Articles | Volume 16, issue 10
https://doi.org/10.5194/essd-16-4511-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-4511-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Oceanographic monitoring in Hornsund fjord, Svalbard
Institute of Geophysics Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, Poland
Mateusz Moskalik
Institute of Geophysics Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, Poland
Oskar Głowacki
Institute of Geophysics Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, Poland
Vineet Jain
Institute of Geophysics Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, Poland
Related authors
No articles found.
Elizabeth Weidner, Grant Deane, Arnaud Le Boyer, Matthew H. Alford, Hari Vishnu, Mandar Chitre, M. Dale Stokes, Oskar Glowacki, Hayden Johnson, and Fiammetta Straneo
The Cryosphere, 19, 4715–4740, https://doi.org/10.5194/tc-19-4715-2025, https://doi.org/10.5194/tc-19-4715-2025, 2025
Short summary
Short summary
Tidewater glaciers play a central role in polar dynamics, but their study is limited by harsh and isolated conditions. Here, we introduce broadband echosounders as an tool for the study of high-latitude fjords through the rapid collection of calibrated high-resolution, near-synoptic observations. Using a dataset collected in Hornsund Fjord, we illustrate the potential of broadband echosounders as a relatively accessible, low-effort tool, well suited for field deployment in high-latitude fjords.
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024, https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
Short summary
The European Arctic is experiencing rapid regional warming, causing glaciers that terminate in the sea to retreat onto land. Due to this process, the area of a well-studied fjord, Hornsund, has increased by around 100 km2 (40%) since 1976. Combining satellite and in situ data with a mathematical model, we estimated that, despite some negative consequences of glacial meltwater release, such emerging coastal waters could mitigate climate change by increasing carbon uptake and storage by sediments.
Hayden A. Johnson, Oskar Glowacki, Grant B. Deane, and M. Dale Stokes
The Cryosphere, 18, 265–272, https://doi.org/10.5194/tc-18-265-2024, https://doi.org/10.5194/tc-18-265-2024, 2024
Short summary
Short summary
This paper is about a way to make measurements close to small pieces of floating glacier ice. This is done by attaching instruments to the ice from a small boat. Making these measurements will be helpful for the study of the physics that goes on at small scales when glacier ice is in contact with ocean water. Understanding these small-scale physics may ultimately help improve our understanding of how much ice in Greenland and Antarctica will melt as a result of warming oceans.
Jarosław Tęgowski, Oskar Glowacki, Michał Ciepły, Małgorzata Błaszczyk, Jacek Jania, Mateusz Moskalik, Philippe Blondel, and Grant B. Deane
The Cryosphere, 17, 4447–4461, https://doi.org/10.5194/tc-17-4447-2023, https://doi.org/10.5194/tc-17-4447-2023, 2023
Short summary
Short summary
Receding tidewater glaciers are important contributors to sea level rise. Understanding their dynamics and developing models for their attrition has become a matter of global concern. Long-term monitoring of glacier frontal ablation is very difficult. Here we show for the first time that calving fluxes can be estimated from the underwater sounds made by icebergs impacting the sea surface. This development has important application to understanding the response of glaciers to warming oceans.
Zuzanna M. Swirad, Mateusz Moskalik, and Agnieszka Herman
Earth Syst. Sci. Data, 15, 2623–2633, https://doi.org/10.5194/essd-15-2623-2023, https://doi.org/10.5194/essd-15-2623-2023, 2023
Short summary
Short summary
Monitoring ocean waves is important for understanding wave climate and seasonal to longer-term (years to decades) changes. In the Arctic, there is limited freely available observational wave information. We placed sensors at the sea bottom of six bays in Hornsund fjord, Svalbard, and calculated wave energy, wave height and wave period for full hours between July 2013 and February 2021. In this paper, we present the procedure of deriving wave properties from raw pressure measurements.
Cited articles
Arntsen, M., Sundfjord, A., Skogseth, R., Błaszczyk, M., and Promińska, A.: Inflow of warm water to the inner Hornsund fjord, Svalbard: Exchange mechanisms and influence on local sea ice cover and glacier front melting, J. Geophys. Res.-Oceans, 124, 1915–1931, https://doi.org/10.1029/2018JC014315, 2019. a, b, c
Błaszczyk, M., Ignatiuk, D., Uszczyk, A., Cielecka-Nowak, K., Grabiec, M., Jania, J. A., Moskalik, M., and Walczowski, W.: Freshwater input to the Arctic fjord Hornsund (Svalbard), Polar Res., 38, 3506, https://doi.org/10.33265/polar.v38.3506, 2019. a, b
Błaszczyk, M., Moskalik, M., Grabiec, M., Jania, J., Walczowski, W., Wawrzyniak, T., Strzelewicz, A., Malnes, E., Lauknes, T. R., and Pfeffer, W. T.: The response of tidewater glacier termini positions in Hornsund (Svalbard) to climate forcing, 1992–2020, J. Geophys. Res.-Earth Surf., 128, e2022JF006911, https://doi.org/10.1029/2022JF006911, 2023. a
Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., and Griffiths, C.: Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard, J. Geophys. Res., 110, C12005, https://doi.org/10.1029/2004JC002757, 2005. a
Cottier, F. R., Nilsen, F., Inall, M. E., Gerland, S., Tverberg, V., and Svendsen, H.: Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation, Geophys. Res, Lett., 34, L10607, https://doi.org/10.1029/2007GL029948, 2007. a
Ćwiąkała, J., Moskalik, M., Forwick, M., Wojtysiak, K., Giżejewski, J., and Szczuciński, W.: Submarine geomorphology at the front of the retreating Hansbreen tidewater glacier, Hornsund fjord, southwest Spitsbergen, J. Maps, 14, 123–134, https://doi.org/10.1080/17445647.2018.1441757, 2018. a
De Rovere, F., Langone, L., Schroeder, K., Miserocchi, S., Giglio, F., Aliani, S., and Chiggiato, J.: Water Masses Variability in Inner Kongsfjorden (Svalbard) During 2010–2020, Front. Mar. Sci., 9, 741075, https://doi.org/10.3389/fmars.2022.741075, 2022. a, b
Ericson, Y., Falck, E., Chierici, M., Fransson, A., Kristiansen, S., Platt, S. M., Hermansen, O., and Myhre, C. L.: Temporal Variability in Surface Water pCO2 in Adventfjorden (West Spitsbergen) with Emphasis on Physical and Biogeochemical Drivers, J. Geophys. Res.-Oceans, 123, 4888–4905, https://doi.org/10.1029/2018JC014073, 2018. a
Goszczko, I., Ingvaldsen, R. B., and Onarheim, I. H.: Wind-driven cross-shelf exchange – West Spitsbergen Current as a source of heat and salt for the adjacent shelf in Arctic winters, J. Geophys. Res.-Oceans, 123, 2668–2696, https://doi.org/10.1002/2017JC013553, 2018. a, b
Holmes, F. A., Kirchner, N., Kuttenkeuler, J., Krützfeldt, J., and Noormets, R.: Relating ocean temperatures to frontal ablation rates at Svalbard tidewater glaciers: Insights from glacier proximal datasets, Sci. Rep., 9, 9442, https://doi.org/10.1038/s41598-019-45077-3, 2019. a, b
Hopwood, M. J., Carroll, D., Dunse, T., Hodson, A., Holding, J. M., Iriarte, J. L., Ribeiro, S., Achterberg, E. P., Cantoni, C., Carlson, D. F., Chierici, M., Clarke, J. S., Cozzi, S., Fransson, A., Juul-Pedersen, T., Winding, M. H. S., and Meire, L.: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?, The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, 2020. a
IOC, SCOR and IAPSO: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp., 2010. a
Isaksen, K., Nordli, Ø, Førland, E. J., Łupikasza, E., Eastwood, S., and Niedźwiedź, T.: Recent warming on Spitsbergen – Influence of atmospheric circulation and sea ice cover, J. Geophys. Res.-Atmos., 121, 913–911, https://doi.org/10.1002/2016JD025606, 2016. a
Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.: Calving rates at tidewater glaciers vary strongly with ocean temperature, Nat. Commun., 6, 8566, https://doi.org/10.1038/ncomms9566, 2015. a
McDougall, T. and Barker, P.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox, version3.0, SCOR/IAPSOWG127, Oceanographic Toolbox [code], 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf (last access: 30 September 2024), 2011. a
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M., Rysgaard, S., Nygaard, R., Huybrechts, P., and Meysman, F. J. R.: Marine-terminating glaciers sustain high productivity in Greenland fjords, Glob. Change Biol., 23, 1–5357, https://doi.org/10.1111/gcb.13801, 2017. a
Moskalik, M., Grabowiecki, P., Tęgowski, J., and Żulichowska, M.: Bathymetry and geographical regionalization of Brepollen (Hornsund, Spitsbergen) based on bathymetric profiles interpolations, Pol. Polar Res., 34, 1–22, 2013. a
Moskalik, M., Ćwiąkała, J., Szczuciński, W., Dominiczak, A., Głowacki, O., Wojtysiak, K., and Zagórski, P.: Spatiotemporal changes in the concentration and composition of suspended particulate matter in front of Hansbreen, a tidewater glacier in Svalbard, Oceanologia, 60, 446–463, https://doi.org/10.1016/j.oceano.2018.03.001, 2018. a
Moskalik, M., Korhonen, M., Głowacki, O., and Jain, V.: Hydrographic observations from Hornsund fjord, Svalbard, 2015–2023, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.967169, 2024a. a, b, c
Moskalik, M., Korhonen, M., Głowacki, O., and Jain, V.: Hydrographic observations from Hornsund fjord, Svalbard, 2015–2023 from supplementary stations, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.967171, 2024b. a, b, c
Moskalik, M., Korhonen, M., Głowacki, O., and Jain, V.: Sedimentation rate from Hornsund fjord, Svalbard, 2015–2023, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.967172, 2024c. a, b
Moskalik, M., Korhonen, M., Głowacki, O., and Jain, V.: Suspended sediment concentration from Hornsund fjord, Svalbard, 2015–2023, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.967173, 2024d. a, b
Muckenhuber, S., Nilsen, F., Korosov, A., and Sandven, S.: Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data, The Cryosphere, 10, 149–158, https://doi.org/10.5194/tc-10-149-2016, 2016. a
Murray, C., Markager, S., Stedmon, C. A., Juul-Pedersen, T., Sejr, M. K., and Bruhn, A.: The influence of glacial melt water on bio-optical properties in two contrasting Greenlandic fjords, Estuar. Coast. Shelf Sci., 163, 72–83, https://doi.org/10.1016/j.ecss.2015.05.041, 2015. a
Nilsen, F., Cottier, F., Skogseth, R., and Mattsson, S.: Fjord-shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard, Cont. Shelf Res., 28, 1838–1853, https://doi.org/10.1016/j.csr.2008.04.015, 2008. a, b, c
Nilsen, F., Skogseth, R., Vaardal-Lunde, J., and Inall, M.: A Simple Shelf Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen Shelf, J. Phys. Oceanogr., 46, 1209–1230, https://doi.org/10.1175/JPO-D-15-0058.1, 2016. a, b, c, d
Pavlov, A. K., Tverberg, V., Ivanov, B. V., Nilsen, F., Falk-Petersen, S., and Granskog, M. A.: Warming of Atlantic water in two west Spitsbergen fjords over the last century (1912–2009), Polar Res., 32, 11206, https://doi.org/10.3402/polar.v32i0.11206, 2013. a
Promińska, A., Falck, E., and Walczowski, W.: Interannual variability in hydrography and water mass distribution in Hornsund, an Arctic fjord in Svalbard, Polar Res., 37, 1495546, https://doi.org/10.1080/17518369.2018.1495546, 2018. a, b, c, d
Saloranta, T. M. and Svendsen, H.: Across the Arctic front west of Spitsbergen: high-resolution CTD sections from 1998–2000, Polar Res., 20, 177–184, https://doi.org/10.3402/polar.v20i2.6515, 2001. a, b, c, d
Schauer, U., Fahrbach, E., Osterhus, S., and Rohardt, G.: Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements, J. Geophys. Res., 109, C06026, https://doi.org/10.1029/2003JC001823, 2004. a
Skogseth, R., Olivier, L. L. A., Nilsen, F., Falck, E., Fraser, N., Tverberg, V., Ledang, A. B., Vader, A., Jonassen, M. O., Søreide, J., Cottier, F., Berge, J., Ivanov, B. V., and Falk-Petersen, S.: Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation – An indicator for climate change in the European Arctic, Prog. Oceanogr., 187, 102394, https://doi.org/10.1016/j.pocean.2020.102394, 2020. a, b
Stempniewicz, L., Weydmann-Zwolicka, A., Strzelewicz, A., Goc, M., Głuchowska, M., Kidawa, D., Walczowski, W., Węsławski, J. M., and Zwolicki, A.: Advection of Atlantic water masses influences seabird community foraging in a high-Arctic fjord, Prog. Oceanogr., 193, 102549, https://doi.org/10.1016/j.pocean.2021.102549, 2021. a
Strzelewicz, A., Przyborska, A., and Walczowski, W.: Increased presence of Atlantic water on the shelf south-west of Spitsbergen with implications for the Arctic fjord Hornsund, Prog. Oceanogr., 200, 102714, https://doi.org/10.1016/j.pocean.2021.102714, 2022. a, b, c
Svendsen, H., Beszczynska-Möller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., Ørbæk, J. B., Bischof, K., Papucci, C., Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J.-G., and Dallmann, W.: The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard, Polar Res., 21, 133–166, https://doi.org/10.3402/polar.v21i1.6479, 2002. a, b
Trudnowska, E., Stemmann, L., Błachowiak-Samołyk, K., and Kwasniewski, S.: Taxonomic and size structures of zooplankton communities in the fjords along the Atlantic water passage to the Arctic, J. Marine Syst., 204, 103306, https://doi.org/10.1016/j.jmarsys.2020.103306, 2020. a
Tverberg, V., Skogseth, R., Cottier, F., Sundfjord, A., Walczowski, W., Inall, M., Falck, E., Pavlova, O., and Nilsen, F.: The Kongsfjorden transect: Seasonal and interannual variability in hydrography, in: The Ecosystem of Kongsfjorden, Svalbard, Advances in Polar Ecology 2, Chap. 3, pp. 49–104, edited by: Hop, H. and Wiencke, C., Springer International Publishing, Cham, Switzerland, https://doi.org/10.1007/978-3-319-46425-1_3, 2019. a, b, c
van Pelt, W., Pohjola, V., Pettersson, R., Marchenko, S., Kohler, J., Luks, B., Hagen, J. O., Schuler, T. V., Dunse, T., Noël, B., and Reijmer, C.: A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018), The Cryosphere, 13, 2259–2280, https://doi.org/10.5194/tc-13-2259-2019, 2019. a
Wawrzyniak, T. and Osuch, M.: A 40-year High Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard), Earth Syst. Sci. Data, 12, 805–815, https://doi.org/10.5194/essd-12-805-2020, 2020. a, b
Zhang, T., Li, D., East, A. E., Walling, D. E., Lane, S., Overeem, I., Beylich, A. A., Koppes, M., and Lu, X.: Warming-driven erosion and sediment transport in cold regions, Nat. Rev. Earth Environ., 3, 832–851, https://doi.org/10.1038/s43017-022-00362-0, 2022. a, b
Short summary
Since 2015, temperature and salinity have been monitored in Hornsund fjord (Svalbard), where retreating glaciers add meltwater and terrestrial matter to coastal waters. Therefore, turbidity and water sampling for suspended sediment concentration and sediment deposition are measured. The monitoring spans from May to October, enabling studies on seasonality and its variability over the years, and the dataset covers the whole fjord, including the inner basins in close proximity to the glaciers.
Since 2015, temperature and salinity have been monitored in Hornsund fjord (Svalbard), where...
Altmetrics
Final-revised paper
Preprint