Articles | Volume 16, issue 3
https://doi.org/10.5194/essd-16-1425-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-16-1425-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau
Raul-David Şerban
CORRESPONDING AUTHOR
Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano 39100, Italy
Institute for Alpine Environment, Eurac Research, Bolzano 39100, Italy
National Key Laboratory of Cryosphere Science and Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Huijun Jin
CORRESPONDING AUTHOR
National Key Laboratory of Cryosphere Science and Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
School of Civil Engineering and Transportation, Permafrost Institute, and China-Russia Joint Laboratory of Cold Regions Engineering and Environment, Northeast Forestry University, Harbin 150090, China
Mihaela Şerban
Applied Geomorphology and Interdisciplinary Research Centre, Department of Geography, West University of Timişoara, Timişoara 300223, Romania
Giacomo Bertoldi
Institute for Alpine Environment, Eurac Research, Bolzano 39100, Italy
Dongliang Luo
National Key Laboratory of Cryosphere Science and Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Qingfeng Wang
National Key Laboratory of Cryosphere Science and Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
National Key Laboratory of Cryosphere Science and Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Ruixia He
National Key Laboratory of Cryosphere Science and Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
Xiaoying Jin
School of Civil Engineering and Transportation, Permafrost Institute, and China-Russia Joint Laboratory of Cold Regions Engineering and Environment, Northeast Forestry University, Harbin 150090, China
Xinze Li
National Key Laboratory of Cryosphere Science and Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
College of Engineering, China University of Petroleum-Beijing, Karamayi 834000, China
Jianjun Tang
School of Civil Engineering and Transportation, Permafrost Institute, and China-Russia Joint Laboratory of Cold Regions Engineering and Environment, Northeast Forestry University, Harbin 150090, China
Hongwei Wang
National Key Laboratory of Cryosphere Science and Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
School of Civil Engineering and Transportation, Permafrost Institute, and China-Russia Joint Laboratory of Cold Regions Engineering and Environment, Northeast Forestry University, Harbin 150090, China
Related authors
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024, https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Short summary
In Northeast China, the permafrost is more sensitive to climate warming and fire disturbances than the boreal and Arctic permafrost. Since 2016, a continuous ground hydrothermal regime and soil nutrient content observation system has been gradually established in Northeast China. The integrated dataset includes soil moisture content, soil organic carbon, total nitrogen, total phosphorus, total potassium, ground temperatures at depths of 0–20 m, and active layer thickness from 2016 to 2022.
Shuai Huang, Xiangbing Kong, Xue Yang, Xiaoying Jin, Shanzhen Li, Lin Yang, Yaodan Zhang, Kai Gao, Hongwei Wang, Xiaoying Li, Ruixia He, Lanzhi Lü, Guodong Cheng, and Huijun Jin
EGUsphere, https://doi.org/10.5194/egusphere-2025-4544, https://doi.org/10.5194/egusphere-2025-4544, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Permafrost in Northeast China is rapidly degrading due to climate warming and land use changes, threatening ecosystems and infrastructure. We developed a physics-informed machine learning framework that integrates climate and land cover data with physical models to predict permafrost evolution. Results show that up to 97 % of near-surface permafrost may disappear by 2100 under high emissions, while forests and mountains provide partial resilience.
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024, https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Short summary
In Northeast China, the permafrost is more sensitive to climate warming and fire disturbances than the boreal and Arctic permafrost. Since 2016, a continuous ground hydrothermal regime and soil nutrient content observation system has been gradually established in Northeast China. The integrated dataset includes soil moisture content, soil organic carbon, total nitrogen, total phosphorus, total potassium, ground temperatures at depths of 0–20 m, and active layer thickness from 2016 to 2022.
Niu Zhu, Jinniu Wang, Dongliang Luo, Xufeng Wang, Cheng Shen, and Ning Wu
Biogeosciences, 21, 3509–3522, https://doi.org/10.5194/bg-21-3509-2024, https://doi.org/10.5194/bg-21-3509-2024, 2024
Short summary
Short summary
Our study delves into the vital role of subalpine forests in the Qinghai–Tibet Plateau as carbon sinks in the context of climate change. Utilizing advanced eddy covariance systems, we uncover their significant carbon sequestration potential, observing distinct seasonal patterns influenced by temperature, humidity, and radiation. Notably, these forests exhibit robust carbon absorption, with potential implications for global carbon balance.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Valentina Premier, Carlo Marin, Giacomo Bertoldi, Riccardo Barella, Claudia Notarnicola, and Lorenzo Bruzzone
The Cryosphere, 17, 2387–2407, https://doi.org/10.5194/tc-17-2387-2023, https://doi.org/10.5194/tc-17-2387-2023, 2023
Short summary
Short summary
The large amount of information regularly acquired by satellites can provide important information about SWE. We explore the use of multi-source satellite data, in situ observations, and a degree-day model to reconstruct daily SWE at 25 m. The results show spatial patterns that are consistent with the topographical features as well as with a reference product. Being able to also reproduce interannual variability, the method has great potential for hydrological and ecological applications.
Guoyu Li, Wei Ma, Fei Wang, Huijun Jin, Alexander Fedorov, Dun Chen, Gang Wu, Yapeng Cao, Yu Zhou, Yanhu Mu, Yuncheng Mao, Jun Zhang, Kai Gao, Xiaoying Jin, Ruixia He, Xinyu Li, and Yan Li
Earth Syst. Sci. Data, 14, 5093–5110, https://doi.org/10.5194/essd-14-5093-2022, https://doi.org/10.5194/essd-14-5093-2022, 2022
Short summary
Short summary
A permafrost monitoring network was established along the China–Russia crude oil pipeline (CRCOP) route at the eastern flank of the northern Da Xing'anling Mountains in Northeast China. The resulting datasets fill the gaps in the spatial coverage of mid-latitude mountain permafrost databases. Results show that permafrost warming has been extensively observed along the CRCOP route, and local disturbances triggered by the CRCOPs have resulted in significant permafrost thawing.
Xiaoli Chang, Huijun Jin, Ruixia He, Yanlin Zhang, Xiaoying Li, Xiaoying Jin, and Guoyu Li
Earth Syst. Sci. Data, 14, 3947–3959, https://doi.org/10.5194/essd-14-3947-2022, https://doi.org/10.5194/essd-14-3947-2022, 2022
Short summary
Short summary
Based on 10-year observations of ground temperatures in seven deep boreholes in Gen’he, Mangui, and Yituli’he, a wide range of mean annual ground temperatures at the depth of 20 m (−2.83 to −0.49 ℃) and that of annual maximum thawing depth (about 1.1 to 7.0 m) have been revealed. This study demonstrates that most trajectories of permafrost changes in Northeast China are ground warming and permafrost degradation, except that the shallow permafrost is cooling in Yituli’he.
Alice Crespi, Michael Matiu, Giacomo Bertoldi, Marcello Petitta, and Marc Zebisch
Earth Syst. Sci. Data, 13, 2801–2818, https://doi.org/10.5194/essd-13-2801-2021, https://doi.org/10.5194/essd-13-2801-2021, 2021
Short summary
Short summary
A 250 m gridded dataset of 1980–2018 daily mean temperature and precipitation records for Trentino–South Tyrol (north-eastern Italian Alps) was derived from a quality-controlled and homogenized archive of station observations. The errors associated with the final interpolated fields were assessed and thoroughly discussed. The product will be regularly updated and is meant to support regional climate studies and local monitoring and applications in integration with other fine-resolution data.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Cited articles
Aalto, J., Le Roux, P. C., and Luoto, M.: Vegetation mediates soil temperature and moisture in arctic-alpine environments, Arctic, Antarct. Alp. Res., 45, 429–439, https://doi.org/10.1657/1938-4246-45.4.429, 2013.
Akaike, H.: A new look at the statistical model identification, IEEE Trans. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Apaloo, J., Brenning, A., and Bodin, X.: Interactions between seasonal snow cover, ground surface temperature and topography (Andes of Santiago, Chile, 33.5° S), Permafr. Periglac. Process., 23, 277–291, https://doi.org/10.1002/ppp.1753, 2012.
Biskaborn, B. K., Lanckman, J.-P., Lantuit, H., Elger, K., Streletskiy, D. A., Cable, W. L., and Romanovsky, V. E.: The new database of the Global Terrestrial Network for Permafrost (GTN-P), Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, 2015.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 1–11, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Bosson, J. B., Deline, P., Bodin, X., Schoeneich, P., Baron, L., Gardent, M., and Lambiel, C.: The influence of ground ice distribution on geomorphic dynamics since the Little Ice Age in proglacial areas of two cirque glacier systems, Earth Surf. Process. Landforms, 40, 666–680, https://doi.org/10.1002/esp.3666, 2015.
Cao, B., Zhang, T., Peng, X., Mu, C., Wang, Q., Zheng, L., Wang, K., and Zhong, X.: Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River Basin, Western China, J. Geophys. Res.-Atmos., 123, 7935–7949, https://doi.org/10.1029/2018JD028442, 2018.
Cao, B., Zhang, T., Wu, Q., Sheng, Y., Zhao, L., and Zou, D.: Brief communication: Evaluation and inter-comparisons of Qinghai–Tibet Plateau permafrost maps based on a new inventory of field evidence, The Cryosphere, 13, 511–519, https://doi.org/10.5194/tc-13-511-2019, 2019a.
Cao, B., Zhang, T., Wu, Q., Sheng, Y., Zhao, L., and Zou, D.: Permafrost zonation index map and statistics over the Qinghai–Tibet Plateau based on field evidence, Permafr. Periglac. Process., 30, 178–194, https://doi.org/10.1002/ppp.2006, 2019b.
Cao, B., Wang, S., Hao, J., Sun, W., and Zhang, K.: Inconsistency and correction of manually observed ground surface temperatures over snow-covered regions, Agric. For. Meteorol., 338, 109518, https://doi.org/10.1016/j.agrformet.2023.109518, 2023.
Cao, Z., Nan, Z., Hu, J., Chen, Y., and Zhang, Y.: A new 2010 permafrost distribution map over the Qinghai–Tibet Plateau based on subregion survey maps: a benchmark for regional permafrost modeling, Earth Syst. Sci. Data, 15, 3905–3930, https://doi.org/10.5194/essd-15-3905-2023, 2023.
Christiansen, H., Humlum, O., and Eckerstorfer, M.: Central svalbard 2000-2011 meteorological dynamics and periglacial landscape response, Arctic, Antarct. Alp. Res., 45, 6–18, https://doi.org/10.1657/1938-4246-45.16, 2013.
Colombo, N., Ferronato, C., Vittori Antisari, L., Marziali, L., Salerno, F., Fratianni, S., D'Amico, M. E., Ribolini, A., Godone, D., Sartini, S., Paro, L., Morra di Cella, U., and Freppaz, M.: A rock-glacier – pond system (NW Italian Alps): Soil and sediment properties, geochemistry, and trace-metal bioavailability, Catena, 194, 104700, https://doi.org/10.1016/j.catena.2020.104700, 2020.
Cui, Y., Xu, W., Zhou, Z., Zhao, C., Ding, Y., Ao, X., and Zhou, X.: Bias analysis and correction of ground surface temperature observations across China, J. Meteorol. Res., 34, 1324–1334, https://doi.org/10.1007/s13351-020-0031-9, 2020.
Du, M., Kawashima, S., Yonemura, S., Yamada, T., Zhang, X., Liu, J., Li, Y., Gu, S., and Tang, Y.: Temperature distribution in the high mountain regions on the Tibetan Plateau - Measurement and simulation, in: MODSIM07 – Land, Water and Environmental Management: Integrated Systems for Sustainability, Proceedings, 2146–2152, 2007.
Etzelmüller, B., Farbrot, H., Guðmundsson, Á., Humlum, O., Tveito, O. E., and Björnsson, H.: The regional distribution of mountain permafrost in Iceland, Permafr. Periglac. Process., 18, 185–199, https://doi.org/10.1002/ppp.583, 2007.
Ferreira, A., Vieira, G., Ramos, M., and Nieuwendam, A.: Ground temperature and permafrost distribution in Hurd Peninsula (Livingston Island, Maritime Antarctic): An assessment using freezing indexes and TTOP modelling, Catena, 149, 560–571, https://doi.org/10.1016/j.catena.2016.08.027, 2017.
Gisnås, K., Westermann, S., Schuler, T. V., Litherland, T., Isaksen, K., Boike, J., and Etzelmüller, B.: A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover, The Cryosphere, 8, 2063–2074, https://doi.org/10.5194/tc-8-2063-2014, 2014.
Gizatullin, R., Dvoynikov, M., Romanova, N., and Nikitin, V.: Drilling in gas hydrates: Managing gas appearance risks, Energies, 16, 2387, https://doi.org/10.3390/en16052387, 2023.
Goncharova, O. Y., Matyshak, G. V., Epstein, H. E., Sefilian, A. R., and Bobrik, A. A.: Influence of snow cover on soil temperatures: Meso- and micro-scale topographic effects (a case study from the northern West Siberia discontinuous permafrost zone), Catena, 183, https://doi.org/10.1016/j.catena.2019.104224, 2019.
Grünberg, I., Wilcox, E. J., Zwieback, S., Marsh, P., and Boike, J.: Linking tundra vegetation, snow, soil temperature, and permafrost, Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, 2020.
Gubler, S., Fiddes, J., Keller, M., and Gruber, S.: Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain, Cryosphere, 5, 431–443, https://doi.org/10.5194/tc-5-431-2011, 2011.
Guglielmin, M., Ellis Evans, C. J., and Cannone, N.: Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica), Geoderma, 144, 73–85, https://doi.org/10.1016/j.geoderma.2007.10.010, 2008.
Hagedorn, F., Gavazov, K., and Alexander, J. M.: Above- and belowground linkages shape responses of mountain vegetation to climate change, Science, 365, 1119–1123, https://doi.org/10.1126/science.aax4737, 2019.
Hauck, C., Isaksen, K., Mühll, D. V., and Sollid, J. L.: Geophysical surveys designed to delineate the altitudinal limit of mountain permafrost: An example from Jotunheimen, Norway, Permafr. Periglac. Process., 15, 191–205, https://doi.org/10.1002/ppp.493, 2004.
Heggem, E. S. F., Etzelmüller, B., Anarmaa, S., Sharkhuu, N., Goulden, C. E., and Nandinsetseg, B.: Spatial distribution of ground surface temperatures and active layer depths in the Hövsgöl area, northern Mongolia, Permafr. Periglac. Process., 17, 357–369, https://doi.org/10.1002/ppp.568, 2006.
Hrbáček, F., Oliva, M., Fernández, J. R., Kòažková, M., and de Pablo, M. A.: Modelling ground thermal regime in bordering (dis)continuous permafrost environments, Environ. Res., 181, 108901, https://doi.org/10.1016/j.envres.2019.108901, 2020.
Ikeda, A.: Combination of conventional geophysical methods for sounding the composition of rock glaciers in the Swiss Alps, Permafr. Periglac. Process., 17, 35–48, https://doi.org/10.1002/ppp.550, 2006.
Isaksen, K., Ødegård, R. S., Etzelmüller, B., Hilbich, C., Hauck, C., Farbrot, H., Eiken, T., Hygen, H. O., and Hipp, T. F.: Degrading mountain permafrost in Southern Norway: Spatial and temporal variability of mean ground temperatures, 1999–2009, Permafr. Periglac. Process., 22, 361–377, https://doi.org/10.1002/ppp.728, 2011.
Ishikawa, M.: Thermal regimes at the snow-ground interface and their implications for permafrost investigation, Geomorphology, 52, 105–120, https://doi.org/10.1016/S0169-555X(02)00251-9, 2003.
Jiao, M., Zhao, L., Wang, C., Hu, G., Li, Y., Zhao, J., Zou, D., Xing, Z., Qiao, Y., Liu, G., Du, E., Xiao, M., and Hou, Y.: Spatiotemporal variations of soil temperature at 10 and 50 cm depths in permafrost regions along the Qinghai-Tibet Engineering Corridor, Remote Sens., 15, 455, https://doi.org/10.3390/rs15020455, 2023.
Jin, H., Li, S., Cheng, G., Shaoling, W., and Li, X.: Permafrost and climatic change in China, Glob. Planet. Change, 26, 387–404, https://doi.org/10.1016/S0921-8181(00)00051-5, 2000.
Jin, H., Zhao, L., Wang, S., and Jin, R.: Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway, Sci. China Ser. D Earth Sci., 49, 1170–1183, https://doi.org/10.1007/s11430-006-2003-z, 2006.
Jin, H., Wei, Z., Wang, S., Yu, Q., Lü, L., Wu, Q., and Ji, Y.: Assessment of frozen-ground conditions for engineering geology along the Qinghai-Tibet highway and railway, China, Eng. Geol., 101, 96–109, https://doi.org/10.1016/j.enggeo.2008.04.001, 2008.
Jin, H., He, R., Cheng, G., Wu, Q., Wang, S., Lü, L., and Chang, X.: Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts, Environ. Res. Lett., 4, 045206, https://doi.org/10.1088/1748-9326/4/4/045206, 2009.
Jin, X., Jin, H., Luo, D., Sheng, Y., Wu, Q., Wu, J., Wang, W., Huang, S., Li, X., Liang, S., Wang, Q., He, R., Serban, R. D., Ma, Q., Gao, S., and Li, Y.: Impacts of permafrost degradation on hydrology and vegetation in the Source Area of the Yellow River on Northeastern Qinghai-Tibet Plateau, Southwest China, Front. Earth Sci., 10, 1–12, https://doi.org/10.3389/feart.2022.845824, 2022.
Klotz, L. A., Sonnentag, O., Wang, Z., Wang, J. A., and Kang, M.: Oil and natural gas wells across the NASA ABoVE domain: fugitive methane emissions and broader environmental impacts, Environ. Res. Lett., 18, 035008, https://doi.org/10.1088/1748-9326/acbe52, 2023.
Kutasov, I. M. and Eppelbaum, L. V.: Utilization of the Horner plot for determining the temperature of frozen formations – A novel approach, Geothermics, 71, 259–263, https://doi.org/10.1016/j.geothermics.2017.10.005, 2018.
Lewkowicz, A. G.: Evaluation of miniature temperature-loggers to monitor snowpack evolution at mountain permafrost sites, northwestern Canada, Permafr. Periglac. Process., 19, 323–331, https://doi.org/10.1002/ppp.625, 2008.
Li, X., Perry, G., and Brierley, G. J.: Grassland ecosystems of the Yellow River Source Zone: Degradation and restoration, in: Landscape and Ecosystem Diversity, Dynamics and Management in the Yellow River Source Zone. Springer Geography., edited by: Brierley, G. J., Li, X., Cullum, C., and Gao, J., Springer, Cham, 137–165, https://doi.org/10.1007/978-3-319-30475-5_7, 2016.
Li, Y., Zhang, C., Li, Z., Yang, L., Jin, X., and Gao, X.: Analysis on the temporal and spatial characteristics of the shallow soil temperature of the Qinghai-Tibet Plateau, Sci. Rep., 12, 19746, https://doi.org/10.1038/s41598-022-23548-4, 2022.
Lim, H. S., Kim, H. C., Kim, O. S., Jung, H., Lee, J., and Hong, S. G.: Statistical understanding for snow cover effects on near-surface ground temperature at the margin of maritime Antarctica, King George Island, Geoderma, 410, 115661, https://doi.org/10.1016/j.geoderma.2021.115661, 2022.
Luo, D., Jin, H., He, R., Wang, X., Muskett, R. R., Marchenko, S. S., and Romanovsky, V. E.: Characteristics of water-heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai-Tibet Plateau, J. Geophys. Res.-Atmos., 123, 10057–10075, https://doi.org/10.1029/2018JD028298, 2018a.
Luo, D., Jin, H., Jin, X., He, R., Li, X., Muskett, R. R., Marchenko, S. S., and Romanovsky, V. E.: Elevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, southwest China, Permafr. Periglac. Process., 29, 257–270, https://doi.org/10.1002/ppp.1988, 2018b.
Luo, D., Jin, H., and Bense, V. F.: Ground surface temperature and the detection of permafrost in the rugged topography on NE Qinghai-Tibet Plateau, Geoderma, 333, 57–68, https://doi.org/10.1016/j.geoderma.2018.07.011, 2019.
Luo, D., Liu, L., Jin, H., Wang, X., and Chen, F.: Characteristics of ground surface temperature at Chalaping in the Source Area of the Yellow River, northeastern Tibetan Plateau, Agric. For. Meteorol., 281, 107819, https://doi.org/10.1016/j.agrformet.2019.107819, 2020.
Luo, L., Ma, W., Zhuang, Y., Zhang, Y., Yi, S., Xu, J., Long, Y., Ma, D., and Zhang, Z.: The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor, Ecol. Indic., 93, 24–35, https://doi.org/10.1016/j.ecolind.2018.04.067, 2018.
Messenzehl, K. and Dikau, R.: Structural and thermal controls of rockfall frequency and magnitude within rockwall–talus systems (Swiss Alps), Earth Surf. Process. Landforms, 42, 1963–1981, https://doi.org/10.1002/esp.4155, 2017.
Nelson, J. and Outcalt, S.: A Computational method for prediction and regionalization of permafrost, Arct. Alp. Res., 19, 279–288, https://doi.org/10.1080/00040851.1987.12002602, 1987.
Noetzli, J., Arenson, L. U., Bast, A., Beutel, J., Delaloye, R., Farinotti, D., Gruber, S., Gubler, H., Haeberli, W., Hasler, A., Hauck, C., Hiller, M., Hoelzle, M., Lambiel, C., Pellet, C., Springman, S. M., Vonder Muehll, D., and Phillips, M.: Best practice for measuring permafrost temperature in boreholes based on the experience in the Swiss Alps, Front. Earth Sci., 9, 1–20, https://doi.org/10.3389/feart.2021.607875, 2021.
Oliva, M., Hrbacek, F., Ruiz-Fernández, J., de Pablo, M. Á., Vieira, G., Ramos, M., and Antoniades, D.: Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica), Catena, 149, 548–559, https://doi.org/10.1016/j.catena.2016.07.011, 2017.
Onaca, A., Ardelean, A. C., Urdea, P., Ardelean, F., and Sîrbu, F.: Detection of mountain permafrost by combining conventional geophysical methods and thermal monitoring in the Retezat Mountains, Romania, Cold Reg. Sci. Technol., 119, 111–123, https://doi.org/10.1016/j.coldregions.2015.08.001, 2015.
Qin, Y., Zhang, P., Liu, W., Guo, Z., and Xue, S.: The application of elevation corrected MERRA2 reanalysis ground surface temperature in a permafrost model on the Qinghai-Tibet Plateau, Cold Reg. Sci. Technol., 175, 103067, https://doi.org/10.1016/j.coldregions.2020.103067, 2020.
Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., Hjort, J., Luoto, M., Jin, H., Obu, J., Hori, M., Yu, Q., and Chang, X.: New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere, Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, 2022.
Rödder, T. and Kneisel, C.: Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps, Geomorphology, 175–176, 176–189, https://doi.org/10.1016/j.geomorph.2012.07.008, 2012.
Şerban, M., Li, G., Serban, R.-D., Wang, F., Fedorov, A., Vera, S., Cao, Y., Chen, P., and Wang, W.: Characteristics of the active-layer under the China-Russia crude oil pipeline, J. Mt. Sci., 18, 323–337, https://doi.org/10.1007/s11629-020-6240-y, 2021.
Şerban, R.-D. and Jin, H.: Multiscale observation of topsoil temperature below different landcover types on northeastern Qinghai-Tibet Plateau (2019–2020), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/Cryos.tpdc.272945, 2022.
Şerban, R.-D., Jin, H., Şerban, M., Luo, D., Wang, Q., Jin, X., and Ma, Q.: Mapping thermokarst lakes and ponds across permafrost landscapes in the Headwater Area of Yellow River on northeastern Qinghai-Tibet Plateau, Int. J. Remote Sens., 41, 7042–7067, https://doi.org/10.1080/01431161.2020.1752954, 2020.
Şerban, R.-D., Jin, H., Şerban, M., and Luo, D.: Shrinking thermokarst lakes and ponds on the northeastern Qinghai-Tibet Plateau over the past three decades, Permafr. Periglac. Process., 32, 601–617, https://doi.org/10.1002/ppp.2127, 2021.
Şerban, R.-D., Bertoldi, G., Jin, H., Şerban, M., Luo, D., and Li, X.: Spatial variations in ground surface temperature at various scales on the northeastern Qinghai-Tibet Plateau, China, Catena, 222, 106811, https://doi.org/10.1016/j.catena.2022.106811, 2023.
Sheng, Y., Ma, S., Cao, W., and Wu, J.: Spatiotemporal changes of permafrost in the Headwater Area of the Yellow River under a changing climate, L. Degrad. Dev., 31, 133–152, https://doi.org/10.1002/ldr.3434, 2020.
Smith, M. W. and Riseborough, D. W.: Climate and the limits of permafrost: a zonal analysis, Permafr. Periglac. Process., 13, 1–15, https://doi.org/10.1002/ppp.410, 2002.
Vieira, G., Mora, C., and Faleh, A.: New observations indicate the possible presence of permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco), The Cryosphere, 11, 1691–1705, https://doi.org/10.5194/tc-11-1691-2017, 2017.
Wang, T., Wang, N., and Li, S.: Map of the glaciers, frozen ground and deserts in China, 1:4 000 000, Chinese Map Press, Beijing, China, 2005 (in Chinese).
Wani, J. M., Thayyen, R. J., Gruber, S., Ojha, C. S. P., and Stumm, D.: Single-year thermal regime and inferred permafrost occurrence in the upper Ganglass catchment of the cold-arid Himalaya, Ladakh, India, Sci. Total Environ., 703, 134631, https://doi.org/10.1016/j.scitotenv.2019.134631, 2020.
Way, R. G. and Lewkowicz, A. G.: Environmental controls on ground temperature and permafrost in Labrador, northeast Canada, Permafr. Periglac. Process., 29, 73–85, https://doi.org/10.1002/ppp.1972, 2018.
Wu, Q. and Zhang, T.: Recent permafrost warming on the Qinghai-Tibetan Plateau, J. Geophys. Res.-Atmos., 113, D13108, https://doi.org/10.1029/2007JD009539, 2008.
Wu, Q., Zhang, T., and Liu, Y.: Permafrost temperatures and thickness on the Qinghai-Tibet Plateau, Glob. Planet. Change, 72, 32–38, https://doi.org/10.1016/j.gloplacha.2010.03.001, 2010.
Wu, Q., Zhang, T., and Liu, Y.: Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010, The Cryosphere, 6, 607–612, https://doi.org/10.5194/tc-6-607-2012, 2012.
Xing, Z.-P., Zhao, L., Fan, L., Hu, G.-J., Zou, D.-F., Wang, C., Liu, S.-C., Du, E.-J., Xiao, Y., Li, R., Liu, G.-Y., Qiao, Y.-P., and Shi, J.-Z.: Changes in the ground surface temperature in permafrost regions along the Qinghai–Tibet engineering corridor from 1900 to 2014: A modified assessment of CMIP6, Adv. Clim. Chang. Res., 14, 85–96, https://doi.org/10.1016/j.accre.2023.01.007, 2023.
Yin, G., Niu, F., Lin, Z., Luo, J., and Liu, M.: Performance comparison of permafrost models in Wudaoliang Basin, Qinghai-Tibet Plateau, China, J. Mt. Sci., 13, 1162–1173, https://doi.org/10.1007/s11629-015-3745-x, 2016.
Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., and Cheng, G.: A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China, Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, 2021.
Zhao, S. P., Nan, Z. T., Huang, Y. B., and Zhao, L.: The application and evaluation of simple permafrost distribution models on the Qinghai–Tibet Plateau, Permafr. Periglac. Process., 28, 391–404, https://doi.org/10.1002/ppp.1939, 2017.
Zhao, Y., Yao, Y., Jin, H., Cao, B., Hu, Y., Ran, Y., and Zhang, Y.: Characterizing the changes in permafrost thickness across Tibetan Plateau, Remote Sens., 15, 206, https://doi.org/10.3390/rs15010206, 2022.
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017.
Short summary
A particular observational network for ground surface temperature (GST) has been established on the northeastern Qinghai–Tibet Plateau, covering various environmental conditions and scales. This analysis revealed the substantial influences of the land cover on the spatial variability in GST over short distances (<16 m). Improving the monitoring of GST is important for the biophysical processes at the land–atmosphere boundary and for understanding the climate change impacts on cold environments.
A particular observational network for ground surface temperature (GST) has been established on...
Special issue
Altmetrics
Final-revised paper
Preprint