Articles | Volume 16, issue 10
https://doi.org/10.5194/essd-16-4869-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-4869-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coral skeletal proxy records database for the Great Barrier Reef, Australia
Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, 2522, Australia
Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, 2522, Australia
Helen V. McGregor
Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, 2522, Australia
Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, 2522, Australia
Tara R. Clark
Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, 2522, Australia
Radiogenic Isotope Facility, School of the Environment, The University of Queensland, Brisbane, 4072, Australia
Jody M. Webster
Geocoastal Research Group, School of Geosciences, The University of Sydney, Camperdown, 2006, Australia
Stephen E. Lewis
Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, 4811, Australia
Jennie Mallela
Research School of Biology, The Australian National University, Canberra, 2601, Australia
Nicholas P. McKay
School of Earth and Sustainability, Northern Arizona University, Flagstaff, 86011, USA
Hugo W. Fahey
Environmental Futures, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, 2522, Australia
Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, 2522, Australia
Supriyo Chakraborty
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences (MoES), Pune, 411008, India
Department of Atmospheric and Space Sciences, Savitribai Phule Pune University, Pune, 411007, India
Tries B. Razak
Department of Marine Science and Technology, Faculty of Fisheries and Marine Sciences, IPB University, Bogor, 16680, Indonesia
School of Coral Reef Restoration (SCORES), Faculty of Fisheries and Marine Science, IPB University, Bogor, 16680, Indonesia
Matt J. Fischer
Environment Research & Technology Group, ANSTO, Lucas Heights, 2234, Australia
Related authors
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Matt J. Fischer
Geosci. Model Dev., 17, 6745–6760, https://doi.org/10.5194/gmd-17-6745-2024, https://doi.org/10.5194/gmd-17-6745-2024, 2024
Short summary
Short summary
In paleoclimate research, proxy system models (PSMs) model chemical or biological systems which receive environmental input and output (e.g., geochemical signals). The environmental inputs are rarely noiseless, which causes problems when calibrating multi-input PSMs. Here a PSM is developed which includes generalized noise in both model inputs and outputs and prior information. A quasi-Bayesian method enhances the stability of the solution of the Measurement Error Proxy System Model.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Nadine Hallmann, Gilbert Camoin, Jody M. Webster, and Marc Humblet
Earth Syst. Sci. Data, 13, 2651–2699, https://doi.org/10.5194/essd-13-2651-2021, https://doi.org/10.5194/essd-13-2651-2021, 2021
Short summary
Short summary
The last interglacial (Marine Isotope Stage 5e – MIS 5e) occurred between 128 and 116 ka when sea level was about 6–8 m above its present level; sea-level changes during this period are still debated. MIS 5e represents a potential future warm-climate analogue. This paper presents an open-access database based on the review of MIS 5e coral reef records from many tropical Pacific islands. Overall, the database contains 318 age data points and 94 relative sea-level data points from 38 studies.
Bronwen L. Konecky, Nicholas P. McKay, Olga V. Churakova (Sidorova), Laia Comas-Bru, Emilie P. Dassié, Kristine L. DeLong, Georgina M. Falster, Matt J. Fischer, Matthew D. Jones, Lukas Jonkers, Darrell S. Kaufman, Guillaume Leduc, Shreyas R. Managave, Belen Martrat, Thomas Opel, Anais J. Orsi, Judson W. Partin, Hussein R. Sayani, Elizabeth K. Thomas, Diane M. Thompson, Jonathan J. Tyler, Nerilie J. Abram, Alyssa R. Atwood, Olivier Cartapanis, Jessica L. Conroy, Mark A. Curran, Sylvia G. Dee, Michael Deininger, Dmitry V. Divine, Zoltán Kern, Trevor J. Porter, Samantha L. Stevenson, Lucien von Gunten, and Iso2k Project Members
Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, https://doi.org/10.5194/essd-12-2261-2020, 2020
Chris S. M. Turney, Helen V. McGregor, Pierre Francus, Nerilie Abram, Michael N. Evans, Hugues Goosse, Lucien von Gunten, Darrell Kaufman, Hans Linderholm, Marie-France Loutre, and Raphael Neukom
Clim. Past, 15, 611–615, https://doi.org/10.5194/cp-15-611-2019, https://doi.org/10.5194/cp-15-611-2019, 2019
Short summary
Short summary
This PAGES (Past Global Changes) 2k (climate of the past 2000 years working group) special issue of Climate of the Past brings together the latest understanding of regional change and impacts from PAGES 2k groups across a range of proxies and regions. The special issue has emerged from a need to determine the magnitude and rate of change of regional and global climate beyond the timescales accessible within the observational record.
Charan Teja Tejavath, Karumuri Ashok, Supriyo Chakraborty, and Rengaswamy Ramesh
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-7, https://doi.org/10.5194/cp-2018-7, 2018
Manuscript not accepted for further review
Short summary
Short summary
Analysing multiple CMIP5/PMIP3 Last Millennium simulations, we find that the Indian region was warmer and wetter during the medieval warm period, and cooler and drier in the little ice age, as compared to the last millennium mean conditions. This supports findings from the few available proxy findings. The Indian summer monsoon-ENSO association is robust through the last millennium, but varied on centennial time scales.
Duncan Ackerley, Jessica Reeves, Cameron Barr, Helen Bostock, Kathryn Fitzsimmons, Michael-Shawn Fletcher, Chris Gouramanis, Helen McGregor, Scott Mooney, Steven J. Phipps, John Tibby, and Jonathan Tyler
Clim. Past, 13, 1661–1684, https://doi.org/10.5194/cp-13-1661-2017, https://doi.org/10.5194/cp-13-1661-2017, 2017
Short summary
Short summary
A selection of climate models have been used to simulate both pre-industrial (1750 CE) and mid-Holocene (6000 years ago) conditions. This study presents an assessment of the temperature, rainfall and flow over Australasia from those climate models. The model data are compared with available proxy data reconstructions (e.g. tree rings) for 6000 years ago to identify whether the models are reliable. Places where there is both agreement and conflict are highlighted and investigated further.
Charan Teja Tejavath, Ashok Karumuri, Supriyo Chakraborty, and Rengasamy Ramesh
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-24, https://doi.org/10.5194/cp-2017-24, 2017
Revised manuscript not accepted
Short summary
Short summary
Analysing multiple CMIP5/PMIP3 Last Millennium simulations, we find that the Indian region was warmer and wetter during the medieval warm period, and cooler and drier in the little ice age, as compared to the last millennium mean conditions. This supports findings from the few available proxy findings. The Indian summer monsoon-ENSO association is robust through the last millennium, but varied on centennial time scales.
Related subject area
Domain: ESSD – Ocean | Subject: Palaeooceanography, palaeoclimatology
A revised marine fossil record of the Mediterranean before and after the Messinian salinity crisis
DINOSTRAT version 2.1-GTS2020
An 800 kyr planktonic δ18O stack for the Western Pacific Warm Pool
Tephra data from varved lakes of the Last Glacial–Interglacial Transition: towards a global inventory and better chronologies on the Varved Sediments Database (VARDA)
The CoralHydro2k database: a global, actively curated compilation of coral δ18O and Sr ∕ Ca proxy records of tropical ocean hydrology and temperature for the Common Era
BENFEP: a quantitative database of benthic foraminifera from surface sediments of the eastern Pacific
Konstantina Agiadi, Niklas Hohmann, Elsa Gliozzi, Danae Thivaiou, Francesca R. Bosellini, Marco Taviani, Giovanni Bianucci, Alberto Collareta, Laurent Londeix, Costanza Faranda, Francesca Bulian, Efterpi Koskeridou, Francesca Lozar, Alan Maria Mancini, Stefano Dominici, Pierre Moissette, Ildefonso Bajo Campos, Enrico Borghi, George Iliopoulos, Assimina Antonarakou, George Kontakiotis, Evangelia Besiou, Stergios D. Zarkogiannis, Mathias Harzhauser, Francisco Javier Sierro, Angelo Camerlenghi, and Daniel García-Castellanos
Earth Syst. Sci. Data, 16, 4767–4775, https://doi.org/10.5194/essd-16-4767-2024, https://doi.org/10.5194/essd-16-4767-2024, 2024
Short summary
Short summary
We present a dataset of 23032 fossil occurrences of marine organisms from the Late Miocene to the Early Pliocene (~11 to 3.6 million years ago) from the Mediterranean Sea. This dataset will allow us, for the first time, to quantify the biodiversity impact of the Messinian salinity crisis, a major geological event that possibly changed global and regional climate and biota.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Christen L. Bowman, Devin S. Rand, Lorraine E. Lisiecki, and Samantha C. Bova
Earth Syst. Sci. Data, 16, 701–713, https://doi.org/10.5194/essd-16-701-2024, https://doi.org/10.5194/essd-16-701-2024, 2024
Short summary
Short summary
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records over the last 800 kyr from 10 ocean sediment cores. To better understand glacial–interglacial differences between the tropical WPWP and high-latitude climate change, we compare our WPWP stack to global and North Atlantic deep-ocean stacks. Although we see similar timing in glacial–interglacial change between the stacks, the WPWP exhibits less amplitude of change.
Anna Beckett, Cecile Blanchet, Alexander Brauser, Rebecca Kearney, Celia Martin-Puertas, Ian Matthews, Konstantin Mittelbach, Adrian Palmer, Arne Ramisch, and Achim Brauer
Earth Syst. Sci. Data, 16, 595–604, https://doi.org/10.5194/essd-16-595-2024, https://doi.org/10.5194/essd-16-595-2024, 2024
Short summary
Short summary
This paper focuses on volcanic ash (tephra) in European annually laminated (varve) lake records from the period 25 to 8 ka. Tephra enables the synchronisation of these lake records and their proxy reconstructions to absolute timescales. The data incorporate geochemical data from tephra layers across 19 varve lake records. We highlight the potential for synchronising multiple records using tephra layers across continental scales whilst supporting reproducibility through accessible data.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Paula Diz, Víctor González-Guitián, Rita González-Villanueva, Aida Ovejero, and Iván Hernández-Almeida
Earth Syst. Sci. Data, 15, 697–722, https://doi.org/10.5194/essd-15-697-2023, https://doi.org/10.5194/essd-15-697-2023, 2023
Short summary
Short summary
Benthic foraminifera are key components of the ocean benthos and marine sediments. Determining their geographic distribution is highly relevant for improving our understanding of the recent and past ocean benthic ecosystem and establishing adequate conservation strategies. Here, we contribute to this knowledge by generating an open-access database of previously documented quantitative data of benthic foraminifera species from surface sediments of the eastern Pacific (BENFEP).
Cited articles
Alibert, C. and McCulloch, M. T.: Strontium/calcium ratios in modern Porites corals From the Great Barrier Reef as a proxy for sea surface temperature: Calibration of the thermometer and monitoring of ENSO, Paleoceanography, 12, 345–363, https://doi.org/10.1029/97PA00318, 1997.
Alibert, C., Kinsley, L., Fallon, S. J., McCulloch, M. T., Berkelmans, R., and McAllister, F.: Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes, Geochim. Cosmochim. Ac., 67, 231–246, https://doi.org/10.1016/S0016-7037(02)01055-4, 2003.
Arzey, A. K., McGregor, H. V., Clark, T. R., Webster, J. M., Lewis, S. E., Mallela, J., McKay, N. P., Fahey, H. W., Chakraborty, S., Razak, T. B., and Fischer, M. J.: The Great Barrier Reef Coral Skeletal Records Database (2024), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/hqxk-8h74, 2024.
Australian Institute of Marine Science: Long-term Reef Monitoring Program – Annual Summary Report on coral reef condition for 2016/17, https://www.aims.gov.au/reef-monitoring/gbr-condition-summary-2016-2017 (last access: 5 August 2023), 2017.
Australian Institute of Marine Science: Long-Term Monitoring Program Annual Summary Report of Coral Reef Condition 2021/22, https://www.aims.gov.au/monitoring-great-barrier-reef/gbr-condition-summary-2021-22 (last access: 16 August 2023), 2022.
Barnes, D. J. and Lough, J. M.: Systematic variations in the depth of skeleton occupied by coral tissue in massive colonies of Porites from the Great barrier reef, J. Exp. Mar. Biol. Ecol., 159, 113–128, https://doi.org/10.1016/0022-0981(92)90261-8, 1992.
Barnes, D. J., Taylor, R. B., and Lough, J. M.: Measurement of luminescence in coral skeletons, J. Exp. Mar. Biol. Ecol., 295, 91–106, https://doi.org/10.1016/s0022-0981(03)00274-0, 2003.
Beck, J. W., Edwards, R. L., Ito, E., Taylor, F. W., Recy, J., Rougerie, F., Joannot, P., and Henin, C.: Sea-Surface Temperature from Coral Skeletal Strontium/Calcium Ratios, Science, 257, 644–647, https://doi.org/10.1126/science.257.5070.644, 1992.
Bosscher, H.: Computerized tomography and skeletal density of coral skeletons, Coral Reefs, 12, 97–103, https://doi.org/10.1007/BF00302109, 1993.
Boto, K. and Isdale, P.: Fluorescent bands in massive corals result from terrestrial fulvic acid inputs to nearshore zone, Nature, 315, 396–397, https://doi.org/10.1038/315396a0, 1985.
Brenner, L. D., Linsley, B. K., and Potts, D. C.: A modern -ä18O-sea surface temperature calibration for Isopora corals on the Great Barrier Reef, Paleoceanography, 32, 182–194, https://doi.org/10.1002/2016pa002973, 2017.
Calvo, E., Marshall, J. F., Pelejero, C., McCulloch, M. T., Gagan, M. K., and Lough, J. M.: Interdecadal climate variability in the Coral Sea since 1708 A.D, Palaeogeogr. Palaeoclimatol., 248, 190–201, https://doi.org/10.1016/j.palaeo.2006.12.003, 2007.
Cantin, N. E. and Lough, J. M.: Surviving Coral Bleaching Events: Porites Growth Anomalies on the Great Barrier Reef, PLOS ONE, 9, e88720, https://doi.org/10.1371/journal.pone.0088720, 2014.
Cantin, N. E., Fallon, S. J., Wu, Y., and Lough, J. M.: Project ISP019: Calcification and geochemical signatures of industrial development of the Gladstone Harbour from century old coral skeletons, Australian Institute of Marine Science, Townsville, Qld, 40, 2018.
Chakraborty, S.: Environmental significance of isotopic and trace elemental variations in banded corals, PhD Thesis (unpublished), The Maharaja Sayajirao University of Baroda, Vadodara, India, 119 pp., 1993.
Chakraborty, S. and Ramesh, R.: Monsoon-induced sea surface temperature changes recorded in Indian corals, Terra Nova, 5, 545–551, https://doi.org/10.1111/j.1365-3121.1993.tb00303.x, 1993.
Chakraborty, S. and Ramesh, R.: Environmental significance of carbon and oxygen isotope ratios of banded corals from Lakshadweep, India, Quatern. Int., 37, 55–65, https://doi.org/10.1016/1040-6182(96)00028-6, 1997.
Chakraborty, S., Ramesh, R., and Lough, J. M.: Effect of intraband variability on stable isotope and density time series obtained from banded corals, J. Earth Syst. Sci., 109, 145–151, https://doi.org/10.1007/BF02719158, 2000.
Chen, X., Deng, W., Kang, H., Zeng, T., Zhang, L., Zhao, J.-X., and Wei, G.: A Replication Study on Coral ä11B and and Their Variation in Modern and Fossil Porites: Implications for Coral Calcifying Fluid Chemistry and Seawater pH Changes Over the Last Millennium, Paleoceanogr. Paleocl., 36, e2021PA004319, https://doi.org/10.1029/2021PA004319, 2021.
Cheng, H., Edwards, R. L., Hoff, J., Gallup, C. D., Richards, D. A., and Asmerom, Y.: The half-lives of uranium-234 and thorium-230, Chem. Geol., 169, 17–33, https://doi.org/10.1016/S0009-2541(99)00157-6, 2000.
Clark, T. R., Zhao, J.-X., Feng, Y.-X., Done, T. J., Jupiter, S., Lough, J., and Pandolfi, J. M.: Spatial variability of initial in modern Porites from the inshore region of the Great Barrier Reef, Geochim. Cosmochim. Ac., 78, 99–118, https://doi.org/10.1016/j.gca.2011.11.032, 2012.
Clark, T. R., Roff, G., Zhao, J.-X., Feng, Y.-x., Done, T. J., and Pandolfi, J. M.: Testing the precision and accuracy of the U–Th chronometer for dating coral mortality events in the last 100 years, Quat. Geochronol., 23, 35–45, https://doi.org/10.1016/j.quageo.2014.05.002, 2014.
Clark, T. R., Roff, G., Zhao, J. X., Feng, Y. X., Done, T. J., McCook, L. J., and Pandolfi, J. M.: U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century, P. Natl. Acad. Sci. USA, 114, 10350–10355, https://doi.org/10.1073/pnas.1705351114, 2017.
Crook, E. D., Cohen, A. L., Rebolledo-Vieyra, M., Hernandez, L., and Paytan, A.: Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification, P. Natl. Acad. Sci. USA, 110, 11044–11049, https://doi.org/10.1073/pnas.1301589110, 2013.
Dassié, E., DeLong, K. L., Kilbourne, K. H., Williams, B., Abram, N. J., Brenner, L. D., Brahmi, C., Cobb, K. M., Corrège, T., Dissard, D., Emile-Geay, J., Evangelista, H., Evans, M. N., Farmer, J., Felis, T., Gagan, M., Gillikin, D. P., Goodkin, N. F., Khodri, M., Lavagnino, A. C., LaVigne, M., Lazareth, C. E., Linsley, B., Lough, J., McGregor, H., Nurhati, I. S., Ouellette, G., Perrin, L., Raymo, M., Rosenheim, B., Sandstrom, M., Schöne, B. R., Sifeddine, A., Stevenson, S., Thompson, D. M., Waite, A., Wanamaker, A., and Wu, H.: Saving our marine archives, Eos, 98, 32–36, https://doi.org/10.1029/2017EO068159, 2017.
Davies, P. J. and Hopley, D.: Growth fabrics and growth-rates of Holocene reefs in the Great Barrier-Reef, BMR J. Aust. Geol. Geop., 8, 237–251, 1983.
Davies, P. J., Marshall, J. F., and Hopley, D.: Relationships between reef growth and sea level in the Great Barrier Reef., Proceedings of the Fifth International Coral Reef Congress, 27 May–1 June 1985, Tahiti, 95–103, 1985.
De'ath, G., Lough, J. M., and Fabricius, K. E.: Declining Coral Calcification on the Great Barrier Reef, Science, 323, 116–119, https://doi.org/10.1126/science.1165283, 2009.
De'ath, G., Fabricius, K. E., Sweatman, H., and Puotinen, M.: The 27-year decline of coral cover on the Great Barrier Reef and its causes, P. Natl. Acad. Sci. USA, 109, 17995–17999, https://doi.org/10.1073/pnas.1208909109, 2012.
DeCarlo, T. M., Cohen, A. L., Barkley, H. C., Cobban, Q., Young, C., Shamberger, K. E., Brainard, R. E., and Golbuu, Y.: Coral macrobioerosion is accelerated by ocean acidification and nutrients, Geology, 43, 7–10, https://doi.org/10.1130/g36147.1, 2015.
DeCarlo, T. M., Gaetani, G. A., Cohen, A. L., Foster, G. L., Alpert, A. E., and Stewart, J. A.: Coral Sr-U thermometry, Paleoceanography, 31, 626–638, https://doi.org/10.1002/2015PA002908, 2016.
Dechnik, B., Webster, J. M., Davies, P. J., Braga, J.-C., and Reimer, P. J.: Holocene “turn-on” and evolution of the Southern Great Barrier Reef: Revisiting reef cores from the Capricorn Bunker Group, Mar. Geol., 363, 174–190, https://doi.org/10.1016/j.margeo.2015.02.014, 2015.
Dechnik, B., Webster, J. M., Webb, G. E., Nothdurft, L., and Zhao, J.-X.: Successive phases of Holocene reef flat development: Evidence from the mid- to outer Great Barrier Reef, Palaeogeogr. Palaeocl., 466, 221–230, https://doi.org/10.1016/j.palaeo.2016.11.030, 2017.
DeLong, K. L., Quinn, T. M., and Taylor, F. W.: Reconstructing twentieth-century sea surface temperature variability in the southwest Pacific: A replication study using multiple coral records from New Caledonia, Paleoceanography, 22, PA4212, https://doi.org/10.1029/2007PA001444, 2007.
Deng, W., Wei, G., McCulloch, M., Xie, L., Liu, Y., and Zeng, T.: Evaluation of annual resolution coral geochemical records as climate proxies in the Great Barrier Reef of Australia, Coral Reefs, 33, 965–977, https://doi.org/10.1007/s00338-014-1203-9, 2014.
D'Olivo, J. P. and McCulloch, M. T.: Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress, Sci. Rep.-UK, 7, 2207, https://doi.org/10.1038/s41598-017-02306-x, 2017.
D'Olivo, J. P. and McCulloch, M.: Impact of European settlement and land use changes on Great Barrier Reef river catchments reconstructed from long-term coral records, Sci. Total Environ., 830, 154461, https://doi.org/10.1016/j.scitotenv.2022.154461, 2022.
D'Olivo, J. P., McCulloch, M. T., and Judd, K.: Long-term records of coral calcification across the central Great Barrier Reef: assessing the impacts of river runoff and climate change, Coral Reefs, 32, 999–1012, https://doi.org/10.1007/s00338-013-1071-8, 2013.
D'Olivo, J. P., McCulloch, M. T., Eggins, S. M., and Trotter, J.: Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs, Biogeosciences, 12, 1223–1236, https://doi.org/10.5194/bg-12-1223-2015, 2015.
D'Olivo, J. P., Sinclair, D. J., Rankenburg, K., and McCulloch, M. T.: A universal multi-trace element calibration for reconstructing sea surface temperatures from long-lived Porites corals: Removing “vital-effects”, Geochim. Cosmochim. Ac., 239, 109–135, https://doi.org/10.1016/j.gca.2018.07.035, 2018.
Druffel, E. R. M. and Griffin, S.: Large variations of surface ocean radiocarbon: Evidence of circulation changes in the southwestern Pacific, J. Geophys. Res.-Oceans, 98, 20249–20259, https://doi.org/10.1029/93JC02113, 1993.
Druffel, E. R. M. and Griffin, S.: Regional Variability of Surface Ocean Radiocarbon from Southern Great Barrier Reef Corals, Radiocarbon, 37, 517–524, https://doi.org/10.1017/S0033822200031003, 1995.
Druffel, E. R. M. and Griffin, S.: Variability of surface ocean radiocarbon and stable isotopes in the southwestern Pacific, J. Geophys. Res.-Oceans, 104, 23607–23613, https://doi.org/10.1029/1999JC900212, 1999.
Dutton, A., Rubin, K., McLean, N., Bowring, J., Bard, E., Edwards, R. L., Henderson, G. M., Reid, M. R., Richards, D. A., Sims, K. W. W., Walker, J. D., and Yokoyama, Y.: Data reporting standards for publication of U-series data for geochronology and timescale assessment in the earth sciences, Quat. Geochronol., 39, 142–149, https://doi.org/10.1016/j.quageo.2017.03.001, 2017.
Ellis, B., Grant, K., Mallela, J., and Abram, N.: Is XRF core scanning a viable method for coral palaeoclimate temperature reconstructions?, Quatern. Int,, 514, 97–107, https://doi.org/10.1016/j.quaint.2018.11.044, 2019.
Erler, D. V., Wang, X. T., Sigman, D. M., Scheffers, S. R., Martínez-García, A., and Haug, G. H.: Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: Implications for coastal nutrient cycling in the Great Barrier Reef Lagoon, Earth Planet. Sc. Lett., 434, 161–170, https://doi.org/10.1016/j.epsl.2015.11.023, 2016.
Erler, D. V., Farid, H. T., Glaze, T. D., Carlson-Perret, N. L., and Lough, J. M.: Coral skeletons reveal the history of nitrogen cycling in the coastal Great Barrier Reef, Nat. Commun., 11, 1500, https://doi.org/10.1038/s41467-020-15278-w, 2020.
Fallon, S. J.: Environmental Records from Corals and Coralline Sponges, PhD Thesis, Research School of Earth Sciences, Australian National University, https://doi.org/10.25911/5d778a502c764, 2000.
Fallon, S. J., McCulloch, M. T., and Alibert, C.: Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison, Coral Reefs, 22, 389–404, https://doi.org/10.1007/s00338-003-0322-5, 2003.
Felis, T., McGregor, H. V., Linsley, B. K., Tudhope, A. W., Gagan, M. K., Suzuki, A., Inoue, M., Thomas, A. L., Esat, T. M., Thompson, W. G., Tiwari, M., Potts, D. C., Mudelsee, M., Yokoyama, Y., and Webster, J. M.: Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum, Nat. Commun., 5, 4102, https://doi.org/10.1038/ncomms5102, 2014.
Gagan, M. K., Chivas, A. R., and Isdale, P. J.: High-resolution isotopic records from corals using ocean temperature and mass-spawning chronometers, Earth Planet. Sc. Lett., 121, 549–558, https://doi.org/10.1016/0012-821X(94)90090-6, 1994.
Gagan, M. K., Ayliffe, L. K., Hopley, D., Cali, J. A., Mortimer, G. E., Chappell, J., McCulloch, M. T., and Head, M. J.: Temperature and Surface-Ocean Water Balance of the Mid-Holocene Tropical Western Pacific, Science, 279, 1014–1018, https://doi.org/10.1126/science.279.5353.1014, 1998.
Gagan, M. K., Ayliffe, L. K., Opdyke, B. N., Hopley, D., Scott-Gagan, H., and Cowley, J.: Coral oxygen isotope evidence for recent groundwater fluxes to the Australian Great Barrier Reef, Geophys. Res. Lett., 29, 1982, https://doi.org/10.1029/2002GL015336, 2002.
Gagan, M. K., Dunbar, G. B., and Suzuki, A.: The effect of skeletal mass accumulation in Porites on coral andä18O paleothermometry, Paleoceanography, 27, 16, https://doi.org/10.1029/2011pa002215, 2012.
GBRCD: GBR Coral Skeletal Records Database, GitHub repository [code]: https://github.com/arzeyak/GBR-Coral-Skeletal-Records-Database, last access: August 2024.
Grove, C. A., Rodriguez-Ramirez, A., Merschel, G., Tjallingii, R., Zinke, J., Macia, A., and Brummer, G.-J. A.: UV-Spectral Luminescence Scanning: Technical Updates and Calibration Developments, in: Micro-XRF Studies of Sediment Cores: Applications of a non-destructive tool for the environmental sciences, edited by: Croudace, I. W., and Rothwell, R. G., Springer Netherlands, Dordrecht, 563–581, https://doi.org/10.1007/978-94-017-9849-5_23, 2015.
Guan, Y., Hohn, S., Wild, C., and Merico, A.: Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication, Glob. Change Biol., 26, 5646–5660, https://doi.org/10.1111/gcb.15293, 2020.
Hathorne, E. C., Gagnon, A., Felis, T., Adkins, J., Asami, R., Boer, W., Caillon, N., D, C., Cobb, K. M., Douville, E., deMenocal, P., Eisenhauer, A., Garbe-Schönberg, D., Geibert, W., Goldstein, S., Hughen, K., Inoue, M., Kawahata, H., Kölling, M., Cornec, F. L., Linsley, B. K., McGregor, H. V., Montagna, P., Nurhati, I. S., Quinn, T. M., Raddatz, J., Rebaubier, H., Robinson, L., Sadekov, A., Sherrell, R., Sinclair, D., Tudhope, A. W., Wei, G., Wong, H., Wu, H. C., and You, C.-F.: Interlaboratory study for coral and other element/Ca ratio measurements, Geochem. Geophy. Geosy., 14, 3730–3750, https://doi.org/10.1002/ggge.20230, 2013.
Heaton, T. J., Köhler, P., Butzin, M., Bard, E., Reimer, R. W., Austin, W. E. N., Bronk Ramsey, C., Grootes, P. M., Hughen, K. A., Kromer, B., Reimer, P. J., Adkins, J., Burke, A., Cook, M. S., Olsen, J., and Skinner, L. C.: Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP), Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Hendy, E. J., Gagan, M. K., Alibert, C. A., McCulloch, M. T., Lough, J. M., and Isdale, P. J.: Abrupt Decrease in Tropical Pacific Sea Surface Salinity at End of Little Ice Age, Science, 295, 1511–1514, https://doi.org/10.1126/science.1067693, 2002.
Hendy, E. J., Gagan, M. K., and Lough, J. M.: Chronological control of coral records using luminescent lines and evidence for non-stationary ENSO teleconnections in northeast Australia, The Holocene, 13, 187–199, https://doi.org/10.1191/0959683603hl606rp, 2003a.
Hendy, E. J., Lough, J. M., and Gagan, M. K.: Historical mortality in massive Porites from the central Great Barrier Reef, Australia: evidence for past environmental stress?, Coral Reefs, 22, 207–215, https://doi.org/10.1007/s00338-003-0304-7, 2003b.
Hendy, E. J., Gagan, M. K., Lough, J. M., McCulloch, M., and deMenocal, P. B.: Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in Porites corals, Paleoceanography, 22, PA4101, https://doi.org/10.1029/2007PA001462, 2007.
Hendy, E. J., Tomiak, P. J., Collins, M. J., Hellstrom, J., Tudhope, A. W., Lough, J. M., and Penkman, K. E. H.: Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications, Geochim. Cosmochim. Ac., 86, 338–353, https://doi.org/10.1016/j.gca.2012.02.020, 2012.
Henley, B. J., McGregor, H. V., King, A. D., Hoegh-Guldberg, O., Arzey, A. K., Karoly, D. J., Lough, J. M., DeCarlo, T. M., and Linsley, B. K.: Highest ocean heat in four centuries places Great Barrier Reef in danger, Nature, 632, 320–326, https://doi.org/10.1038/s41586-024-07672-x, 2024.
Hopley, D., Smithers, S. G., and Parnell, K.: The Geomorphology of the Great Barrier Reef: Development, Diversity and Change, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511535543, 2007.
Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, R. C., Beger, M., Bellwood, D. R., Berkelmans, R., Bridge, T. C., Butler, I. R., Byrne, M., Cantin, N. E., Comeau, S., Connolly, S. R., Cumming, G. S., Dalton, S. J., Diaz-Pulido, G., Eakin, C. M., Figueira, W. F., Gilmour, J. P., Harrison, H. B., Heron, S. F., Hoey, A. S., Hobbs, J.-P. A., Hoogenboom, M. O., Kennedy, E. V., Kuo, C.-y., Lough, J. M., Lowe, R. J., Liu, G., McCulloch, M. T., Malcolm, H. A., McWilliam, M. J., Pandolfi, J. M., Pears, R. J., Pratchett, M. S., Schoepf, V., Simpson, T., Skirving, W. J., Sommer, B., Torda, G., Wachenfeld, D. R., Willis, B. L., and Wilson, S. K.: Global warming and recurrent mass bleaching of corals, Nature, 543, 373–377, https://doi.org/10.1038/nature21707, 2017.
Isdale, P.: Fluorescent bands in massive corals record centuries of coastal rainfall, Nature, 310, 578–579, https://doi.org/10.1038/310578a0, 1984.
Isdale, P. J., Stewart, B. J., Tickle, K. S., and Lough, J. M.: Palaeohydrological variation in a tropical river catchment: a reconstruction using fluorescent bands in corals of the Great Barrier Reef, Australia, The Holocene, 8, 1–8, https://doi.org/10.1191/095968398670905088, 1998.
Jupiter, S.: Coral rare earth element tracers of terrestrial exposure in nearshore corals of the Great Barrier Reef, Proceedings of the 11th International Coral Reef Symposium, 7–11 July 2008, Fort Lauderdale, Florida, 102–106, 2008.
Jupiter, S., Roff, G., Marion, G., Henderson, M., Schrameyer, V., McCulloch, M., and Hoegh-Guldberg, O.: Linkages between coral assemblages and coral proxies of terrestrial exposure along a cross-shelf gradient on the southern Great Barrier Reef, Coral Reefs, 27, 887–903, https://doi.org/10.1007/s00338-008-0422-3, 2008.
Jupiter, S. D.: From Cane to Coral Reefs: Ecosystem Connectivity and Downstream Responses to Land Use Intensification, University of California, Santa Cruz, 600 pp., 2006.
Kamber, B. S., Greig, A., and Collerson, K. D.: A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia, Geochim. Cosmochim. Ac., 69, 1041–1058, https://doi.org/10.1016/j.gca.2004.08.020, 2005.
Kaufman, D. S. and PAGES 2k special-issue editorial team: Technical note: Open-paleo-data implementation pilot – the PAGES 2k special issue, Clim. Past, 14, 593–600, https://doi.org/10.5194/cp-14-593-2018, 2018.
Khider, D., Emile-Geay, J., McKay, N. P., Gil, Y., Garijo, D., Ratnakar, V., Alonso-Garcia, M., Bertrand, S., Bothe, O., Brewer, P., Bunn, A., Chevalier, M., Comas-Bru, L., Csank, A., Dassié, E., DeLong, K., Felis, T., Francus, P., Frappier, A., Gray, W., Goring, S., Jonkers, L., Kahle, M., Kaufman, D., Kehrwald, N. M., Martrat, B., McGregor, H., Richey, J., Schmittner, A., Scroxton, N., Sutherland, E., Thirumalai, K., Allen, K., Arnaud, F., Axford, Y., Barrows, T., Bazin, L., Pilaar Birch, S. E., Bradley, E., Bregy, J., Capron, E., Cartapanis, O., Chiang, H.-W., Cobb, K. M., Debret, M., Dommain, R., Du, J., Dyez, K., Emerick, S., Erb, M. P., Falster, G., Finsinger, W., Fortier, D., Gauthier, N., George, S., Grimm, E., Hertzberg, J., Hibbert, F., Hillman, A., Hobbs, W., Huber, M., Hughes, A. L. C., Jaccard, S., Ruan, J., Kienast, M., Konecky, B., Le Roux, G., Lyubchich, V., Novello, V. F., Olaka, L., Partin, J. W., Pearce, C., Phipps, S. J., Pignol, C., Piotrowska, N., Poli, M.-S., Prokopenko, A., Schwanck, F., Stepanek, C., Swann, G. E. A., Telford, R., Thomas, E., Thomas, Z., Truebe, S., von Gunten, L., Waite, A., Weitzel, N., Wilhelm, B., Williams, J., Williams, J. J., Winstrup, M., Zhao, N., and Zhou, Y.: PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data, Paleoceanogr. Paleocl., 34, 1570–1596, https://doi.org/10.1029/2019PA003632, 2019.
Konecky, B. L., McKay, N. P., Churakova (Sidorova), O. V., Comas-Bru, L., Dassié, E. P., DeLong, K. L., Falster, G. M., Fischer, M. J., Jones, M. D., Jonkers, L., Kaufman, D. S., Leduc, G., Managave, S. R., Martrat, B., Opel, T., Orsi, A. J., Partin, J. W., Sayani, H. R., Thomas, E. K., Thompson, D. M., Tyler, J. J., Abram, N. J., Atwood, A. R., Cartapanis, O., Conroy, J. L., Curran, M. A., Dee, S. G., Deininger, M., Divine, D. V., Kern, Z., Porter, T. J., Stevenson, S. L., von Gunten, L., and Iso2k Project Members: The Iso2k database: a global compilation of paleo-δ18O and δ2H records to aid understanding of Common Era climate, Earth Syst. Sci. Data, 12, 2261–2288, https://doi.org/10.5194/essd-12-2261-2020, 2020.
Koop, K., Booth, D., Broadbent, A., Brodie, J., Bucher, D., Capone, D., Coll, J., Dennison, W., Erdmann, M., Harrison, P., Hoegh-Guldberg, O., Hutchings, P., Jones, G. B., Larkum, A. W. D., O'Neil, J., Steven, A., Tentori, E., Ward, S., Williamson, J., and Yellowlees, D.: ENCORE: The Effect of Nutrient Enrichment on Coral Reefs. Synthesis of Results and Conclusions, Mar. Pollut. Bull., 42, 91–120, https://doi.org/10.1016/S0025-326X(00)00181-8, 2001.
Lawrence, M. G., Greig, A., Collerson, K. D., and Kamber, B. S.: Rare Earth Element and Yttrium Variability in South East Queensland Waterways, Aquat. Geochem., 12, 39–72, https://doi.org/10.1007/s10498-005-4471-8, 2006.
Leonard, N. D., Welsh, K. J., Lough, J. M., Feng, Y. X., Pandolfi, J. M., Clark, T. R., and Zhao, J. X.: Evidence of reduced mid-Holocene ENSO variance on the Great Barrier Reef, Australia, Paleoceanography, 31, 1248–1260, https://doi.org/10.1002/2016PA002967, 2016.
Leonard, N. D., Welsh, K. J., Nguyen, A. D., Sadler, J., Pandolfi, J. M., Clark, T. R., Zhao, J. X., Feng, Y. x., and Webb, G. E.: High resolution geochemical analysis of massive Porites spp. corals from the Wet Tropics, Great Barrier Reef: rare earth elements, yttrium and barium as indicators of terrigenous input, Mar. Pollut. Bull., 149, 110634, https://doi.org/10.1016/j.marpolbul.2019.110634, 2019.
Leonard, N. D., Lepore, M. L., Zhao, J.-X., Rodriguez-Ramirez, A., Butler, I. R., Clark, T. R., Roff, G., McCook, L., Nguyen, A. D., Feng, Y., and Pandolfi, J. M.: Re-evaluating mid-Holocene reef “turn-off” on the inshore Southern Great Barrier Reef, Quaternary Sci. Rev., 244, 106518, https://doi.org/10.1016/j.quascirev.2020.106518, 2020.
Lewis, S. E.: Environmental Trends in GBR lagoon and Burdekin River catchment during the mid-Holocene and since European settlement using Porites coral records, Magnetic Island, QLD, PhD Thesis, School of Earth Sciences, James Cook University, Townsville, QLD, 2005.
Lewis, S. E., Shields, G. A., Kamber, B. S., and Lough, J. M.: A multi-trace element coral record of land-use changes in the Burdekin River catchment, NE Australia, Palaeogeogr. Palaeoclimatol., 246, 471–487, https://doi.org/10.1016/j.palaeo.2006.10.021, 2007.
Lewis, S. E., Brodie, J. E., McCulloch, M. T., Mallela, J., Jupiter, S. D., Williams, H. S., Lough, J. M., and Matson, E. G.: An assessment of an environmental gradient using coral geochemical records, Whitsunday Islands, Great Barrier Reef, Australia, Mar. Pollut. Bull., 65, 306–319, https://doi.org/10.1016/j.marpolbul.2011.09.030, 2012.
Lewis, S. E., Sloss, C. R., Murray-Wallace, C. V., Woodroffe, C. D., and Smithers, S. G.: Post-glacial sea-level changes around the Australian margin: a review, Quaternary Sci. Rev., 74, 115–138, https://doi.org/10.1016/j.quascirev.2012.09.006, 2013.
Lewis, S. E., Lough, J. M., Cantin, N. E., Matson, E. G., Kinsley, L., Bainbridge, Z. T., and Brodie, J. E.: A critical evaluation of coral , and ratios as indicators of terrestrial input: New data from the Great Barrier Reef, Australia, Geochim. Cosmochim. Ac., 237, 131–154, https://doi.org/10.1016/j.gca.2018.06.017, 2018.
Li, Y., Liao, X., Bi, K., Han, T., Chen, J., Lu, J., He, C., and Lu, Z.: Micro-CT reconstruction reveals the colony pattern regulations of four dominant reef-building corals, Ecol. Evol., 11, 16266–16279, https://doi.org/10.1002/ece3.8308, 2021.
Linsley, B. K., Dunbar, R. B., Dassié, E. P., Tangri, N., Wu, H. C., Brenner, L. D., and Wellington, G. M.: Coral carbon isotope sensitivity to growth rate and water depth with paleo-sea level implications, Nat. Commun., 10, 2056, https://doi.org/10.1038/s41467-019-10054-x, 2019.
Lough, J., Barnes, D., and McAllister, F.: Luminescent lines in corals from the Great Barrier Reef provide spatial and temporal records of reefs affected by land runoff, Coral Reefs, 21, 333–343, https://doi.org/10.1007/s00338-002-0253-6, 2002.
Lough, J. M.: A strategy to improve the contribution of coral data to high-resolution paleoclimatology, Palaeogeogr. Palaeoclimatol., 204, 115–143, https://doi.org/10.1016/S0031-0182(03)00727-2, 2004.
Lough, J. M.: Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia, Paleoceanography, 22, PA2218, https://doi.org/10.1029/2006pa001377, 2007.
Lough, J. M.: Great Barrier Reef coral luminescence reveals rainfall variability over northeastern Australia since the 17th century, Paleoceanography, 26, 14, https://doi.org/10.1029/2010pa002050, 2011a.
Lough, J. M.: Measured coral luminescence as a freshwater proxy: comparison with visual indices and a potential age artefact, Coral Reefs, 30, 169–182, https://doi.org/10.1007/s00338-010-0688-0, 2011b.
Lough, J. M. and Barnes, D. J.: Possible relationships between environmental variables and skeletal density in a coral colony from the central Great Barrier Reef, J. Exp. Mar. Biol. Ecol., 134, 221–241, https://doi.org/10.1016/0022-0981(89)90071-3, 1990.
Lough, J. M. and Barnes, D. J.: Comparisons of skeletal density variations in Porites from the central Great Barrier Reef, J. Exp. Mar. Biol. Ecol., 155, 1–25, https://doi.org/10.1016/0022-0981(92)90024-5, 1992.
Lough, J. M. and Barnes, D. J.: Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change, J. Exp. Mar. Biol. Ecol., 211, 29–67, https://doi.org/10.1016/S0022-0981(96)02710-4, 1997.
Lough, J. M. and Barnes, D. J.: Environmental controls on growth of the massive coral Porites, J. Exp. Mar. Biol. Ecol., 245, 225–243, https://doi.org/10.1016/S0022-0981(99)00168-9, 2000.
Lough, J. M., Llewellyn, L. E., Lewis, S. E., Turney, C. S. M., Palmer, J. G., Cook, C. G., and Hogg, A. G.: Evidence for suppressed mid-Holocene northeastern Australian monsoon variability from coral luminescence, Paleoceanography, 29, 581–594, https://doi.org/10.1002/2014pa002630, 2014.
Lough, J. M., Lewis, S. E., and Cantin, N. E.: Freshwater impacts in the central Great Barrier Reef: 1648–2011, Coral Reefs, 34, 739–751, https://doi.org/10.1007/s00338-015-1297-8, 2015.
Ludwig, K. R.: Mathematical–Statistical Treatment of Data and Errors for 230Th/U Geochronology, in: Uranium-Series Geochemistry, edited by: Bourdon, B., Henderson, G. M., Lundstrom, C. C., and Turner, S. P., The Mineralogical Society of America, Washington, DC, 631–656, https://doi.org/10.2113/0520631, 2003.
Madin, J. S., Anderson, K. D., Andreasen, M. H., Bridge, T. C. L., Cairns, S. D., Connolly, S. R., Darling, E. S., Diaz, M., Falster, D. S., Franklin, E. C., Gates, R. D., Harmer, A. M. T., Hoogenboom, M. O., Huang, D., Keith, S. A., Kosnik, M. A., Kuo, C.-Y., Lough, J. M., Lovelock, C. E., Luiz, O., Martinelli, J., Mizerek, T., Pandolfi, J. M., Pochon, X., Pratchett, M. S., Putnam, H. M., Roberts, T. E., Stat, M., Wallace, C. C., Widman, E., and Baird, A. H.: The Coral Trait Database, a curated database of trait information for coral species from the global oceans, Sci. Data, 3, 160017, https://doi.org/10.1038/sdata.2016.17, 2016.
Marchitto, T. M., Bryan, S. P., Doss, W., McCulloch, M. T., and Montagna, P.: A simple biomineralization model to explain Li, Mg, and Sr incorporation into aragonitic foraminifera and corals, Earth Planet. Sc. Lett., 481, 20–29, https://doi.org/10.1016/j.epsl.2017.10.022, 2018.
Marion, G. S., Jupiter, S. D., Radice, V. Z., Albert, S., and Hoegh-Guldberg, O.: Linking isotopic signatures of nitrogen in nearshore coral skeletons with sources in catchment runoff, Mar. Pollut. Bull., 173, 113054, https://doi.org/10.1016/j.marpolbul.2021.113054, 2021.
Marshall, J. F.: Decadal-scale, high resolution records of sea surface temperature in the eastern Indian and south western Pacific Oceans from proxy records of the strontium/calcium ratio of massive porites corals, PhD thesis, Australian National University, https://doi.org/10.25911/5d63bfacacc9f, 2000.
Marshall, J. F. and McCulloch, M. T.: An assessment of the ratio in shallow water hermatypic corals as a proxy for sea surface temperature, Geochim. Cosmochim. Ac., 66, 3263–3280, https://doi.org/10.1016/S0016-7037(02)00926-2, 2002.
Maynard, J., van Hooidonk, R., Eakin, C. M., Puotinen, M., Garren, M., Williams, G., Heron, S. F., Lamb, J., Weil, E., Willis, B., and Harvell, C. D.: Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence, Nat. Clim. Change, 5, 688–694, https://doi.org/10.1038/nclimate2625, 2015.
McCulloch, M., Fallon, S., Wyndham, T., Hendy, E., Lough, J., and Barnes, D.: Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement, Nature, 421, 727, https://doi.org/10.1038/nature01361, 2003.
McCulloch, M. T., Gagan, M. K., Mortimer, G. E., Chivas, A. R., and Isdale, P. J.: A high-resolution and ä18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El Niño, Geochim. Cosmochim. Ac., 58, 2747–2754, https://doi.org/10.1016/0016-7037(94)90142-2, 1994.
McCulloch, M. T., D'Olivo, J. P., Falter, J., Holcomb, M., and Trotter, J. A.: Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation, Nat. Commun., 8, 15686, https://doi.org/10.1038/ncomms15686, 2017.
McGregor, H. V. and Abram, N. J.: Images of diagenetic textures in Porites corals from Papua New Guinea and Indonesia, Geochem. Geophys. Geosyst., 9, Q10013, https://doi.org/10.1029/2008GC002093, 2008.
McGregor, H. V. and Gagan, M. K.: Diagenesis and geochemistry of porites corals from Papua New Guinea: Implications for paleoclimate reconstruction, Geochim. Cosmochim. Ac., 67, 2147–2156, https://doi.org/10.1016/S0016-7037(02)01050-5, 2003.
McKay, N. P. and Emile-Geay, J.: Technical note: The Linked Paleo Data framework – a common tongue for paleoclimatology, Clim. Past, 12, 1093–1100, https://doi.org/10.5194/cp-12-1093-2016, 2016.
Min, G. R., Edwards, R. L., Taylor, F. W., Recy, J., Gallup, C. D., and Beck, J. W.: Annual cycles of UCa in coral skeletons and UCa thermometry, Geochim. Cosmochim. Ac., 59, 2025–2042, https://doi.org/10.1016/0016-7037(95)00124-7, 1995.
Mollica, N. R., Guo, W., Cohen, A. L., Huang, K.-F., Foster, G. L., Donald, H. K., and Solow, A. R.: Ocean acidification affects coral growth by reducing skeletal density, P. Natl. Acad. Sci. USA, 115, 1754–1759, https://doi.org/10.1073/pnas.1712806115, 2018.
Morrill, C., Thrasher, B., Lockshin, S. N., Gille, E. P., McNeill, S., Shepherd, E., Gross, W. S., and Bauer, B. A.: The Paleoenvironmental Standard Terms (PaST) Thesaurus: Standardizing Heterogeneous Variables in Paleoscience, Paleoceanogr. Paleocl., 36, e2020PA004193, https://doi.org/10.1029/2020PA004193, 2021.
Murphy, R., Webster, J. M., Nothdurft, L., Dechnik, B., and McGregor, H. V.: High-resolution hyperspectral imaging of diagenesis and clays in fossil coral reef material: a nondestructive tool for improving environmental and climate reconstructions, Geochem. Geophys. Geosysy., 18, 3209–3230, 10.1002/2017GC006949, 2017.
Nguyen, A. D., Zhao, J. x., Feng, Y. x., Hu, W. p., Yu, K. f., Gasparon, M., Pham, T. B., and Clark, T. R.: Impact of recent coastal development and human activities on Nha Trang Bay, Vietnam: evidence from a Porites lutea geochemical record, Coral Reefs, 32, 181–193, https://doi.org/10.1007/s00338-012-0962-4, 2013.
Nothdurft, L. D. and Webb, G. E.: Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives, Facies, 55, 161–201, https://doi.org/10.1007/s10347-008-0167-z, 2009.
Nothdurft, L. D., Webb, G. E., Bostrom, T., and Rintoul, L.: Calcite-filled borings in the most recently deposited skeleton in live-collected Porites (Scleractinia): Implications for trace element archives, Geochim. Cosmochim. Ac., 71, 5423–5438, https://doi.org/10.1016/j.gca.2007.09.025, 2007.
Okai, T., Suzuki, A., Kawahata, H., Terashima, S., and Imai, N.: Preparation of a New Geological Survey of Japan Geochemical Reference Material: Coral JCp-1, Geostandard. Newslett., 26, 95–99, https://doi.org/10.1111/j.1751-908X.2002.tb00627.x, 2002.
Ortiz, J.-C., Wolff, N. H., Anthony, K. R. N., Devlin, M., Lewis, S., and Mumby, P. J.: Impaired recovery of the Great Barrier Reef under cumulative stress, Sci. Adv., 4, eaar6127, https://doi.org/10.1126/sciadv.aar6127, 2018.
Palmer, J. G., Cook, E. R., Turney, C. S. M., Allen, K., Fenwick, P., Cook, B. I., O'Donnell, A., Lough, J., Grierson, P., and Baker, P.: Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation, Environ. Res. Lett., 10, 124002, https://doi.org/10.1088/1748-9326/10/12/124002, 2015.
Pelejero, C., Calvo, E., McCulloch, M. T., Marshall, J. F., Gagan, M. K., Lough, J. M., and Opdyke, B. N.: Preindustrial to Modern Interdecadal Variability in Coral Reef pH, Science, 309, 2204–2207, https://doi.org/10.1126/science.1113692, 2005.
Prouty, N. G., Cohen, A., Yates, K. K., Storlazzi, C. D., Swarzenski, P. W., and White, D.: Vulnerability of Coral Reefs to Bioerosion From Land-Based Sources of Pollution, J. Geophys. Res.-Oceans, 122, 9319–9331, https://doi.org/10.1002/2017JC013264, 2017.
Quinn, T. M. and Taylor, F. W.: SST artifacts in coral proxy records produced by early marine diagenesis in a modern coral from Rabaul, Papua New Guinea, Geophys. Res. Lett., 33, L04601, https://doi.org/10.1029/2005GL024972, 2006.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Razak, T. B., Mumby, P. J., Nguyen, A. D., Zhao, J.-X., Lough, J. M., Cantin, N. E., and Roff, G.: Use of skeletal ratios to determine growth patterns in a branching coral Isopora palifera, Mar. Biol., 164, 96, https://doi.org/10.1007/s00227-017-3099-8, 2017.
Reed, E. V., Cole, J. E., Lough, J. M., Thompson, D., and Cantin, N. E.: Linking climate variability and growth in coral skeletal records from the Great Barrier Reef, Coral Reefs, 38, 29–43, https://doi.org/10.1007/s00338-018-01755-8, 2019.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An Improved In Situ and Satellite SST Analysis for Climate, J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2, 2002.
Roche, R. C., Perry, C. T., Smithers, S. G., Leng, M. J., Grove, C. A., Sloane, H. J., and Unsworth, C. E.: Mid-Holocene sea surface conditions and riverine influence on the inshore Great Barrier Reef, The Holocene, 24, 885–897, https://doi.org/10.1177/0959683614534739, 2014.
Rodriguez-Ramirez, A., Grove, C. A., Zinke, J., Pandolfi, J. M., and Zhao, J.-X.: Coral Luminescence Identifies the Pacific Decadal Oscillation as a Primary Driver of River Runoff Variability Impacting the Southern Great Barrier Reef, PLOS ONE, 9, e84305, https://doi.org/10.1371/journal.pone.0084305, 2014.
Ryan, E. J., Smithers, S. G., Lewis, S. E., Clark, T. R., and Zhao, J.-X.: The Variable Influences of Sea Level, Sedimentation and Exposure on Holocene Reef Development over a Cross-Shelf Transect, Central Great Barrier Reef, Diversity, 10, 110, https://doi.org/10.3390/d10040110, 2018.
Sadler, J., Webb, G. E., Nothdurft, L. D., and Dechnik, B.: Geochemistry-based coral palaeoclimate studies and the potential of `non-traditional' (non-massive Porites) corals: Recent developments and future progression, Earth-Sci. Rev., 139, 291–316, https://doi.org/10.1016/j.earscirev.2014.10.002, 2014.
Sadler, J., Nguyen, A. D., Leonard, N. D., Webb, G. E., and Nothdurft, L. D.: Acropora interbranch skeleton ratios: Evaluation of a potential new high-resolution paleothermometer, Paleoceanography, 31, 505–517, https://doi.org/10.1002/2015PA002898, 2016a.
Sadler, J., Webb, G. E., Leonard, N. D., Nothdurft, L. D., and Clark, T. R.: Reef core insights into mid-Holocene water temperatures of the southern Great Barrier Reef, Paleoceanography, 31, 1395–1408, https://doi.org/10.1002/2016pa002943, 2016b.
Saha, N., Rodriguez-Ramirez, A., Nguyen, A. D., Clark, T. R., Zhao, J. X., and Webb, G. E.: Seasonal to decadal scale influence of environmental drivers on and in coral aragonite from the southern Great Barrier Reef, Sci. Total Environ., 639, 1099–1109, https://doi.org/10.1016/j.scitotenv.2018.05.156, 2018a.
Saha, N., Webb, G. E., Zhao, J.-X., Leonard, N. D., and Nguyen, A. D.: Influence of marine biochemical cycles on seasonal variation of in the near-shore coral Cyphastrea, Rat Island, southern Great Barrier Reef, Chem. Geol., 499, 71–83, https://doi.org/10.1016/j.chemgeo.2018.09.005, 2018b.
Saha, N., Webb, G. E., Christy, A. G., and Zhao, J.-X.: Vanadium in the massive coral Porites: A potential proxy for historical wood clearing and burning, Earth Planet. Sc. Lett., 527, 115793, https://doi.org/10.1016/j.epsl.2019.115793, 2019a.
Saha, N., Webb, G. E., Zhao, J.-X., Nguyen, A. D., Lewis, S. E., and Lough, J. M.: Coral-based high-resolution rare earth element proxy for terrestrial sediment discharge affecting coastal seawater quality, Great Barrier Reef, Geochim. Cosmochim. Ac., 254, 173–191, https://doi.org/10.1016/j.gca.2019.04.004, 2019b.
Saha, N., Webb, G. E., Zhao, J.-X., Lewis, S. E., Nguyen, A. D., and Feng, Y.: Spatiotemporal variation of rare earth elements from river to reef continuum aids monitoring of terrigenous sources in the Great Barrier Reef, Geochim. Cosmochim. Ac., 299, 85–112, https://doi.org/10.1016/j.gca.2021.02.014, 2021.
Sammarco, P. W., Risk, M. J., Schwarcz, H. P., and Heikoop, J. M.: Cross-continental shelf trends in coral ä15N on the Great Barrier Reef: further consideration of the reef nutrient paradox, Mar. Ecol. Prog. Ser., 180, 131–138, 1999.
Sanborn, K. L., Webster, J. M., Webb, G. E., Braga, J. C., Humblet, M., Nothdurft, L., Patterson, M. A., Dechnik, B., Warner, S., Graham, T., Murphy, R. J., Yokoyama, Y., Obrochta, S. P., Zhao, J.-X., and Salas-Saavedra, M.: A new model of Holocene reef initiation and growth in response to sea-level rise on the Southern Great Barrier Reef, Sediment. Geol., 397, 105556, https://doi.org/10.1016/j.sedgeo.2019.105556, 2020.
Sayani, H. R., Cobb, K. M., Cohen, A. L., Elliott, W. C., Nurhati, I. S., Dunbar, R. B., Rose, K. A., and Zaunbrecher, L. K.: Effects of diagenesis on paleoclimate reconstructions from modern and young fossil corals, Geochim. Cosmochim. Ac., 75, 6361–6373, https://doi.org/10.1016/j.gca.2011.08.026, 2011.
Sinclair, D. J., Kinsley, L. P. J., and McCulloch, M. T.: High resolution analysis of trace elements in corals by laser ablation ICP-MS, Geochim. Cosmochim. Ac., 62, 1889–1901, https://doi.org/10.1016/S0016-7037(98)00112-4, 1998.
Spencer, T., Brown, B., Hamylton, S., and McLean, R.: `A Close and Friendly Alliance': Biology, Geology and the Great Barrier Reef Expedition of 1928–1929, in: Oceanography and Marine Biology edited by: Hawkins, S. J., 89–138, https://doi.org/10.1201/9781003138846-2, 2021.
Steinberg, C.: Impacts of climate change on the physical oceanography of the Great Barrier Reef, in: Climate change and the Great Barrier Reef: a vulnerability assessment, The Great Barrier Reef Marine Park Authority, https://hdl.handle.net/11017/536 (last access: 21 December 2020), 2007.
Steven, A. D. L. and Atkinson, M. J.: Nutrient uptake by coral-reef microatolls, Coral Reefs, 22, 197–204, https://doi.org/10.1007/s00338-003-0303-8, 2003.
Stuiver, M. and Reimer, P. J.: Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program, Radiocarbon, 35, 215–230, https://doi.org/10.1017/S0033822200013904, 1993.
Suzuki, A., Gagan, M. K., Fabricius, K., Isdale, P. J., Yukino, I., and Kawahata, H.: Skeletal isotope microprofiles of growth perturbations in Porites corals during the 1997–1998 mass bleaching event, Coral Reefs, 22, 357–369, https://doi.org/10.1007/s00338-003-0323-4, 2003.
Takada, N., Suzuki, A., Ishii, H., Hironaka, K., and Hironiwa, T.: Thermoluminescence of coral skeletons: a high-sensitivity proxy of diagenetic alteration of aragonite, Sci. Rep.-UK, 7, 17969, https://doi.org/10.1038/s41598-017-18269-y, 2017.
Thompson, D., McCulloch, M., Cole, J. E., Reed, E. V., D'Olivo, J. P., Dyez, K., Lofverstrom, M., Lough, J., Cantin, N., Tudhope, A. W., Cheung, A. H., Vetter, L., and Edwards, R. L.: Marginal Reefs Under Stress: Physiological Limits Render Galápagos Corals Susceptible to Ocean Acidification and Thermal Stress, AGU Adv., 3, e2021AV000509, https://doi.org/10.1029/2021AV000509, 2022.
Thompson, D. M.: Environmental records from coral skeletons: A decade of novel insights and innovation, WIREs Clim. Change, 13, e745, https://doi.org/10.1002/wcc.745, 2022.
Vines, T. H., Albert, A. Y. K., Andrew, R. L., Débarre, F., Bock, D. G., Franklin, M. T., Gilbert, K. J., Moore, J.-S., Renaut, S., and Rennison, D. J.: The Availability of Research Data Declines Rapidly with Article Age, Curr. Biol., 24, 94–97, https://doi.org/10.1016/j.cub.2013.11.014, 2014.
Walter, R. M., Sayani, H. R., Felis, T., Cobb, K. M., Abram, N. J., Arzey, A. K., Atwood, A. R., Brenner, L. D., Dassié, É. P., DeLong, K. L., Ellis, B., Emile-Geay, J., Fischer, M. J., Goodkin, N. F., Hargreaves, J. A., Kilbourne, K. H., Krawczyk, H., McKay, N. P., Moore, A. L., Murty, S. A., Ong, M. R., Ramos, R. D., Reed, E. V., Samanta, D., Sanchez, S. C., Zinke, J., and the PAGES CoralHydro2k Project Members: The CoralHydro2k database: a global, actively curated compilation of coral δ18O and proxy records of tropical ocean hydrology and temperature for the Common Era, Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, 2023.
Walther, B. D., Kingsford, M. J., and McCulloch, M. T.: Environmental Records from Great Barrier Reef Corals: inshore versus offshore drivers, PLoS One, 8, e77091, https://doi.org/10.1371/journal.pone.0077091, 2013.
Wang, Z., Li, J., Wei, G., Deng, W., Chen, X., Zeng, T., Wang, X., Ma, J., Zhang, L., Tu, X., Wang, Q., and McCulloch, M.: Biologically controlled Mo isotope fractionation in coral reef systems, Geochim. Cosmochim. Ac., 262, 128–142, https://doi.org/10.1016/j.gca.2019.07.037, 2019.
Weber, J. N.: Incorporation of strontium into reef coral skeletal carbonate, Geochim. Cosmochim. Ac., 37, 2173–2190, https://doi.org/10.1016/0016-7037(73)90015-X, 1973.
Weber, J. N. and Woodhead, P. M. J.: Factors affecting the carbon and oxygen isotopic composition of marine carbonate sediments – II. Heron Island, Great Barrier Reef, Australia, Geochim. Cosmochim. Ac., 33, 19–38, https://doi.org/10.1016/0016-7037(69)90090-8, 1969.
Weber, J. N. and Woodhead, P. M. J.: Carbon and Oxygen Isotope Fractionation in the Skeletal Carbonate of Reef-Building Corals, Chem. Geol., 6, 93–117, https://doi.org/10.1016/0009-2541(70)90009-4, 1970.
Weber, J. N. and Woodhead, P. M. J.: Temperature dependence of oxygen-18 concentration in reef coral carbonates, J. Geophys. Res., 77, 463–473, https://doi.org/10.1029/JC077i003p00463, 1972.
Webster, J. M., Braga, J. C., Humblet, M., Potts, D. C., Iryu, Y., Yokoyama, Y., Fujita, K., Bourillot, R., Esat, T. M., Fallon, S., Thompson, W. G., Thomas, A. L., Kan, H., McGregor, H. V., Hinestrosa, G., Obrochta, S. P., and Lougheed, B. C.: Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years, Nat. Geosci., 11, 426–432, https://doi.org/10.1038/s41561-018-0127-3, 2018.
Weerabaddana, M. M., Thompson, D. M., Reed, E. V., Farfan, G. A., Kirk, J. D., Kojima, A. C., Dettman, D. L., de Brum, K., Kabua, E., and Edwards, F.: Impact of Intra-Skeletal Calcite on the Preservation of Coral Geochemistry and Implications for Paleoclimate Reconstruction, Paleoceanogr. Paleocl., 39, e2023PA004730, https://doi.org/10.1029/2023PA004730, 2024.
Wei, G., McCulloch, M. T., Mortimer, G., Deng, W., and Xie, L.: Evidence for ocean acidification in the Great Barrier Reef of Australia, Geochim. Cosmochim. Ac., 73, 2332–2346, https://doi.org/10.1016/j.gca.2009.02.009, 2009.
Wei, G., Wang, Z., Ke, T., Liu, Y., Deng, W., Chen, X., Xu, J., Zeng, T., and Xie, L.: Decadal variability in seawater pH in the West Pacific: Evidence from coral ä11B records, J. Geophys. Res.-Oceans, 120, 7166–7181, https://doi.org/10.1002/2015JC011066, 2015.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Wu, Y., Fallon, S. J., Cantin, N. E., and Lough, J. M.: Surface ocean radiocarbon from a Porites coral record in the Great Barrier Reef: 1945–2017, Radiocarbon, 63, 1193–1203, https://doi.org/10.1017/RDC.2020.141, 2021a.
Wu, Y., Fallon, S. J., Cantin, N. E., and Lough, J. M.: Assessing multiproxy approaches ( , , , and ) to reconstruct sea surface temperature from coral skeletons throughout the Great Barrier Reef, Sci. Total Environ., 786, 147393, https://doi.org/10.1016/j.scitotenv.2021.147393, 2021b.
Wyndham, T., McCulloch, M., Fallon, S., and Alibert, C.: High-resolution coral records of rare earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy, Geochim. Cosmochim. Ac., 68, 2067–2080, https://doi.org/10.1016/j.gca.2003.11.004, 2004.
Xiao, H., Deng, W., Wei, G., Chen, J., Zheng, X., Shi, T., Chen, X., Wang, C., Liu, X., and Zeng, T.: A Pilot Study on Zinc Isotopic Compositions in Shallow-Water Coral Skeletons, Geochem. Geophys. Geosyst., 21, e2020GC009430, https://doi.org/10.1029/2020GC009430, 2020.
Yokoyama, Y., Webster, J. M., Cotterill, C., Braga, J. C., Jovane, L., Mills, H., Morgan, S., Suzuki, A., and the IODP Expedition 325 Scientists: IODP Expedition 325: Great Barrier Reefs Reveals Past Sea-Level, Climate and Environmental Changes Since the Last Ice Age, Sci. Dril., 12, 32–45, https://doi.org/10.2204/iodp.sd.12.04.2011, 2011.
Short summary
Coral skeletal records from the Great Barrier Reef (GBR) provide vital data on climate and environmental change. Presented here is the Great Barrier Reef Coral Skeletal Records Database, an extensive compilation of GBR coral records. The database includes key metadata, primary data, and access instructions, and it enhances research on past, present, and future climate and environmental variability of the GBR. The database will assist with contextualising present-day threats to reefs globally.
Coral skeletal records from the Great Barrier Reef (GBR) provide vital data on climate and...
Altmetrics
Final-revised paper
Preprint