4a of 137 stations without data from 2017 to 2018 as
the provided data from NLWKN (Lower Saxony, DE9) only
range until the end of 2017. Another anomaly in Fig. 4a is the
drop immediately followed by a rise in the year 2020, which
is due to the fact that all measuring stations in Rhineland-
Palatinate (DEB) show a gap in the discharge data from 10
to 15 February 2020 and in the water level data from 13 to
15 February 2020. No explanation could be found for this
gap. The remaining data after the gap were manually quality
controlled by visual inspection of the observed and simulated
time series, and we found no reason to exclude these data. In
total, CAMELS-DE includes 156 stations for which the en-
tire temporal range of 70 years of discharge data are available
and for which a maximum of 2 % of the data are missing in
this period. There are 85 stations where this is the case for
water level data.

4.5 Discharge and water levels – quality control

The quality control of all discharge and water level data was
conducted by the respective federal states (quality controlled
data were requested). However, the specific methods em-
ployed in this quality control are not the same across the
states, and they are not documented in some cases. Typically,
quality control means that a technical clerk has visually in-
spected the hydrological time series data. To account for this
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Figure 4. Panel (a) shows the number of gauging stations with available discharge (blue) and water level data (orange) in the period from
1951 to 2020, taking into account data gaps, i.e. the data must actually be available at the respective time. Panel (b) shows a histogram of the
years of available data points for all measuring stations, i.e. the length of the time series minus eventual gaps in the time series.

uncertainty, we conducted an additional review of all time
series data for high negative values and unrealistically high
outliers, and we replaced such data points with “NaN” (not a
number). We were conservative in these cases, and we only
deleted values that were clear data errors to avoid remov-
ing potential extreme flood events from the time series. This
adjustment was necessary in eight catchments and is doc-
umented in the processing pipeline to assure reproducibil-
ity. Please note that negative discharge values are still possi-
ble in the CAMELS-DE dataset due to the influence of the
tide in the northern part of Germany or due to human in-
fluences related to water resources management. Moreover,
we assessed the hydro-meteorological time series using both
a hydrological model and a data-driven model. This analy-
sis helped us identify catchments with weak correlations be-
tween meteorological conditions and hydrological responses,
as well as catchments in which the mass balance is far from
being closed. All catchments that exhibited a low model per-
formance of the HBV model were subjected to manual vi-
sual inspection, resulting in the removal of 14 catchments
(for more details we refer the reader to Sect. 6).

5 Catchment attributes

In addition to the daily time series of hydro-meteorological
variables available in CAMELS-DE, the dataset also in-
cludes a series of static catchment attributes which are con-
sidered time invariant and include information about topog-
raphy (Sect. 5.1); hydroclimatic signatures (Sect. 5.2); and
catchment attributes covering land cover (Sect. 5.3), soil
(Sect. 5.4), hydrogeology (Sect. 5.5), and human influences
(Sect. 5.6).

5.1 Location and topography

For CAMELS-DE, we developed a system of catchment IDs,
since the official IDs used by the federal states are inconsis-
tent beyond federal state boundaries. However, the official
IDs are contained in the topographic attributes of the dataset
(Table 2). The gauge IDs in CAMELS-DE are based on the
NUTS classification, which divides the EU territory hierar-
chically according to administrative boundaries. In Germany,
the first hierarchical level, NUTS 1, provides a code for each
federal state (e.g. DE7 for Hessen, DED for Saxony; Fig. 1b).
We assign an ID code to each gauge as follows. The ID of
each gauge starts with the NUTS 1 code of the correspond-
ing federal state. For each federal state, the gauges are coded
in arbitrary order starting from 10000 for the first gauge and
adding a step of 10 for each following gauge (DE710000
for the first station in Hessen, DE710010 for the second sta-
tion, DE710020 for the third station, etc.). This system en-
sures consistency of the gauge IDs in Germany and addition-
ally provides the information about the federal state of each
gauge. Topographic attributes such as the location (coordi-
nate systems WGS84 and ETRS89), gauge elevation (m), and
catchment area (km2) were provided by the federal agencies;
the area of the MERIT Hydro catchment is also provided.
Additionally, we derived the gauge point elevation (m) and
basic statistical variables (min, mean, median, 5th and 95th
percentiles, max) of the catchment elevation (m) from the
GLO-30 DEM. CAMELS-DE additionally provides the lo-
cation of all gauging stations and catchment boundaries as a
shapefile and a GeoPackage file.

5.2 Climate and hydrology

For the CAMELS-DE dataset, we calculated long-term cli-
matic and hydrological signatures in line with the attributes
found in CAMELS-CH (covering the period 1981–2020)

Earth Syst. Sci. Data, 16, 5625–5642, 2024 https://doi.org/10.5194/essd-16-5625-2024



R. Loritz et al.: CAMELS-DE 5633

Table 2. Catchment-specific static attributes available in CAMELS-DE (NA represents not available, and NaN represents not a number).

Attribute class Attribute name Description Unit Data source

Location and
topography

gauge_id catchment identifier based on the NUTS classi-
fication as described in Sect. 5.1,
DE110000, DE110010, etc.,

– Federal state agencies (see Sect. 2)

provider_id official gauging station ID assigned by the fed-
eral state

–

gauge_name gauging station name

water_body_name water body name –

federal_state federal state in which the measuring station is
located

gauge_lon gauging station longitude (EPSG:4326) °

gauge_lat gauging station latitude (EPSG:4326) °

gauge_easting gauging station easting (EPSG:3035) m

gauge_northing gauging station northing (EPSG:3035) m

gauge_elev_metadata gauging station elevation as given by the federal
state

m a.s.l.

area_metadata catchment area as given by the federal state km2

gauge_elev gauging station elevation derived from the
GLO-30 DEM

m a.s.l. Copernicus GLO-30 DEM (EU-
DEM, 2022)

area catchment area derived from the MERIT Hydro
catchment

km2

elev_mean mean elevation in the catchment based on the
MERIT Hydro geometry

m a.s.l.

elev_min minimum elevation within catchment m a.s.l.

elev_5 5th percentile elevation within catchment m a.s.l.

elev_50 median elevation within catchment m a.s.l.

elev_95 95th percentile elevation within catchment m a.s.l.

elev_max maximum elevation within catchment m a.s.l.

Climate p_mean long-term mean of daily precipitation from
1951 to 2020

mm d−1 Deutscher Wetterdienst HYRAS
(DWD-HYRAS, 2024)

p_seasonality seasonality and timing of precipitation (esti-
mated using sine curves to represent the an-
nual temperature and precipitation cycles, posi-
tive (negative) values indicate that precipitation
peaks in summer (winter), and values close to
zero indicate uniform precipitation throughout
the year).

–

frac_snow fraction of precipitation falling as snow, i.e.
while mean air temperature is <0 °C

–

high_prec_freq frequency of high-precipitation days (≥ 5 times
mean daily precipitation)

d yr−1

high_prec_dur mean duration of high-
precipitation events (number of consecutive
days ≥ 5 times mean daily precipitation)

d

high_prec_timing season during which most high-
precipitation days occur, e.g. “jja” for summer
(if two seasons register the same number of
events, “NA” is given)

season

low_prec_freq frequency of dry days (<1 mm d−1 ) d yr−1

low_prec_dur mean duration of dry periods (number of con-
secutive days <1 mm d−1 mean daily precipi-
tation)

d

low_prec_timing season during which most dry season days oc-
cur, e.g. “son” for autumn (if two seasons regis-
ter the same number of events, “NA” is given)

season

https://doi.org/10.5194/essd-16-5625-2024 Earth Syst. Sci. Data, 16, 5625–5642, 2024



5634 R. Loritz et al.: CAMELS-DE

Table 2. Continued.

Attribute class Attribute name Description Unit Data source

Hydrology q_mean mean daily specific discharge mm d−1

Federal state agencies (see
Sect. 3.1) and Deutscher Wet-
terdienst HYRAS (DWD-HYRAS,
2024)

runoff_ratio runoff ratio (ratio of mean daily discharge to
mean daily precipitation)

–

flow_period_start first date for which daily streamflow data are
available

–

flow_period_end last day for which daily streamflow data are
available

flow_perc_complete percentage of days for which streamflow data
are available from January 1951–31 Decem-
ber 2020

%

slope_fdc slope of the flow duration
curve (between the log-transformed 33rd and
66th stream flow percentiles; see Coxon et
al., 2020)

–

hfd_mean mean half-flow date (number of days since
1 Oct at which the cumulative discharge reaches
half of the annual discharge)

d

Q5 5 % flow quantile (low flow) mm d−1

Q95 95 % flow quantile (high flow) mm d−1

high_q_freq frequency of high-flow days (>9 times the me-
dian daily flow)

d yr−1

high_q_dur mean duration of high-flow events (number of
consecutive days >9 times the median daily
flow)

d

low_q_freq frequency of low-flow days (<0.2 times the
mean daily flow)

d yr−1

low_q_dur mean duration of low-flow events (number of
consecutive days <0.2 times the mean daily
flow)

d

zero_q_freq fraction of days with zero stream flow –

Land cover artificial_surfaces_perc areal coverage of artificial surfaces %

CORINE Land Cover 2018 (CLC,
2018)

agricultural_areas_perc areal coverage of agricultural areas %

forests_and_seminatural_areas_perc areal coverage of forests and semi-natural areas %

wetlands_perc areal coverage of wetlands %

water_bodies_perc areal coverage of water bodies %

Soil clay_0_30cm_mean
clay_30_100cm_mean
clay_100_200cm_mean

weight percent of clay particles (<0.002 mm)
in the fine earth fraction at depths of 0–30, 30–
100, and 100–200 cm

wt % SoilGrids250m
(Poggio et al., 2021)

silt_0_30cm_mean
silt_30_100cm_mean
silt_100_200cm_mean

weight percent of silt particles (≥ 0.002 mm
and ≤ 0.05/0.063 mm) in the fine earth fraction
at depths of 0–30, 30–100, and 100–200 cm

wt %

sand_0_30cm_mean
sand_30_100cm_mean
sand_100_200cm_mean

weight percent of sand particles
(>0.05/0.063 mm) at depths of 0–30, 30–100,
and 100–200 cm

wt %

coarse_fragments_0_30cm_mean
coarse_fragments_30_100cm_mean
coarse_fragments_100_200cm_mean

volumetric fraction of coarse fragments
(>2 mm) at depths of 0–30, 30–100, and 100–
200 cm

vol %

soil_organic_carbon_0_30cm_mean
soil_organic_ car-
bon_30_100cm_mean
soil_organic_carbon_100_200cm_mean

soil organic carbon content in the fine earth
fraction at depths of 0–30, 30–100, and 100–
200 cm

g kg−1

bulk_density_0_30cm_mean
bulk_density_30_100cm_mean
bulk_density_100_200cm_mean

bulk density of the fine earth fraction at depths
of 0–30, 30–100, and 100–200 cm

kg m−3
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Table 2. Continued.

Attribute class Attribute name Description Unit Data source

Hydrogeology aquitard_perc
aquifer_perc
aquifer_aquitard_mixed_perc

areal coverage of aquifer media type classes % HÜK250 © BGR & SGD
(Staatlichen Geologischen Dienste)
2019 (HGM250, 2019)

kf_very_high_perc (>1× 10−2 m s−1)
kf_high_perc (>1× 10−3–1× 10−2 m s−1)
kf_medium_perc (>1× 10−4–1× 10−3 m s−1)
kf_moderate_perc (>1× 10−5–1× 10−4 m s−1)
kf_low_perc (>1× 10−7–1× 10−5 m s−1)
kf_very_low_perc (>1× 10−9–1× 10−7 m s−1)
kf_extremely_low_perc (<1× 10−9 m s−1)
kf_ very_high_to_high_perc (>1× 10−3 m s−1)
kf_medium_to_moderate_perc (>1× 10−5–1× 10−3 m s−1)
kf_low_to_extremely_low_perc (<1× 10−5 m s−1)
kf_highly_variable_perc
kf_moderate_to_low_perc (>1× 10−6–1× 10−4 m s−1)

areal coverage of permeability classes %

cavity_fissure_perc
cavity_pores_perc
cavity_ fissure_karst_perc
cavity_fissure_pores_perc

areal coverage of cavity type classes %

consolidation_solid_rock_perc
consolidation_unconsolidated_rock_perc

areal coverage of consolidation classes %

rocktype_sediment_perc
rocktype_metamorphite_perc
rocktype_magmatite_perc

areal coverage of rock type classes %

geochemical_rocktype_silicate_perc
geochemical_ rocktype_silicate_carbonatic_perc
geochemical_ rocktype_carbonatic_perc
geochemical_rocktype_sulfatic_perc
geochemical_rocktype_silicate_organic_components_perc
geochemical_rocktype_anthropogenically_modified_through_
filling_perc
geochemical_rocktype_sulfatic_halitic_perc
geochemical_rocktype_halitic_perc

areal coverage of geochemical rock type classes %

waterbody_perc areal coverage of water body areas according to
hydrogeological map

%

no_data_perc percentage of areas with missing data %

Human influence dams_names names of all dams located in the catchment –

Inventory of dams in Germany
(Speckhann et al., 2021)

dams_river_names names of the rivers where the dams are located –

dams_num number of dams located in the catchment –

dams_year_first year when the first dam entered operation –

dams_year_last year when the last dam entered operation –

dams_total_lake_area total area of all dam lakes at full capacity km2

dams_total_lake_volume total volume of all dam lakes at full capacity ×106 m3

dams_purposes purposes of all the dams in the catchment –

Hydrological
simulations

training_perc_complete percentage of observed specific discharge val-
ues in the training period (1 October 1970–
31 December 1999) that are not “NaN”

%
Regional LSTM model, HBV
model (see Sect. 6, https://github.
com/KIT-HYD/Hy2DL/tree/v1.1,
last access: 24 July 2024)validation_perc_complete percentage of observed specific discharge val-

ues in the validation period (1 October 1965–
30 September 1970) that are not “NaN”

%

testing_perc_complete percentage of observed specific discharge val-
ues in the testing period (1 October2001–31 De-
cember 2020) that are not “NaN”

%

NSE_lstm Nash–Sutcliffe model efficiency coefficient of
the LSTM in the testing period

–

NSE_hbv Nash–Sutcliffe model efficiency coefficient of
the HBV model in the testing period

–

and CAMELS-UK (covering the period 1970–2015), with
the difference that we cover the period 1951–2021 (see Ta-
ble 2). Both types of attributes are calculated based solely
on complete hydrological years with respect to the discharge
(1 October to 30 September of the following year; again
in line with the definition of a hydrological year chosen in

CAMELS-UK and CAMELS-CH), with a maximum toler-
ance of 5 % missing values per hydrological year, ensuring
robustness in the data used for analysis. If a specific catch-
ment has discharge data for only a limited number of hydro-
logic years, we calculate the climatic and hydrological in-
dices for those same years to maintain consistency across all
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CAMELS datasets and across the climatic and hydrological
attributes.

For each catchment, the hydrologic attributes include val-
ues for the mean specific discharge (mm d−1); the runoff
ratio; the start and end dates of available discharge data;
the percentage of days on which discharge data are avail-
able (%); the slope of the flow duration curve between the
log-transformed 33rd and 66th percentiles; the number of
days after which the cumulative discharge since 1 October
reaches half of the annual discharge (day of year); the 5th
and 95th percentiles of specific discharge (mm d−1); and
the frequency of high-flow, low-flow, and zero-flow days
(d yr−1) together with the average duration of high-flow
and low-flow events (days of year). The climatic attributes
are calculated on the basis of the HYRAS meteorological
data for each catchment and include mean daily precipita-
tion (mm d−1), the seasonality of precipitation, the fraction
of precipitation falling as snow, the frequency of high- and
low-precipitation days (d yr−1), the average duration of high-
precipitation events and dry periods (days of year) as well
as the season during which most high- and low-precipitation
days occur. The code to estimate the signatures in CAMELS-
DE is based on the codes used to derive the signatures
for CAMELS-US (https://github.com/naddor/camels, last ac-
cess: 19 July 2024), CAMELS-UK, and CAMELS-CH to as-
sure compatibility.

5.3 Land cover

Land cover in CAMELS-DE is derived from the Corine Land
Cover dataset (CLC, 2018), which provides consistent and
thematically detailed information on land cover across Eu-
rope. The dataset was produced within the frame of the
Copernicus Land Monitoring Service, referring to land cov-
er/land use status of the year 2018, and is based on the clas-
sification of satellite images (other major releases have been
published in the years 1990, 2000, 2006, and 2012). The CLC
dataset from 2018 has a spatial resolution of 100 m for raster
data. This ensures detailed and consistent land cover infor-
mation across Europe. CAMELS-DE includes land cover
percentages per catchment of the first hierarchical land cover
level: artificial surfaces, agricultural areas, forests and semi-
natural areas, wetlands, and water bodies. The decision to
not mix the hierarchical land cover levels ensures that un-
certainties in classification due to varying levels of detail are
minimised. Catchment shapes and codes to derive land cover
classes of lower order or from different releases of CLC in a
consistent manner with CAMELS-DE are delivered with the
dataset (Dolich, 2024).

5.4 Soil

Soil attributes for CAMELS-DE are derived from the Soil-
Grids250m dataset (Poggio et al., 2021), which maps the
spatial distribution of soil properties globally at six stan-

dard depths. The SoilGrids dataset is generated by training a
machine learning model on approximately 240 000 locations
worldwide, using over 400 global environmental covariates
that describe vegetation, terrain morphology, climate, geol-
ogy, and hydrology. For CAMELS-DE, we derived the mean
values of the soil bulk density; soil organic carbon; volumet-
ric percentage of coarse fragments; and proportions of clay,
silt, and sand for each catchment. The resulting variables are
aggregated from the six SoilGrids depths to the depths 0–30,
30–100, and 100–200 cm by calculating a weighted mean.
The accuracy of soil property models, as described by Poggio
et al. (2021), is limited by the availability and quality of input
data as well as the assumptions in the modelling process. For
instance, discrepancies in how soil data are collected, anal-
ysed, and reported by different entities challenge efforts to-
ward data standardisation and harmonisation. However, the
relatively high number of observations in Germany reduces
this uncertainty to a certain extent. Furthermore, the defined
catchment boundaries allow for an assessment of the reported
uncertainties within each catchment. If needed, the catch-
ment boundaries delivered with CAMELS-DE can be used to
calculate the reported uncertainties of SoilGrids within each
catchment.

5.5 Hydrogeology

The hydrogeological attributes for CAMELS-DE are de-
rived from the hydrogeological overview map of Germany on
the scale of 1 : 250000; HÜK250 (HGM250, 2019), which
describes the hydrogeological characteristics of the upper,
large-scale contiguous aquifers in Germany. For CAMELS-
DE, the areal percentage of the various HÜK250 classes (see
Table 2) was calculated for each catchment, whereby the
variables of the classes’ permeability, aquifer media type,
cavity type, consolidation, rock type, and geochemical rock
type sum to 100 %. Uncertainties in these data may arise
from the generalisation required to scale point measurements
to a gridded product, which can oversimplify complex hydro-
geological features, potentially leading to inaccuracies in the
representation of local variations and the spatial distribution
of aquifer properties.

5.6 Human influence

CAMELS-DE includes information on human influences
within catchments, primarily focusing on existing dams and
reservoirs in Germany. This information is sourced from the
inventory of dams in Germany (Speckhann et al., 2021),
which offers detailed data including dam names, locations,
associated rivers, years of construction and operation start,
crest lengths, dam heights, lake areas, lake volumes, pur-
poses (such as flood control or water supply), dam struc-
ture types, and specific building characteristics for 530
dams across Germany. For catchments containing multiple
dams, these data are aggregated to provide a comprehensive
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overview. Specifically, CAMELS-DE includes key informa-
tion about the dams within each catchment, such as the num-
ber of dams, the names of the dams, the rivers where these
dams are located, the operational years of the oldest and
newest dams, the total area and volume of all dam lakes at
full capacity, and the overall purposes of these dams. It is im-
portant to note that the “Inventory of Dams in Germany” does
not claim to be exhaustive. The absence of recorded dams in
this inventory does not necessarily indicate a lack of human
influence within a catchment. Nearly all catchments in Ger-
many experience substantial anthropogenic influences, and
it is likely that some dams, weirs, or reservoirs (particularly
smaller ones) are not documented in the dataset. Another rel-
evant indicator of human influence included in CAMELS-DE
is hence the proportion of artificial and agricultural surfaces
derived from land cover attributes (see Sect. 5.3).

6 Benchmark LSTM model and HBV model

CAMELS-DE, in addition to hydro-meteorological observa-
tions and catchment attributes, includes results from data-
driven and conceptual lumped rainfall–runoff simulations
for each catchment. More specifically, these results are de-
rived from a regionally trained LSTM network (trained
on all catchments at the same time) and a locally trained
lumped HBV model (trained at each individual catchment;
Bergström and Forsman, 1973; Seibert, 2005; Feng et al.,
2022). These models serve three main purposes: (a) they are
used to identify catchments where the relationship between
meteorological forcing and streamflow is difficult to capture
(low model performance), indicating possible strong human
influences, such as dams or reservoirs, or potential issues
with the catchment delineation or the streamflow or mete-
orological time series; (b) they can serve as a benchmark for
future modelling studies based on CAMELS-DE in a sense
that the reported performance values and time series can be
used as a baseline model; and (c) in the case of a good model
performance, they can be used to fill missing values of the ob-
served discharge time series. Both models were trained over
the period from 1 October 1970 to 31 December 1999, vali-
dated from 1 October 1965 to 30 September 1970, and tested
from 1 January 2000 to 31 December 2020. CAMELS-DE
includes the simulated discharges for both models for the
entire 70 years (Table 1), and a flag was added to indicate
if the corresponding time step was used in training, valida-
tion, or testing. In the following, we explain the model setups
and analyse the simulation results in detail. The code of the
LSTM model and the HBV model were carefully tested and
benchmarked (Acuña Espinoza et al., 2024). The codes have
been designed to allow for easy access, and a permalink to
the code version used for CAMELS-DE can be found here
(https://github.com/KIT-HYD/Hy2DL/tree/v1.1, last access:
24 July 2024).

6.1 Setup of the LSTM model

The LSTM uses mean precipitation, standard deviation of
precipitation, mean radiation, mean minimum temperature,
and mean maximum temperature as dynamic (time vary-
ing) input features and specific discharge as a target vari-
able. Static features and hyperparameters were set accord-
ing to the study by Acuña Espinoza et al. (2024) with mod-
ifications made to (1) an increased hidden size from 64
to 128 and (2) a reduced number of epochs from 30 to
20. The remaining hyperparameters were set as follows:
number of hidden layers= 1; learning rate= 0.001; dropout
rate= 0.4; batch size= 256; sequence length= 365 d; iter-
ative optimisation algorithm=Adam. We use the basin-
averaged Nash–Sutcliffe efficiency (NSE∗) loss function
proposed by Kratzert et al. (2019) to avoid an imbalance dur-
ing training due to the higher influence of catchments with
a higher runoff generation. In addition to the model results
(see Table 2), we provide the model training epochs of the
regional LSTM as part of the CAMELS-DE dataset.

6.2 Setup of the HBV model

The lumped HBV model used in CAMELS-DE is a vari-
ant of the well-known HBV (Hydrologiska Byråns Vatten-
balansavdelning; Bergström and Forsman, 1973) model. A
detailed description of the model architecture and setup
can be found in the studies by Seibert (2005) and Feng et
al. (2022). HBV uses mean precipitation and potential evap-
otranspiration (Epot; mm d−1) as inputs. The Epot is calcu-
lated using the temperature-based Hargreaves formula, de-
tailed by Adam et al. (2006) and based on earlier work
by Droogers and Allen (2002), as explained and cited in
Clerc-Schwarzenbach et al. (2024). This variant of the Har-
greaves formula resulted in the lowest mass balance error in
most catchments with respect to other methods (e.g. Penman,
Priestly–Taylor) to estimate evapotranspiration and was ad-
ditionally chosen due to its low data requirements, enabling
the utilisation of HYRAS precipitation and temperature data
to generate the Epot time series with a limited number of as-
sumptions. The Epot time series are included in CAMELS-
DE (Table 2) for the entire time period of 70 years. In terms
of model calibration, the HBV was trained individually for
each basin using the NSE as a loss function, employing
the DiffeRential Evolution Adaptive Metropolis (DREAM;
Vrugt, 2016) algorithm as implemented in the SPOTPY (a
statistical parameter optimization tool for Python; Houska et
al., 2015) library. In contrast to the LSTM, the HBV model
is mass conserving and hence more sensitive to errors in the
catchment delineation that can lead to mass balance errors
(see Sect. 3). The difference between the HBV and the LSTM
performances can be seen as an indicator for either a strong
human influence or an imprecise catchment delineation as the
LSTM can create mass. In addition to the model results (see
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Table 2), we provide the HBV model parameters for each
catchment as part of the CAMELS-DE dataset.

6.3 Results LSTM and HBV models

In this section, we focus our analysis on the LSTM and HBV
models in catchments where at least 20 % of the daily data
are available during the 30-year training period and 10 %
during the testing period, covering a total of 1411 catch-
ments. The median performance of the LSTM, as quantified
by the NSE during the testing period, is 0.84 across 1411
catchments. Of these, 94 catchments have a NSE lower than
0.5 (6.66 % of all catchments), out of which 28 have a neg-
ative NSE (1.98 % of all catchments). For the 94 catchments
with NSE below 0.5, most streamflow time series exhibit a
low Pearson correlation with daily precipitation (<0.1), and
these catchments are often considerably affected by the con-
struction and/or operation of dams or flood control structures
(human-influence attributes). Therefore, model performance
of the LSTM network can be used to identify catchments that
are subject to considerable uncertainties, due to either mea-
surement inaccuracies or significant human influences.

Figure 5a illustrates the performance of the LSTM model
across various federal states, with relatively consistent re-
sults across the board except for the federal states of Bran-
denburg (DE4) and Saxony-Anhalt (DEE). In Brandenburg,
lowland catchments characterised by sandy soils; consider-
able groundwater impacts; abundance of natural lakes; and
human-constructed weirs, canals, and cross-connections be-
tween streams most likely yield a distinctly lower model
performance compared to the rest of the German federal
states. Besides the federal states of Brandenburg and Saxony-
Anhalt, the analysis of the LSTM simulations reveals no
clear correlation between the model performance and the to-
pographic attributes (e.g. area), climatic attributes (e.g. long-
term mean precipitation), or hydrological attributes (e.g.
long-term mean flow).

The performance of HBV is with a median NSE of 0.72
lower than that of the LSTM (Fig. 5b). In 192 catchments
(13.61 %), the HBV shows a performance below a NSE of
0.5, and in 44 catchments (3.12 %) a performance below
a NSE of 0 is shown. The spatial patterns of performance
measured by the NSE are consistent between the LSTM and
HBV. In other words, catchments where the LSTM performs
well are typically also accurately represented by HBV and
vice versa, as illustrated in Fig. 5e. Catchments in which
HBV significantly underperforms compared to the LSTM are
almost invariably strongly influenced by human-made struc-
tures such as dams or weirs, or they are located in areas with
uncertain catchment delineation. We propose that the HBV
model, which conserves mass and uses time-invariant param-
eters, struggles to adapt to dynamic changes in catchment
function caused by human activities that result in inaccura-
cies in water flow and storage due to structures like dams or
weirs or due to irrigation or pumping. This is a hypothesis

that requires further testing in the few catchments where this
is the case.

7 Code availability, reproducibility, and extensions

The processing of CAMELS-DE is structured in a modu-
lar manner to enhance the clarity and reproducibility of the
processing pipeline. The CAMELS-DE processing pipeline
was published separately with more details and permalinks
to the released repository versions that represent the code
state that was used to process and compile CAMELS-DE
(Dolich, 2024). For each component of CAMELS-DE, a dis-
tinct GitHub repository was established. Within each reposi-
tory, a dedicated Docker container was developed to process
specific input datasets (e.g. HYRAS, GLO-30 DEM). Con-
tainerisation is particularly well suited for this project as it
ensures that each component of the data-processing pipeline
runs consistently across different computing environments.
This containerisation simplifies dependency management,
enhances reproducibility, and facilitates the deployment and
version control of each processing module. Figure 6 il-
lustrates the architecture of the processing pipeline, where
each blue block represents an individual GitHub repository
equipped with a Docker container that processes the yellow
input data to produce the green output data. All reposito-
ries are uniformly structured, and the accompanying docu-
mentation provides detailed descriptions of each repository,
guidelines for building and running the Docker containers
(including the necessary folder mounts), and instructions for
accessing the required input data. In the initial phase of the
CAMELS-DE data-processing pipeline, raw discharge and
water level data, along with station metadata provided by the
federal states, are processed and harmonised. Subsequently,
MERIT Hydro catchment boundaries are delineated for each
station, a pivotal step since all further datasets depend exten-
sively on these catchment boundaries. Meteorological time
series data for these catchments are then processed to com-
pute statistics such as areal mean and median. Following this,
attributes such as soil properties, hydrogeology, land cover,
topography, and human influences are derived for each catch-
ment (see Table 2). In the final stage, all derived data are in-
tegrated and formatted according to the established structure
of the CAMELS-DE dataset, mirroring the organisational
schema of CAMELS-GB or CAMELS-CH.

The modular design of the CAMELS-DE processing
pipeline enhances its traceability, comprehensibility, and re-
producibility, differing significantly from a monolithic code
approach that compiles the entire dataset into a single repos-
itory. This structure not only facilitates the extension of the
pipeline to incorporate additional data sources (especially
further catchment attributes) without the need to rerun or
rewrite the entire system but also allows for the adaptation
of processing or aggregation methods and for the seamless
release of updated versions of the CAMELS-DE dataset. The
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Figure 5. Panel (a) shows boxplots visualising the distribution of the NSE of the LSTM network (blue) and the HBV model (orange) for
each federal state in Germany for the testing period. Panel (b) shows a cumulative plot of the NSE for the general comparison of the LSTM
model and the HBV model. Panel (c) shows the NSE values of the LSTM for 1411 gauging stations in Germany, while panel (d) shows the
same for the NSE values of the HBV model. Panel (e) shows the difference between the NSE values of the LSTM and the HBV model for
all gauging stations in Germany. Borders of Germany: © GeoBasis-DE/BKG (VG250, 2023).

publicly available Docker containers and the code within
them serve not only as a comprehensive guide to understand-
ing the data-processing methods used in CAMELS-DE but
also as a foundation for further data processing using the
catchment geometries included in the dataset. We encour-
age researchers to enrich CAMELS-DE with additional data
sources and explore ways to enhance the baseline model re-
sults. Such contributions are invaluable for continuous im-
provements and expansions of the CAMELS-DE dataset, re-
flecting our commitment to advancing hydrological research
and applications through reproducible science.

8 Data availability

This article describes the state of version 1.0
of CAMELS-DE, which is freely available at
https://doi.org/10.5281/zenodo.13837553 (Dolich et al.,

2024), accompanied by a comprehensive data description.
The CAMELS-DE processing pipeline with all codes can be
found at https://doi.org/10.5281/zenodo.13842287 (Dolich,
2024).

9 Conclusions

CAMELS-DE is a significant step forward in hydrologi-
cal research for Germany and beyond, offering a compre-
hensive dataset that spans 1582 catchments with hydro-
meteorological daily time series from 1951 to 2020.
CAMELS-DE includes detailed catchment delineations and
properties, such as reservoir data, land use, soils, and hy-
drogeology, which are all vital to analyse and describe
the local and regional hydrology of Germany. Furthermore,
CAMELS-DE includes simulations from a regionally trained
LSTM and locally trained HBV model that can be used ei-
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Figure 6. Diagram of the CAMELS-DE data-processing pipeline. Starting with raw discharge and metadata harmonisation, it proceeds to
derive MERIT Hydro catchment boundaries. Subsequent processing includes meteorological data extraction and aggregation followed by the
extraction of various catchment attributes. In the final step, all extracted data sources are integrated in the structured CAMELS-DE dataset,
consistent with CAMELS-GB or CAMELS-CH (Dolich, 2024).

ther to fill gaps in discharge data in case of good model
performance or to act as baseline models for the devel-
opment and testing of new hydrological models. Due to
the length of the provided time series of up to 70 years,
CAMELS-DE opens up new opportunities for investigating
long-term hydrological trends or conducting large-sample
studies across diverse catchments, including a large num-
ber of catchments smaller than 100 km2. The dataset’s mod-
ular design, achieved through the containerisation of each
processing component, ensures that the data processing is
traceable, comprehensible, and reproducible. This approach
makes it easier to extend the dataset by incorporating new
data sources, adapting processing methods, and releasing up-
dated versions without the need to rerun the entire pipeline.
While CAMELS-DE serves as a useful benchmark for large-
sample hydrology, we invite the scientific community to en-
rich it with additional data sources and improved methods.
In conclusion, CAMELS-DE aims to support a broad range
of hydrological research and applications, to foster better un-
derstanding and management of water resources in Germany
and beyond, and to contribute to future global hydrological
studies.

Author contributions. RL and MS initiated the CAMELS-DE
project. AD prepared and processed data, created most figures, and
wrote (together with RL) most of the article. All other authors sug-
gested improvements and made additions to the article, as well as
provided data and expertise for specific topics. The order of the co-
authors is sorted alphabetically.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Earth System Science Data. The peer-
review process was guided by an independent editor, and the authors
also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank the various German institutions
for providing observation-based data and sharing their expertise.

Earth Syst. Sci. Data, 16, 5625–5642, 2024 https://doi.org/10.5194/essd-16-5625-2024



R. Loritz et al.: CAMELS-DE 5641

We are grateful to the Volkswagen Foundation for funding the
“CAMELS-DE” project within the framework of the project “Invig-
orating Hydrological Science and Teaching: Merging Key Legacies
with New Concepts and Paradigms” (ViTamins). We also extend
our thanks to NFDI4Earth, particularly Jörg Seegert, for their sup-
port and suggestions.

Financial support. The article processing charges for this open-
access publication were covered by the Karlsruhe Institute of Tech-
nology (KIT).

Review statement. This paper was edited by Conrad Jackisch
and reviewed by Juliane Mai and one anonymous referee.

References

Acuña Espinoza, E., Loritz, R., Álvarez Chaves, M., Bäuerle, N.,
and Ehret, U.: To bucket or not to bucket? Analyzing the perfor-
mance and interpretability of hybrid hydrological models with
dynamic parameterization, Hydrol. Earth Syst. Sci., 28, 2705–
2719, https://doi.org/10.5194/hess-28-2705-2024, 2024.

Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Cor-
rection of global precipitation products for orographic effects, J.
Climate, 19, 15–38, https://doi.org/10.1175/JCLI3604.1, 2006.

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The
CAMELS data set: catchment attributes and meteorology for
large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313,
https://doi.org/10.5194/hess-21-5293-2017, 2017.

Bergström, S. and Forsman, A.: Development of a Conceptual
Deterministic Rainfall-runoff Model, Hydrol. Res., 4, 147–170,
https://doi.org/10.2166/nh.1973.0012, 1973.

Brunner, M. I., Slater, L., Tallaksen, L. M., and Clark, M.: Chal-
lenges in modeling and predicting floods and droughts: A review,
WIREs Water, 8, e1520, https://doi.org/10.1002/wat2.1520,
2021.

CLC: Corine Land Cover, CLC [data set],
https://doi.org/10.2909/960998c1-1870-4e82-8051-
6485205ebbac, 2018.

Clerc-Schwarzenbach, F., Selleri, G., Neri, M., Toth, E., van
Meerveld, I., and Seibert, J.: Large-sample hydrology – a few
camels or a whole caravan?, Hydrol. Earth Syst. Sci., 28, 4219–
4237, https://doi.org/10.5194/hess-28-4219-2024, 2024.

Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Han-
naford, J., Howden, N. J. K., Lane, R., Lewis, M., Robinson,
E. L., Wagener, T., and Woods, R.: CAMELS-GB: hydrome-
teorological time series and landscape attributes for 671 catch-
ments in Great Britain, Earth Syst. Sci. Data, 12, 2459–2483,
https://doi.org/10.5194/essd-12-2459-2020, 2020.

Dolich, A.: CAMELS-DE Processing Pipeline (1.0.0), Zenodo
[code], https://doi.org/10.5281/zenodo.13842287, 2024.

Dolich, A., Espinoza, E. A., Ebeling, P., Guse, B., Götte, J., Has-
sler, S., Hauffe, C., Kiesel, J., Heidbüchel, I., Mälicke, M.,
Müller-Thomy, H., Stölzle, M., Tarasova, L., and Loritz, R.:
CAMELS-DE: hydrometeorological time series and attributes
for 1582 catchments in Germany (1.0.0), Zenodo [data set],
https://doi.org/10.5281/zenodo.13837553, 2024.

Droogers, P. and Allen, R. G.: Estimating reference evapotranspi-
ration under inaccurate data conditions, Irrig. Drain. Syst., 16,
33–45, https://doi.org/10.1023/A:1015508322413, 2002.

DWD-HYRAS: HYRAS – Hydrometeorologische Rasterdaten,
https://www.dwd.de/DE/leistungen/hyras/hyras.html, last
access: 25 March 2024.

Ebeling, P., Kumar, R., Lutz, S. R., Nguyen, T., Sarrazin, F., We-
ber, M., Büttner, O., Attinger, S., and Musolff, A.: QUADICA:
water QUAlity, DIscharge and Catchment Attributes for large-
sample studies in Germany, Earth Syst. Sci. Data, 14, 3715–
3741, https://doi.org/10.5194/essd-14-3715-2022, 2022.

EU-DEM: Copernicus GLO-30 DEM, Copernicus [data set],
https://doi.org/10.5270/esa-c5d3d65, 2022.

Färber, C., Plessow, H., Kratzert, F., Addor, N., Shalev, G., and
Looser, U.: GRDC-Caravan: extending the original dataset with
data from the Global Runoff Data Centre (0.2), Zenodo [data set],
https://doi.org/10.5281/zenodo.10074416, 2023.

Feng, D., Liu, J., Lawson, K., and Shen, C.: Differentiable,
learnable, regionalized process-based models with multiphys-
ical outputs can approach state-of-the-art hydrologic pre-
diction accuracy, Water Resour. Res., 58, e2022WR032404,
https://doi.org/10.1029/2022WR032404, 2022.

Heberger, M.: delineator.py: Fast, accurate watershed de-
lineation using hybrid vector- and raster-based meth-
ods and data from MERIT-Hydro (v1.3), Zenodo [code],
https://doi.org/10.5281/zenodo.10143149, 2023.

HGM250: Hydrogeological Map of Germany (1 : 250,000), Geo-
datenkatalog [data set], https://gdk.gdi-de.org/geonetwork/srv/
api/records/61ac4628-6b62-48c6-89b8-46270819f0d6 (last ac-
cess: 24 July 2024), 2019.

Hochreiter, S.: The vanishing gradient problem during learning re-
current neural nets and problem solutions. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 06,
107–116, https://doi.org/10.1142/s0218488598000094, 1998.

Hochreiter, S. and Schmidhuber, J.: Long short-
term memory, Neural Comput., 9, 1735–1780,
https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Houska, T., Kraft, P., Chamorro-Chavez, A., and Breuer,
L.: SPOTting Model Parameters Using a Ready-
Made Python Package, PLOS ONE, 10, e0145180,
https://doi.org/10.1371/journal.pone.0145180, 2015.

Höge, M., Kauzlaric, M., Siber, R., Schönenberger, U., Horton,
P., Schwanbeck, J., Floriancic, M. G., Viviroli, D., Wilhelm,
S., Sikorska-Senoner, A. E., Addor, N., Brunner, M., Pool, S.,
Zappa, M., and Fenicia, F.: CAMELS-CH: hydro-meteorological
time series and landscape attributes for 331 catchments in hy-
drologic Switzerland, Earth Syst. Sci. Data, 15, 5755–5784,
https://doi.org/10.5194/essd-15-5755-2023, 2023.

HYRAS-DE-HURS: Raster data set of daily mean relative humidity
in % for Germany – HYRAS-DE-HURS, Version v5.0, DWD
[data set], https://opendata.dwd.de/climate_environment/
CDC/grids_germany/multi_annual/hyras_de/humidity/
DESCRIPTION_GRD_DEU_P30Y_RH_HYRAS_DE_en.pdf
(last access: 24 July 2024), 2022.

HYRAS-DE-PRE: Raster data set of daily sums of precipitation in
mm for Germany – HYRAS-DE-PRE, Version v5.0, DWD [data
set], https://opendata.dwd.de/climate_environment/CDC/grids_
germany/daily/hyras_de/precipitation/DESCRIPTION_GRD_

https://doi.org/10.5194/essd-16-5625-2024 Earth Syst. Sci. Data, 16, 5625–5642, 2024

https://doi.org/10.5194/hess-28-2705-2024
https://doi.org/10.1175/JCLI3604.1
https://doi.org/10.5194/hess-21-5293-2017
https://doi.org/10.2166/nh.1973.0012
https://doi.org/10.1002/wat2.1520
https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac
https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac
https://doi.org/10.5194/hess-28-4219-2024
https://doi.org/10.5194/essd-12-2459-2020
https://doi.org/10.5281/zenodo.13842287
https://doi.org/10.5281/zenodo.13837553
https://doi.org/10.1023/A:1015508322413
https://www.dwd.de/DE/leistungen/hyras/hyras.html
https://doi.org/10.5194/essd-14-3715-2022
https://doi.org/10.5270/esa-c5d3d65
https://doi.org/10.5281/zenodo.10074416
https://doi.org/10.1029/2022WR032404
https://doi.org/10.5281/zenodo.10143149
https://gdk.gdi-de.org/geonetwork/srv/api/records/61ac4628-6b62-48c6-89b8-46270819f0d6
https://gdk.gdi-de.org/geonetwork/srv/api/records/61ac4628-6b62-48c6-89b8-46270819f0d6
https://doi.org/10.1142/s0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1371/journal.pone.0145180
https://doi.org/10.5194/essd-15-5755-2023
https://opendata.dwd.de/climate_environment/CDC/grids_germany/multi_annual/hyras_de/humidity/DESCRIPTION_GRD_DEU_P30Y_RH_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/multi_annual/hyras_de/humidity/DESCRIPTION_GRD_DEU_P30Y_RH_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/multi_annual/hyras_de/humidity/DESCRIPTION_GRD_DEU_P30Y_RH_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/precipitation/DESCRIPTION_GRD_DEU_P1D_RR_HYRAS-DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/precipitation/DESCRIPTION_GRD_DEU_P1D_RR_HYRAS-DE_en.pdf


5642 R. Loritz et al.: CAMELS-DE

DEU_P1D_RR_HYRAS-DE_en.pdf (last access: 24 July 2024),
2022.

HYRAS-DE-RSDS: Raster data set of daily mean global radiation
in W/m2 for Germany – HYRAS-DE-RSDS, DWD [data
set], https://opendata.dwd.de/climate_environment/CDC/grids_
germany/daily/hyras_de/radiation_global/DESCRIPTION_
GRD_DEU_P1D_RAD_G_HYRAS_DE_en.pdf (last access:
24 July 2024), Version v3.0, 2023.

HYRAS-DE-TAS: Raster data set of daily mean temperature
in °C for Germany – HYRAS-DE-TAS, Version v5.0, DWD
[data set], https://opendata.dwd.de/climate_environment/
CDC/grids_germany/daily/hyras_de/air_temperature_mean/
DESCRIPTION_GRD_DEU_P1D_T2M_HYRAS_DE_en.pdf
(last access: 24 July 2024), 2022.

HYRAS-DE-TASMAX: Raster data set of daily maximum temper-
ature in °C for Germany – HYRAS-DE-TASMAX, Version v5.0,
DWD [data set], https://opendata.dwd.de/climate_environment/
CDC/grids_germany/monthly/hyras_de/air_temperature_max/
DESCRIPTION_GRD_DEU_P1M_T2M_X_HYRAS_DE_en.
pdf (last access: 24 July 2024), 2022.

HYRAS-DE-TASMIN: Raster data set of daily minimum tempera-
ture in °C for Germany – HYRAS-DE-TASMIN, Version v5.0,
DWD [data set], https://opendata.dwd.de/climate_environment/
CDC/grids_germany/daily/hyras_de/air_temperature_min/
DESCRIPTION_GRD_DEU_P1D_T2M_N_HYRAS_DE_en.
pdf (last access: 24 July 2024), 2022.

Klingler, C., Schulz, K., and Herrnegger, M.: LamaH-CE: LArge-
SaMple DAta for Hydrology and Environmental Sciences
for Central Europe, Earth Syst. Sci. Data, 13, 4529–4565,
https://doi.org/10.5194/essd-13-4529-2021, 2021.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter,
S., and Nearing, G.: Towards learning universal, regional, and
local hydrological behaviors via machine learning applied to
large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110,
https://doi.org/10.5194/hess-23-5089-2019, 2019.

Lehner, B., Roth, A., Huber, M., Anand, M., Grill, G., Osterkamp,
N., Tubbesing, R., Warmedinger, L., and Thieme, M.: Hy-
droSHEDS v2.0 – Refined global river network and catch-
ment delineations from TanDEM-X elevation data, EGU Gen-
eral Assembly 2021, online, 19–30 Apr 2021, EGU21-9277,
https://doi.org/10.5194/egusphere-egu21-9277, 2021.

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C.,
Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harri-
gan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M.,
Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and
Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis
dataset for land applications, Earth Syst. Sci. Data, 13, 4349–
4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.

Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M.,
Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: pro-
ducing soil information for the globe with quantified spatial un-
certainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-
2021, 2021.

Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., and
Gratzki, A.: A Central European precipitation climatology
Part I: Generation and validation of a high-resolution grid-
ded daily data set (HYRAS), Meteorol. Z., 22, 235–256,
https://doi.org/10.1127/0941-2948/2013/0436, 2013.

Razafimaharo, C., Krähenmann, S., Höpp, S., Rauthe, M., and
Deutschländer, T.: New high-resolution gridded dataset of daily
mean, minimum, and maximum temperature and relative humid-
ity for Central Europe (HYRAS), Theor. Appl. Climatol., 142,
1531–1553, https://doi.org/10.1007/s00704-020-03388-w, 2020.

Seibert, J.: HBV Light Version 2, User’s Manual, Department
of Physical Geography and Quaternary Geology, Stock-
holm University, Stockholm, https://www.geo.uzh.ch/dam/jcr:
c8afa73c-ac90-478e-a8c7-929eed7b1b62/HBV_manual_2005.
pdf (last access: 19 September 2024), 2005.

Speckhann, G. A., Kreibich, H., and Merz, B.: Inventory of
dams in Germany, Earth Syst. Sci. Data, 13, 731–740,
https://doi.org/10.5194/essd-13-731-2021, 2021.

VG250: Verwaltungsgebiete 1 : 250000 – Stand 01.01.,
https://gdk.gdi-de.org/geonetwork/srv/api/records/
93a98c5c-cf03-4a95-bf0a-54001fbf3949 (last access:
24 July 2024), 2023.

Vrugt, J. A.: Markov chain Monte Carlo simulation using
the DREAM software package: Theory, concepts, and MAT-
LAB implementation, Environ. Modell. Softw., 75, 273–316,
https://doi.org/10.1016/j.envsoft.2015.08.013, 2016.

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T.,
O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae,
S., and Bates, P. D.: A high-accuracy map of global
terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017gl072874, 2017.

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen,
G. H., and Pavelsky, T. M.: MERIT Hydro: A High-
Resolution Global Hydrography Map Based on Latest To-
pography Dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019wr024873, 2019.

Earth Syst. Sci. Data, 16, 5625–5642, 2024 https://doi.org/10.5194/essd-16-5625-2024

https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/precipitation/DESCRIPTION_GRD_DEU_P1D_RR_HYRAS-DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/radiation_global/DESCRIPTION_GRD_DEU_P1D_RAD_G_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/radiation_global/DESCRIPTION_GRD_DEU_P1D_RAD_G_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/radiation_global/DESCRIPTION_GRD_DEU_P1D_RAD_G_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/air_temperature_mean/DESCRIPTION_GRD_DEU_P1D_T2M_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/air_temperature_mean/DESCRIPTION_GRD_DEU_P1D_T2M_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/air_temperature_mean/DESCRIPTION_GRD_DEU_P1D_T2M_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/hyras_de/air_temperature_max/DESCRIPTION_GRD_DEU_P1M_T2M_X_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/hyras_de/air_temperature_max/DESCRIPTION_GRD_DEU_P1M_T2M_X_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/hyras_de/air_temperature_max/DESCRIPTION_GRD_DEU_P1M_T2M_X_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/hyras_de/air_temperature_max/DESCRIPTION_GRD_DEU_P1M_T2M_X_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/air_temperature_min/DESCRIPTION_GRD_DEU_P1D_T2M_N_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/air_temperature_min/DESCRIPTION_GRD_DEU_P1D_T2M_N_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/air_temperature_min/DESCRIPTION_GRD_DEU_P1D_T2M_N_HYRAS_DE_en.pdf
https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/air_temperature_min/DESCRIPTION_GRD_DEU_P1D_T2M_N_HYRAS_DE_en.pdf
https://doi.org/10.5194/essd-13-4529-2021
https://doi.org/10.5194/hess-23-5089-2019
https://doi.org/10.5194/egusphere-egu21-9277
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.1127/0941-2948/2013/0436
https://doi.org/10.1007/s00704-020-03388-w
https://www.geo.uzh.ch/dam/jcr:c8afa73c-ac90-478e-a8c7-929eed7b1b62/HBV_manual_2005.pdf
https://www.geo.uzh.ch/dam/jcr:c8afa73c-ac90-478e-a8c7-929eed7b1b62/HBV_manual_2005.pdf
https://www.geo.uzh.ch/dam/jcr:c8afa73c-ac90-478e-a8c7-929eed7b1b62/HBV_manual_2005.pdf
https://doi.org/10.5194/essd-13-731-2021
https://gdk.gdi-de.org/geonetwork/srv/api/records/93a98c5c-cf03-4a95-bf0a-54001fbf3949
https://gdk.gdi-de.org/geonetwork/srv/api/records/93a98c5c-cf03-4a95-bf0a-54001fbf3949
https://doi.org/10.1016/j.envsoft.2015.08.013
https://doi.org/10.1002/2017gl072874
https://doi.org/10.1029/2019wr024873

	Abstract
	Introduction
	Data sources and providers
	Catchments
	Catchment boundaries
	Catchment boundaries derived from MERIT Hydro

	Time series
	Precipitation
	Temperature and relative humidity
	Radiation
	Discharge and water levels
	Discharge and water levels – quality control

	Catchment attributes
	Location and topography
	Climate and hydrology
	Land cover
	Soil
	Hydrogeology
	Human influence

	Benchmark LSTM model and HBV model
	Setup of the LSTM model
	Setup of the HBV model
	Results LSTM and HBV models

	Code availability, reproducibility, and extensions
	Data availability
	Conclusions
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

