Articles | Volume 15, issue 2
https://doi.org/10.5194/essd-15-697-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-697-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
BENFEP: a quantitative database of benthic foraminifera from surface sediments of the eastern Pacific
Paula Diz
CORRESPONDING AUTHOR
Centro de Investigación Mariña, XM1, Universidade de Vigo, 36310 Vigo, Spain
Víctor González-Guitián
Centro de Investigación Mariña, XM1, Universidade de Vigo, 36310 Vigo, Spain
Instituto de Investigacións Mariñas, CSIC, 36208 Vigo, Spain
Rita González-Villanueva
Centro de Investigación Mariña, XM1, Universidade de Vigo, 36310 Vigo, Spain
Aida Ovejero
Cátedra UNESCO en Desarrollo Litoral Sostenible, Universidade de Vigo, 36310 Vigo, Spain
Iván Hernández-Almeida
Geological Institute, ETH Zürich, 8092 Zurich, Switzerland
Related authors
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Paula Diz and Stephen Barker
J. Micropalaeontol., 35, 195–204, https://doi.org/10.1144/jmpaleo2015-045, https://doi.org/10.1144/jmpaleo2015-045, 2016
Yuji Kato, Iván Hernández-Almeida, and Lara F. Pérez
J. Micropalaeontol., 43, 93–119, https://doi.org/10.5194/jm-43-93-2024, https://doi.org/10.5194/jm-43-93-2024, 2024
Short summary
Short summary
In this study, we propose an age framework for an interval of 4.8–3.1 million years ago, using fossil records of marine plankton such as diatoms and radiolarians derived from a sediment core collected in the Southern Ocean. Specifically, a total of 19 bioevents (i.e., extinction/appearance events of selected age marker species) were detected, and their precise ages were calculated. The updated biostratigraphy will contribute to future paleoceanographic work in the Southern Ocean.
Babette Hoogakker, Catherine Davis, Yi Wang, Stepanie Kusch, Katrina Nilsson-Kerr, Dalton Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya Hess, Katrina Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix Elling, Zeynep Erdem, Helena Filipsson, Sebastian Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallman, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lelia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Raven, Christopher Somes, Anja Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2023-2981, https://doi.org/10.5194/egusphere-2023-2981, 2024
Short summary
Short summary
Paleo-oxygen proxies can extend current records, bound pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Heather M. Stoll, Leopoldo D. Pena, Ivan Hernandez-Almeida, José Guitián, Thomas Tanner, and Heiko Pälike
Clim. Past, 20, 25–36, https://doi.org/10.5194/cp-20-25-2024, https://doi.org/10.5194/cp-20-25-2024, 2024
Short summary
Short summary
The Oligocene and early Miocene periods featured dynamic glacial cycles on Antarctica. In this paper, we use Sr isotopes in marine carbonate sediments to document a change in the location and intensity of continental weathering during short periods of very intense Antarctic glaciation. Potentially, the weathering intensity of old continental rocks on Antarctica was reduced during glaciation. We also show improved age models for correlation of Southern Ocean and North Atlantic sediments.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Jessica G. M. Crumpton-Banks, Thomas Tanner, Ivan Hernández Almeida, James W. B. Rae, and Heather Stoll
Biogeosciences, 19, 5633–5644, https://doi.org/10.5194/bg-19-5633-2022, https://doi.org/10.5194/bg-19-5633-2022, 2022
Short summary
Short summary
Past ocean carbon is reconstructed using proxies, but it is unknown whether preparing ocean sediment for one proxy might damage the data given by another. We have tested whether the extraction of an organic proxy archive from sediment samples impacts the geochemistry of tiny shells also within the sediment. We find no difference in shell geochemistry between samples which come from treated and untreated sediment. This will help us to maximize scientific return from valuable sediment samples.
José Guitián, Miguel Ángel Fuertes, José-Abel Flores, Iván Hernández-Almeida, and Heather Stoll
Biogeosciences, 19, 5007–5019, https://doi.org/10.5194/bg-19-5007-2022, https://doi.org/10.5194/bg-19-5007-2022, 2022
Short summary
Short summary
The effect of environmental conditions on the degree of calcification of marine phytoplankton remains unclear. This study implements a new microscopic approach to quantify the calcification of ancient coccolithophores, using North Atlantic sediments. Results show significant differences in the thickness and shape factor of coccoliths for samples with minimum dissolution, providing the first evaluation of phytoplankton physiology adaptation to million-year-scale variable environmental conditions.
Nele Manon Vollmar, Karl-Heinz Baumann, Mariem Saavedra-Pellitero, and Iván Hernández-Almeida
Biogeosciences, 19, 585–612, https://doi.org/10.5194/bg-19-585-2022, https://doi.org/10.5194/bg-19-585-2022, 2022
Short summary
Short summary
We studied recent (sub-)fossil remains of a type of algae (coccolithophores) off southernmost Chile and across the Drake Passage, adding to the scarce knowledge that exists in the Southern Ocean, a rapidly changing environment. We found that those can be used to reconstruct the surface ocean conditions in the north but not in the south. We also found variations in shape in the dominant species Emiliania huxleyi depending on the location, indicating subtle adaptations to environmental conditions.
Paula Diz and Stephen Barker
J. Micropalaeontol., 35, 195–204, https://doi.org/10.1144/jmpaleo2015-045, https://doi.org/10.1144/jmpaleo2015-045, 2016
B. Ausín, I. Hernández-Almeida, J.-A. Flores, F.-J. Sierro, M. Grosjean, G. Francés, and B. Alonso
Clim. Past, 11, 1635–1651, https://doi.org/10.5194/cp-11-1635-2015, https://doi.org/10.5194/cp-11-1635-2015, 2015
Short summary
Short summary
Coccolithophore distribution in 88 surface sediment samples in the Atlantic Ocean and western Mediterranean was mainly influenced by salinity at 10m depth. A quantitative coccolithophore-based transfer function was developed and applied to a fossil sediment core to estimate sea surface salinity (SSS). The quality of this function and the reliability of the SSS reconstruction were assessed by statistical analyses and discussed. Several centennial SSS changes are identified for the last 15.5 ka.
I. Hernández-Almeida, F.-J. Sierro, I. Cacho, and J.-A. Flores
Clim. Past, 11, 687–696, https://doi.org/10.5194/cp-11-687-2015, https://doi.org/10.5194/cp-11-687-2015, 2015
Short summary
Short summary
This manuscript presents new Mg/Ca and previously published δ18O measurements of Neogloboquadrina pachyderma sinistral for MIS 31-19, from a sediment core from the subpolar North Atlantic. The mechanism proposed here involves northward subsurface transport of warm and salty subtropical waters during periods of weaker AMOC, leading to ice-sheet instability and IRD discharge. This is the first time that these rapid climate oscillations are described for the early Pleistocene.
Related subject area
Domain: ESSD – Ocean | Subject: Palaeooceanography, palaeoclimatology
Coral Skeletal Proxy Records Database for the Great Barrier Reef, Australia
DINOSTRAT version 2.1-GTS2020
An 800 kyr planktonic δ18O stack for the Western Pacific Warm Pool
Tephra data from varved lakes of the Last Glacial–Interglacial Transition: towards a global inventory and better chronologies on the Varved Sediments Database (VARDA)
The CoralHydro2k database: a global, actively curated compilation of coral δ18O and Sr ∕ Ca proxy records of tropical ocean hydrology and temperature for the Common Era
Ariella Kathleen Arzey, Helen V. McGregor, Tara R. Clark, Jody M. Webster, Stephen E. Lewis, Jennie Mallela, Nicholas P. McKay, Hugo W. Fahey, Supriyo Chakraborty, Tries B. Razak, and Matt J. Fischer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-159, https://doi.org/10.5194/essd-2024-159, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Coral skeletal records from the iconic Great Barrier Reef (GBR) provide vital data on climate and environmental change. Presented here is the Great Barrier Reef Coral Skeletal Records Database, an extensive compilation of GBR coral records. The database includes key metadata, primary data, and access instructions, and enhances research on past, present and future climate and environmental variability of the GBR. The database will assist with contextualising present-day threats to reefs globally.
Peter K. Bijl
Earth Syst. Sci. Data, 16, 1447–1452, https://doi.org/10.5194/essd-16-1447-2024, https://doi.org/10.5194/essd-16-1447-2024, 2024
Short summary
Short summary
This new version release of DINOSTRAT, version 2.1, aligns stratigraphic ranges of dinoflagellate cysts (dinocysts), a microfossil group, to the latest Geologic Time Scale. In this release I present the evolution of dinocyst subfamilies from the Middle Triassic to the modern period.
Christen L. Bowman, Devin S. Rand, Lorraine E. Lisiecki, and Samantha C. Bova
Earth Syst. Sci. Data, 16, 701–713, https://doi.org/10.5194/essd-16-701-2024, https://doi.org/10.5194/essd-16-701-2024, 2024
Short summary
Short summary
We estimate an average (stack) of Western Pacific Warm Pool (WPWP) sea surface climate records over the last 800 kyr from 10 ocean sediment cores. To better understand glacial–interglacial differences between the tropical WPWP and high-latitude climate change, we compare our WPWP stack to global and North Atlantic deep-ocean stacks. Although we see similar timing in glacial–interglacial change between the stacks, the WPWP exhibits less amplitude of change.
Anna Beckett, Cecile Blanchet, Alexander Brauser, Rebecca Kearney, Celia Martin-Puertas, Ian Matthews, Konstantin Mittelbach, Adrian Palmer, Arne Ramisch, and Achim Brauer
Earth Syst. Sci. Data, 16, 595–604, https://doi.org/10.5194/essd-16-595-2024, https://doi.org/10.5194/essd-16-595-2024, 2024
Short summary
Short summary
This paper focuses on volcanic ash (tephra) in European annually laminated (varve) lake records from the period 25 to 8 ka. Tephra enables the synchronisation of these lake records and their proxy reconstructions to absolute timescales. The data incorporate geochemical data from tephra layers across 19 varve lake records. We highlight the potential for synchronising multiple records using tephra layers across continental scales whilst supporting reproducibility through accessible data.
Rachel M. Walter, Hussein R. Sayani, Thomas Felis, Kim M. Cobb, Nerilie J. Abram, Ariella K. Arzey, Alyssa R. Atwood, Logan D. Brenner, Émilie P. Dassié, Kristine L. DeLong, Bethany Ellis, Julien Emile-Geay, Matthew J. Fischer, Nathalie F. Goodkin, Jessica A. Hargreaves, K. Halimeda Kilbourne, Hedwig Krawczyk, Nicholas P. McKay, Andrea L. Moore, Sujata A. Murty, Maria Rosabelle Ong, Riovie D. Ramos, Emma V. Reed, Dhrubajyoti Samanta, Sara C. Sanchez, Jens Zinke, and the PAGES CoralHydro2k Project Members
Earth Syst. Sci. Data, 15, 2081–2116, https://doi.org/10.5194/essd-15-2081-2023, https://doi.org/10.5194/essd-15-2081-2023, 2023
Short summary
Short summary
Accurately quantifying how the global hydrological cycle will change in the future remains challenging due to the limited availability of historical climate data from the tropics. Here we present the CoralHydro2k database – a new compilation of peer-reviewed coral-based climate records from the last 2000 years. This paper details the records included in the database and where the database can be accessed and demonstrates how the database can investigate past tropical climate variability.
Cited articles
Alve, E., Korsun, S., Schönfeld, J., Dijkstra, N., Golikova, E., Hess, S., Husum, K., and Panieri, G.: Foram-AMBI: A sensitivity index based on benthic foraminiferal faunas from North-East Atlantic and Arctic fjords, continental shelves and slopes, Mar. Micropaleontol., 122, 1–12, https://doi.org/10.1016/j.marmicro.2015.11.001, 2016.
Arnal, R. E., Quinterno, P. J., Conomos, T. J., and Gram, R.: Trends in the distribution of recent foraminifera in San Francisco Bay, Cushman Foundation Special Publication, 19, 17–39, ISBN
9781970168129, 1980.
Ballesteros-Prada, A.: Modern Benthic Foraminifera “Phylum Foraminifera (D'Orbigny 1826)” of the Panama Bight: A Census Report Based on Thanatocoenoses from the Continental Slope, in: Advances in South American Micropaleontology Selected Papers of the 11th Argentine Paleontological Congress, edited by: Cusminsky, G. C., Bernasconi, E., and Concheyro, G. A., Springer Earth System Sciences, Springer Nature Switzerland AG, 175–213, https://doi.org/10.1007/978-3-030-02119-1_9, 2019.
Bandy, O. L.: Ecology and Paleoecology of Some California Foraminifera. Part I. The Frequency Distribution of Recent Foraminifera off California, J. Paleontol., 27, 161–182, http://www.jstor.org/stable/1300051 (last access: March 2022), 1953.
Bandy, O. L.: Distribution of Foraminifera, Radiolaria and Diatoms in Sediments of the Gulf of California, Micropaleontology, 7, 1–26, https://doi.org/10.2307/1484140, 1961.
Bandy, O. L. and Arnal, R. E.: Distribution of Recent Foraminifera Off West Coast of Central America, AAPG Bull., 41, 2037–2053, https://doi.org/10.1306/0BDA5957-16BD-11D7-8645000102C1865D, 1957.
Bandy, O. L. and Rodolfo, K. S.: Distribution of foraminifera and sediments, Peru-Chile trench area, Deep Sea Research and Oceanographic Abstracts, 11, 817–837, https://doi.org/10.1016/0011-7471(64)90951-9, 1964.
Bandy, O. L., Ingle Jr., J. C., and Resig, J. M.: Facies trends, San Pedro Bay, California, Geol. Soc. Am. Bull., 75, 403–424, https://doi.org/10.1130/0016-7606(1964)75[403:FTSPBC]2.0.CO;2, 1964a.
Bandy, O. L., Ingle Jr., J. C., and Resig, J. M.: Foraminifera, Los Angeles County outfall area, California, Limnol. Oceanogr., 9, 124–137, https://doi.org/10.4319/lo.1964.9.1.0124, 1964b.
Bandy, O. L., Ingle Jr., J. C., and Resig, J. M.: Foraminiferal trends, Laguna Beach outfall area, California, Limnol. Oceanogr., 9, 112–123, https://doi.org/10.4319/lo.1964.9.1.0112, 1964c.
Bandy, O. L., Ingle Jr., J. C., and Resig, J. M.: Foraminiferal trends, Hyperion oufall, California, Limnol. Oceanogr., 10, 314–332, https://doi.org/10.4319/lo.1965.10.3.0314, 1965.
Belanger, C. L., Orhun, O. G., and Schiller, C. M.: Benthic foraminiferal faunas reveal transport dynamics and no-analog environments on a glaciated margin (Gulf of Alaska), Palaeogeogr. Palaeocl., 454, 54–64, https://doi.org/10.1016/j.palaeo.2016.04.032, 2016.
Bergen, F. W. and O'Neil, P.: Distribution of Holocene Foraminifera in the Gulf of Alaska, J. Paleontol., 53, 1267–1292, http://www.jstor.org/stable/1304134 (last access: March 2022), 1979.
Bernhard, J. M., Sen Gupta, B. K., and Borne, P. F.: Benthic foraminiferal proxy to estimate dysoxic bottom-water oxygen concentrations; Santa Barbara Basin, U. S. Pacific continental margin, J. Foramin. Res., 27, 301–310, https://doi.org/10.2113/gsjfr.27.4.301, 1997.
Bernstein, B. B., Hessler, R. R., Smith, R., and Jumars, P. A.: Spatial dispersion of benthic Foraminifera in the abyssal central North Pacific, Limnol. Oceanogr., 23, 401–416, https://doi.org/10.4319/lo.1978.23.3.0401, 1978.
Betancur, M. J. and Martínez, I.: Recent benthonic foraminifera in deep-sea sediments of the Panama basin (Colombian Pacific), as indicators of productivity and oxygenation, Boletin de Investigaciones Marinas y Costeras, 32, 93–123, 2003.
Biard, T.: Diversity and ecology of Radiolaria in modern oceans, Environ. Microbiol., 24, 2179–2200, https://doi.org/10.1111/1462-2920.16004, 2022.
Boltovskoy, D., Kling, S. A., Takahashi, K., and Bjørklund, K.: World Atlas of Distribution of Recent Polycystina (Radiolaria), Palaeontol. Electron., 13, 1–229, 2010.
Boltovskoy, E. and Gualancañay, E.: Foraminiferos bentonicos actuales de Ecuador. 1. Provincia Esmeraldas, Instituto Oceanografico de la Armada Guayaquil-Ecuador, 1975, 56 pp., 1975.
Boltovskoy, E. and Totah, V. I.: Relación entre masas de agua y foraminiferos bentónicos en el Pacífico sudoriental, PHYSIS, Secc. A, 45, 37–46, 1987.
Borja, A., Andersen, J. H., Arvanitidis, C. D., Basset, A., Buhl-Mortensen, L., Carvalho, S., Dafforn, K. A., Devlin, M. J., Escobar-Briones, E. G., Grenz, C., Harder, T., Katsanevakis, S., Liu, D., Metaxas, A., Morán, X. A. G., Newton, A., Piroddi, C., Pochon, X., Queirós, A. M., Snelgrove, P. V. R., Solidoro, C., St. John, M. A., and Teixeira, H.: Past and Future Grand Challenges in Marine Ecosystem Ecology, Frontiers in Marine Science, 7, 362, https://doi.org/10.3389/fmars.2020.00362, 2020.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018.
Brenner, G. J.: Results of the Puritan-American Museum of Natural History Expedition to Western Mexico. 14, A zoogeographic analysis of some shallow-water Foraminifera in the Gulf of California, B. Am. Mus. Nat. Hist., 123, 5, 1962.
Brummer, G.-J. A. and Kučera, M.: Taxonomic review of living planktonic foraminifera, J. Micropalaeontol., 41, 29–74, https://doi.org/10.5194/jm-41-29-2022, 2022.
Burmistrova, I. I., Khusid, T. A., Belyaeva, N. V., and Chekhovskaya, M. P.: Agglutinated abyssal foraminifers of the equatorial pacific, Oceanology, 47, 824–832, https://doi.org/10.1134/S0001437007060070, 2007a.
Burmistrova, I. I., Khusid, T. A., Belyaeva, N. V. and Chekhovskaya, M. P.: (Table 2) Species composition of agglutinated foraminifers from the abyssal zone of the Pacific Ocean, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.726917, 2007b.
Butcher, W. S.: Part II Foraminifera, Coronado Bank and Vicinity, Calif., University of California, Los Angeles, 58 pp., https://bit.ly/3HJrEKk (last access: March 2022), 1951.
Calderon-Aguilera, L. E., Reyes-Bonilla, H., Morzaria-Luna, H. N., Perusquía-Ardón, J. C., Olán-González, M., and Méndez-Martínez, M. F.: Trophic architecture as a predictor of ecosystem resilience and resistance in the eastern Pacific, Prog. Oceanogr., 209, 102922, https://doi.org/10.1016/j.pocean.2022.102922, 2022.
Cannariato, K. G. and Kennett, J. P.: Climatically related millennial-scale fluctuations in strength of California margin oxygen-minimum zone during the past 60 k.y., Geology, 27, 975–978, https://doi.org/10.1130/0091-7613(1999)027<0975:crmsfi>2.3.co;2, 1999.
Chamberlain, S.:
worrms: World Register of Marine Species (WoRMS) Client, R package version 0.4.2, https://CRAN.R-project.org/package=worrms (last access: 8 December 2022), 2020
Cockbain, A. E.: Distribution of foraminifera in Juan de Fuca and Georgia straits, British Columbia, Canada, Contributions from the Cushman Foundation for Foraminiferal Research, 14, 37–57, 1963.
Cooper, W. C.: Intertidal foraminifera of the California and Oregon Coast, Contributions from the Cushman Foundation for Foraminiferal Research, 12, 47–63, 1961.
Costa, K. M., Jacobel, A. W., McManus, J. F., Anderson, R. F., Winckler, G., and Thiagarajan, N.: Productivity patterns in the equatorial Pacific over the last 30 000 years, Global Biogeochem. Cy., 31, 850–865, https://doi.org/10.1002/2016GB005579, 2017.
Cronin, T. M., Gemery, L. J., Briggs, W. M., Brouwers, E. M., Schornikov, E. I., Stepanova, A., Wood, A. M., Yasuhara, M., and Siu, S.: Arctic Ostracode Database 2020 (AOD2020), NOAA/WDS Paleoclimatology [dataset], https://doi.org/10.25921/grn9-9029, 2021.
Crouch, R. W. and Poag, C. W.: Benthic foraminifera of the Panamanian Province; distribution and origins, J. Foramin. Res., 17, 153–176, https://doi.org/10.2113/gsjfr.17.2.153, 1987.
Culver, S. J. and Buzas, M. A.: Distribution of Recent Benthic Foraminifera off the North American Pacific Coast from Oregon to Alaska, Smithsonian Contributions to the Marine Sciences, no. 26, Smithsonian Institution Press, Washington, D. C., 234 pp., https://doi.org/10.5479/si.01960768.26.1, 1985.
Culver, S. J. and Buzas, M. A.: Distribution of Recent Benthic Foraminifera off the North American Pacific Coast from California to Baja, Smithsonian Contributions to the Marine Sciences, no. 28, Smithsonian Institution Press, Washington, D. C., 634 pp., https://doi.org/10.5479/si.01960768.28.1, 1986.
Culver, S. J. and Buzas, M. A.: Distribution of Recent benthic foraminifera off the Pacific coast of Mexico and Central America, Smithsonian Contributions to the Marine Sciences, no. 30, Smithsonian Institution Press, Washington, D. C., 184 pp., https://doi.org/10.5479/si.01960768.30.1, 1987.
Danovaro, R., Fanelli, E., Aguzzi, J., Billett, D., Carugati, L., Corinaldesi, C., Dell'Anno, A., Gjerde, K., Jamieson, A. J., Kark, S., McClain, C., Levin, L., Levin, N., Ramirez-Llodra, E., Ruhl, H., Smith, C. R., Snelgrove, P. V. R., Thomsen, L., Van Dover, C. L., and Yasuhara, M.: Ecological variables for developing a global deep-ocean monitoring and conservation strategy, Nature Ecology & Evolution, 4, 181–192, https://doi.org/10.1038/s41559-019-1091-z, 2020.
Davies, T. E., Maxwell, S. M., Kaschner, K., Garilao, C., and Ban, N. C.: Large marine protected areas represent biodiversity now and under climate change, Sci. Rep.-UK, 7, 9569, https://doi.org/10.1038/s41598-017-08758-5, 2017.
De, S. and Gupta, A. K.: Deep-sea faunal provinces and their inferred environments in the Indian Ocean based on distribution of Recent benthic foraminifera, Palaeogeogr. Palaeocl., 291, 429–442, https://doi.org/10.1016/j.palaeo.2010.03.012, 2010.
De Miro, M. D. and Gualancañay, E.: Foraminiferos bentonicos de la plataforma continental de la provincia Esmeraldas, Ecuador, Instituto Oceanográfico de la Armada de Ecuador, 12 pp., 1972.
Diz, P., Hernández-Almeida, I., Bernárdez, P., Pérez-Arlucea, M., and Hall, I. R.: Ocean and atmosphere teleconnections modulate east tropical Pacific productivity at late to middle Pleistocene terminations, Earth Planet. Sc. Lett., 493, 82–91, https://doi.org/10.1016/j.epsl.2018.04.024, 2018.
Diz, P., González-Guitián, V., González-Villanueva, R., Ovejero, A., and Hernández-Almeida, I.: BENthic Foraminifera quantitative database from surface sediments of the Eastern Pacific (BENFEP_v1), PANGAEA [dataset], https://doi.org/10.1594/PANGAEA.947086, 2022a.
Diz, P., González-Guitián, V., González-Villanueva, R., Ovejero, A., and Hernández-Almeida, I.: Additional benthic foraminiferal studies in the Eastern Pacific with non-quantitative data, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.947114, 2022b.
Diz, P., González-Guitián, V., González-Villanueva, R., Ovejero, A., and Hernández-Almeida, I.: Video supplement of BENFEP_v1 (1.0), Zenodo [video], https://doi.org/10.5281/zenodo.7472278, 2022c.
Echols, R. J. and Armentrout, J. M.: Holocene Foraminiferal Distribution Patterns on Shelf and Slope, Yakataga–Yakutat Area, Northern Gulf of Alaska, in: Pacific Coast Paleogeography Symposium 4: Quaternary Depositional Environments of the Pacific Coast, Pacific Section, Society for Sedimentary Geology (SEPM), Bakersfield, California, 9 April 1980, 281–303, 1980.
Enge, A. J., Kucera, M., and Heinz, P.: Diversity and microhabitats of living benthic foraminifera in the abyssal Northeast Pacific, Mar. Micropaleontol., 96–97, 84–104, https://doi.org/10.1016/j.marmicro.2012.08.004, 2012.
Enright, S. R., Meneses-Orellana, R., and Keith, I.: The Eastern Tropical Pacific Marine Corridor (CMAR): The Emergence of a Voluntary Regional Cooperation Mechanism for the Conservation and Sustainable Use of Marine Biodiversity Within a Fragmented Regional Ocean Governance Landscape, Frontiers in Marine Science, 8, 674825, https://doi.org/10.3389/fmars.2021.674825, 2021.
Erdem, Z., Schönfeld, J., Rathburn, A. E., Pérez, M.-E., Cardich, J., and Glock, N.: Bottom-water deoxygenation at the Peruvian margin during the last deglaciation recorded by benthic foraminifera, Biogeosciences, 17, 3165–3182, https://doi.org/10.5194/bg-17-3165-2020, 2020.
Erskian, M. G. and Lipps, J. H.: Distribution of Foraminifera in the Russian River Estuary, Northern California, Micropaleontology, 23, 453–469, https://doi.org/10.2307/1485409, 1977.
Finger, K. L.: California foraminiferal micropalaeontology, in: Landmarks in Foraminiferal Micropalaeontology: History and Development, vol. 6, edited by: Bowden, A. J., Gregory, F. J., and Henderson, A. S., Geological Society of London, London, 125–144, https://doi.org/10.1144/TMS6.11, 2013.
Finnegan, S., Anderson, S. C., Harnik, P. G., Simpson, C., Tittensor, D. P., Byrnes, J. E., Finkel, Z. V., Lindberg, D. R., Liow, L. H., Lockwood, R., Lotze, H. K., McClain, C. R., McGuire, J. L., O'Dea, A., and Pandolfi, J. M.: Paleontological baselines for evaluating extinction risk in the modern oceans, Science, 348, 567, https://doi.org/10.1126/science.aaa6635, 2015.
Gardner, J. V., Barron, J. A., Dean, W. E., Heusser, L. E., Poore, R. Z., Quinterno, P., Stone, S. M., and Wilson, C. R.: Quantitative microfossil, sedimentologic, and geochemical data on core L13-81-G138 and surface samples from the continental shelf and slope off Northern California, U. S. Geological Survey, Report 84–369, https://doi.org/10.3133/ofr84369, 1984.
Glock, N., Romero, D., Roy, A. S., Woehle, C., Dale, A. W., Schönfeld, J., Wein, T., Weissenbach, J., and Dagan, T.: A hidden sedimentary phosphate pool inside benthic foraminifera from the Peruvian upwelling region might nucleate phosphogenesis, Geochim. Cosmochim. Ac., 289, 14–32, https://doi.org/10.1016/j.gca.2020.08.002, 2020.
Goineau, A. and Gooday, A. J.: Diversity and spatial patterns of foraminiferal assemblages in the eastern Clarion–Clipperton zone (abyssal eastern equatorial Pacific), Deep-Sea Res. Pt. I, 149, 103036, https://doi.org/10.1016/j.dsr.2019.04.014, 2019.
Golik, A.: Foraminiferal ecology and Holocene history, Gulf of Panama, University of California, San Diego, 198 pp., https://bit.ly/3h8iJYk (last access: November 2022), 1965.
Gooday, A. J., Lejzerowicz, F., Goineau, A., Holzmann, M., Kamenskaya, O., Kitazato, H., Lim, S.-C., Pawlowski, J., Radziejewska, T., Stachowska, Z., and Wawrzyniak-Wydrowska, B.: The Biodiversity and Distribution of Abyssal Benthic Foraminifera and Their Possible Ecological Roles: A Synthesis Across the Clarion-Clipperton Zone, Frontiers in Marine Science, 8, 634726, https://doi.org/10.3389/fmars.2021.634726, 2021.
Harman, R. A.: Distribution of foraminifera in the Santa Barbara Basin, California, Micropaleontology, 10, 81–96, https://doi.org/10.2307/1484628, 1964.
Hayward, B. W., Le Coze, F., Vachard, D., and Gross, O.: World Foraminifera Database, https://www.marinespecies.org/foraminifera, last access: 8 December 2022.
Heinz, P., Ruschmeier, W., and Hemleben, C.: Live benthic foraminiferal Assemblages at the Pacific continental margin of Costa Rica and Nicaragua, J. Foramin. Res., 38, 215–227, https://doi.org/10.2113/gsjfr.38.3.215, 2008.
Hernández-Almeida, I., Boltovskoy, D., Kruglikova, S. B., and Cortese, G.: A new radiolarian transfer function for the Pacific Ocean and application to fossil records: Assessing potential and limitations for the last glacial-interglacial cycle, Global Planet. Change, 190, 103186, https://doi.org/10.1016/j.gloplacha.2020.103186, 2020.
Hromic, T.: Foraminíferos Bentónicos recientes del Estrecho de Magallanes, y canales australes chilenos CIMAR 3 FIORDOS (52∘–56∘ S), Anales Instituto Patagonia (Chile), 39, 17–32, 2011.
Hromic, T., Ishman, S., and Silva, N.: Benthic foraminiferal distributions in Chilean fjords: 47∘ S to 54∘ S, Mar. Micropaleontol., 59, 115–134, https://doi.org/10.1016/j.marmicro.2006.02.001, 2006.
Huang, H.-H. M., Yasuhara, M., Horne, D. J., Perrier, V., Smith, A. J., and Brandão, S. N.: Ostracods in databases: State of the art, mobilization and future applications, Mar. Micropaleontol., 174, 102094, https://doi.org/10.1016/j.marmicro.2022.102094, 2022.
Ingle, J. C. and Keller, G.: Benthic foraminiferal biofacies of the eastern Pacific margin between 40∘ S and 32∘ N, in: Pacific Coast Paleogeography Symposium 4: Quaternary Depositional Environments of the Pacific Coast, Pacific Section, Society for Sedimentary Geology (SEPM), Bakersfield, California, 9 April 1980, 341–355, 1980.
Ingle, J. C., Keller, G., and Kolpack, R. L.: Benthic foraminiferal biofacies, sediments and water masses of the Southern Perú-Chile Trench Area, Southeastern Pacific Ocean, Micropaleontology, 26, 113–150, https://doi.org/10.2307/1485435, 1980.
Jones, G. D. and Ross, C. A.: Seasonal Distribution of Foraminifera in Samish Bay, Washington, J. Paleontol., 53, 245–257, 1979.
Jonkers, L., Hillebrand, H., and Kucera, M.: Global change drives modern plankton communities away from the pre-industrial state, Nature, 570, 372–375, https://doi.org/10.1038/s41586-019-1230-3, 2019.
Jorissen, F., Nardelli, M. P., Almogi-Labin, A., Barras, C., Bergamin, L., Bicchi, E., El Kateb, A., Ferraro, L., McGann, M., Morigi, C., Romano, E., Sabbatini, A., Schweizer, M., and Spezzaferri, S.: Developing Foram-AMBI for biomonitoring in the Mediterranean: Species assignments to ecological categories, Mar. Micropaleontol., 140, 33–45, https://doi.org/10.1016/j.marmicro.2017.12.006, 2018.
Jorissen, F. J., Fontanier, C., and Thomas, E.: Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics, in: Developments in Marine Geology, vol. 1, edited by: Hillaire-Marcel, C. and De Vernal, A., Elsevier, 263–325, https://doi.org/10.1016/s1572-5480(07)01012-3, 2007.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77, 331–350, https://doi.org/10.1016/j.pocean.2007.05.009, 2008.
Kidwell, S. M.: Biology in the Anthropocene: Challenges and insights from young fossil records, P. Natl. Acad. Sci. USA, 112, 4922–4929, https://doi.org/10.1073/pnas.1403660112, 2015.
Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D., and Kleypas, J. A.: Coccolithophore growth and calcification in a changing ocean, Prog. Oceanogr., 159, 276–295, https://doi.org/10.1016/j.pocean.2017.10.007, 2017.
Lankford, R. R. and Phleger, F. B.: Foraminifera from the nearshore turbulent zone, western North America, J. Foramin. Res., 3, 101–132, https://doi.org/10.2113/gsjfr.3.3.101, 1973.
Leblanc, K., Arístegui, J., Armand, L., Assmy, P., Beker, B., Bode, A., Breton, E., Cornet, V., Gibson, J., Gosselin, M.-P., Kopczynska, E., Marshall, H., Peloquin, J., Piontkovski, S., Poulton, A. J., Quéguiner, B., Schiebel, R., Shipe, R., Stefels, J., van Leeuwe, M. A., Varela, M., Widdicombe, C., and Yallop, M.: A global diatom database – abundance, biovolume and biomass in the world ocean, Earth Syst. Sci. Data, 4, 149–165, https://doi.org/10.5194/essd-4-149-2012, 2012.
Liu, X.: The effect of an oxygen minimum zone on benthic foraminifera on a seamount near the East Pacific Rise, Department of Geology, The Florida State University College of Arts and Sciences, 104 pp., https://bit.ly/3KpszRU (last access: June 2021), 2001.
Liu, Z. and Herbert, T. D.: High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch, Nature, 427, 720–723, 2004.
Loubere, P.: Quantitative estimation of surface ocean productivity and bottom water oxygen concentration using benthic foraminifera, Paleoceanography, 9, 723–737, https://doi.org/10.1029/94PA01624, 1994.
Mackensen, A. and Douglas, R. G.: Down-core distribution of live and dead deep-water benthic foraminifera in box cores from the Weddell Sea and the California continental borderland, Deep-Sea Res., 36, 879–900, https://doi.org/10.1016/0198-0149(89)90034-4, 1989a.
Mackensen, A. and Douglas, R. G.: Down-core distribution of live and dead benthic foraminifera in deep sea sediments from the Weddell Sea and the Californian continental borderland, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.710895, 1989b.
Mallon, J.: Benthic foraminifera of the Peruvian & Ecuadorian continental margin, Dissertation, Universität Kiel, 279 pp., https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004121/Mallon_benthic__foraminifera.pdf (last access: November 2022), 2011.
Marret, F., Bradley, L., de Vernal, A., Hardy, W., Kim, S.-Y., Mudie, P., Penaud, A., Pospelova, V., Price, A. M., Radi, T., and Rochon, A.: From bi-polar to regional distribution of modern dinoflagellate cysts, an overview of their biogeography, Mar. Micropaleontol., 159, 101753, https://doi.org/10.1016/j.marmicro.2019.101753, 2020.
Martin, L. N.: Observations on Living Foraminifera from the intertidal zone of Monterey Bay, California, Biological Sciences, Stanford, 66 pp., VI plates, https://stacks.stanford.edu/file/dx798gr0222/dx798gr0222.pdf (last access: November 2021), 1932.
Martin, R. A., Nesbitt, E. A., and Martin, D. E.: Distribution of foraminifera in Puget Sound, Western Washington, U. S. A., J. Foramin. Res., 43, 291–304, https://doi.org/10.2113/gsjfr.43.3.291, 2013.
McGann, M.: Historical and modern distributions of benthic foraminifers on the continental shelf of Monterey Bay, California, Mar. Geol., 181, 115–156, https://doi.org/10.1016/S0025-3227(01)00264-X, 2002.
McGann, M. L., Schmieder, R. W., and Loncke, L.-P.: Shallow-Water Foraminifera and Other Microscopic Biota of Clipperton Island, Tropical Eastern Pacific, Atoll Research Bulletin, no. 626, Smithsonian Scholarly Press, https://doi.org/10.5479/si.10329962, 2019.
McGlasson, R. H.: Foraminiferal Biofacies around Santa Catalina Island, California, Micropaleontology, 5, 217–240, https://doi.org/10.2307/1484211, 1959.
Mekik, F. and Anderson, R.: Is the core top modern? Observations from the eastern equatorial Pacific, Quaternary Sci. Rev., 186, 156–168, https://doi.org/10.1016/j.quascirev.2018.01.020, 2018.
Morin, R. W.: Foraminiferal Populations in the Santa Barbara Channel: Offshore Species, in: Biological and Oceanographical Survey of the Santa Barbara Channel Oil Spill, 1969–1970, Volume II Physical, Chemical and Geological Studies, edited by: Kolpack, R. L., Allen Hancock Foundation, University of Southern California, 218–275, 1971.
Moyer, D. A.: Shallow Water Foraminifera from off Point Firmin, San Pedro, California, Micropaleontology Bulletin, 11, 5–10, 1929.
Murray, J. W.: The enigma of the continued use of total assemblages in ecological studies of benthic foraminifera, J. Foramin. Res., 30, 244–245, https://doi.org/10.2113/0300244, 2000.
Murray, J. W.: Ecology and palaeoecology of benthic foraminifera, Routledge, https://doi.org/10.4324/9781315846101, 2006.
Murray, J. W.: Biodiversity of living benthic foraminifera: How many species are there?, Mar. Micropaleontol., 64, 163–176, https://doi.org/10.1016/j.marmicro.2007.04.002, 2007.
Murray, J. W.: Living benthic foraminifera: biogeographical distributions and the significance of rare morphospecies, J. Micropalaeontol., 32, 1–58, https://doi.org/10.1144/jmpaleo2012-010, 2013.
Natland, M. L.: The temperature-and depth-distribution of some recent and fossil foraminifera in the southern California region, Bulletin, Scripps Institution of Oceanography, 3, 225–231, 1933.
Nienstedt, J. C.: Biogeographic distribution of recent benthic foraminifera near the East Pacific Rise, The Florida State University College of Arts and Sciences, 149 pp., https://bit.ly/36xhUpT (last access: June 2021), 1986.
Palmer, H. M., Hill, T. M., Myhre, S. E., Roopnarine, P. R., Reyes, K. R., and Donnenfield, J. T.: San Diego Margin Benthic Foraminiferal Assemblages from Late Holocene, NOAA National Centers for Enviromental Information [data set], https://doi.org/10.25921/c522-4h11, 2019.
Palmer, H. M., Hill, T. M., Roopnarine, P. D., Myhre, S. E., Reyes, K. R., and Donnenfield, J. T.: Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone, Biogeosciences, 17, 2923–2937, https://doi.org/10.5194/bg-17-2923-2020, 2020.
Patarroyo, G. D. and Martínez, J. I.: Late quaternary sea bottom conditions in the southern Panama basin, Eastern Equatorial Pacific, J. S. Am. Earth Sci., 63, 346–359, https://doi.org/10.1016/j.jsames.2015.07.010, 2015.
Patarroyo, G. D. and Martinez, J. I.: Composition and diversity patterns of deep sea benthic foraminifera from the Panama basin, eastern equatorial Pacific, Deep-Sea Res. Pt. I, 169, 103470, https://doi.org/10.1016/j.dsr.2021.103470, 2021.
Patterson, R. T., Guilbault, J.-P., and Thomson, R. E.: Oxygen level control on foraminiferal distribution in Effingham inlet, Vancouver island, British Columbia, Canada, J. Foramin. Res., 30, 321–335, https://doi.org/10.2113/0300321, 2000.
Pedersen, T. L.: ggforce: Accelerating 'ggplot2', R package version 0.4.1., https://CRAN.R-project.org/package=ggforce (last access: December 2022), 2022.
Perez-Cruz, L. L. and Machain-Castillo, M. L.: Benthic foraminifera of the oxygen minimum zone, continental shelf of the Gulf of Tehuantepec, Mexico, J. Foramin. Res., 20, 312–325, https://doi.org/10.2113/gsjfr.20.4.312, 1990.
Pettit, L. R., Hart, M. B., Medina-Sánchez, A. N., Smart, C. W., Rodolfo-Metalpa, R., Hall-Spencer, J. M., and Prol-Ledesma, R. M.: Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico, Mar. Pollut. Bull., 73, 452–462, https://doi.org/10.1016/j.marpolbul.2013.02.011, 2013a.
Pettit, L. R., Hart, M. B., Medina-Sánchez, A. N., Smart, C. W., Rodolfo-Metalpa, R., Hall-Spencer, J. and Prol-Ledesma, R.: (Table 2) Live (stained) benthic foraminifera from stations in the northern Gulf of California, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.816336, 2013b.
Pettit, L. R., Hart, M. B., Medina-Sánchez, A. N., Smart, C. W., Rodolfo-Metalpa, R., Hall-Spencer, J. and Prol-Ledesma, R.: (Table 3) Counts of dead (not stained) benthic foraminifera from stations in the northern Gulf of California, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.816337, 2013c.
Phleger, F. B.: Patterns of Living Benthonic Foraminifera, Gulf of California, in: Marine Geology of the Gulf of California: a symposium, edited by: van Andel, T. H., and Shor Jr., G. G., American Association of Petroleum Geologists, 377–394, https://doi.org/10.1306/M3359C14, 1964.
Phleger, F. B.: Depth patterns of benthonic foraminifera in the Eastern Pacific, Prog. Oceanogr., 3, 273–287, https://doi.org/10.1016/0079-6611(65)90023-6, 1965.
Pisias, N. G., Mix, A. C., and Heusser, L.: Millennial scale climate variability of the northeast Pacific Ocean and northwest North America based on radiolaria and pollen, Quaternary Sci. Rev., 20, 1561–1576, https://doi.org/10.1016/S0277-3791(01)00018-X, 2001.
Praetorius, S. K., Condron, A., Mix, A. C., Walczak, M. H., McKay, J. L., and Du, J.: The role of Northeast Pacific meltwater events in deglacial climate change, Science Advances, 6, eaay2915, https://doi.org/10.1126/sciadv.aay2915, 2020.
R Core Team: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last access: September 2022.
Reiter, M.: Seasonal Variations in Intertidal Foraminifera of Santa Monica Bay, California, J. Paleontol., 33, 606–630, 1959.
Resig, J. M.: Ecology of Foraminifera of the Santa Cruz Basin, California, Micropaleontology, 4, 287–308, https://doi.org/10.2307/1484288, 1958.
Resig, J. M.: Foraminiferal ecology around ocean outfalls off southern California, Proceedings of the First International Conference on Waste Disposal in the Marine Environment, University of California, Berkeley, 22–25 July 1959, 104–121, 1960.
Resig, J. M.: Biogeography of benthic foraminifera of the northern Nazca plate and adjacent continental margin, in: Nazca Plate: Crustal Formation and Andean Convergence, edited by: Kulm, L. V. D., Dymond, J., Dasch, E. J., Hussong, D. M., and Roderick, R., Geological Society of America, 619–666, https://doi.org/10.1130/MEM154-p619, 1981.
Saidova, Kh. M.: On large-scale facies confinement of deep-sea benthic foraminifera, Oceanol. Acta, 14, 534–540, 1974.
Schönfeld, J.: History and development of methods in Recent benthic foraminiferal studies, J. Micropalaeontol., 31, 53–72, https://doi.org/10.1144/0262-821X11-008, 2012.
Scott, D. B., Mudie, P. J., and Bradshaw, J. S.: Benthonic foraminifera of three southern Californian lagoons; ecology and Recent stratigraphy, J. Foramin. Res., 6, 59–75, https://doi.org/10.2113/gsjfr.6.1.59, 1976.
Sejrup, H. P., Birks, H. J. B., Klitgaard Kristensen, D., and Madsen, H.: Benthonic foraminiferal distributions and quantitative transfer functions for the northwest European continental margin, Mar. Micropaleontol., 53, 197–226, https://doi.org/10.1016/j.marmicro.2004.05.009, 2004.
Sharon, Belanger, C., Du, J., and Mix, A.: Reconstructing paleo-oxygenation for the last 54 000 years in the Gulf of Alaska using cross-validated benthic foraminiferal and geochemical records, Paleoceanography and Paleoclimatology, 36, e2020PA003986, https://doi.org/10.1029/2020PA003986, 2020.
Sherman, K.: The Large Marine Ecosystem Concept: Research and Management Strategy for Living Marine Resources, Ecol. Appl., 1, 350–360, https://doi.org/10.2307/1941896, 1991.
Siccha, M. and Kucera, M.: ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples, Scientific Data, 4, 170109, https://doi.org/10.1038/sdata.2017.109, 2017.
Smith, P. B.: Quantitative and qualitative analysis of the family Bolivinidae, Geological Survey Professional Paper 429-A, United States Goverment Printing Office, Washington, https://doi.org/10.3133/pp429A, 1963.
Smith, P. B.: Ecology of benthonic species, Geological Survey Professional Paper 429-B, United States Goverment Printing Office, Washington, https://doi.org/10.3133/pp429B, 1964.
Smith, P. B.: Foraminifera of the North Pacific Ocean, Geological Survey Professional Paper 766, United States Goverment Printing Office, Washington, https://doi.org/10.3133/pp766, 1973.
Snyder, S. W., Hale, W. R., and Kontrovitz, M.: Distributional Patterns of Modern Benthic Foraminifera on the Washington Continental Shelf, Micropaleontology, 36, 245–258, https://doi.org/10.2307/1485508, 1990.
Stuecker, M. F.: Revisiting the Pacific Meridional Mode, Sci. Rep.-UK, 8, 3216, https://doi.org/10.1038/s41598-018-21537-0, 2018.
Sweetman, A. K., Thurber, A. R., Smith, C. R., Levin, L. A., Mora, C., Wei, C.-L., Gooday, A. J., Jones, D. O. B., Rex, M., Yasuhara, M., Ingels, J., Ruhl, H. A., Frieder, C. A., Danovaro, R., Würzberg, L., Baco, A., Grupe, B. M., Pasulka, A., Meyer, K. S., Dunlop, K. M., Henry, L.-A., and Roberts, J. M.: Major impacts of climate change on deep-sea benthic ecosystems, Elementa: Science of the Anthropocene, 5, 4, https://doi.org/10.1525/elementa.203, 2017.
Takata, H., Yoo, C. M., Kim, H. J., and Khim, B.-K.: Latitudinal change in benthic foraminiferal fauna by ITCZ movement along the ∼131∘ W transect in the equatorial Pacific Ocean, Ocean Sci. J., 51, 655–663, https://doi.org/10.1007/s12601-016-0048-2, 2016.
Tapia, R., Ho, S. L., Núñez-Ricardo, S., Marchant, M., Lamy, F., and Hebbeln, D.: Increased marine productivity in the southern Humboldt Current System during MIS 2–4 and 10–11, Paleoceanography and Paleoclimatology, 36, e2020PA004066, https://doi.org/10.1029/2020PA004066, 2021.
Tavera Martínez, L., Marchant, M., Muñoz, P., and Abdala Díaz, R. T.: Spatial and Vertical Benthic Foraminifera Diversity in the Oxygen Minimum Zone of Mejillones Bay, Northern Chile, Frontiers in Marine Science, 9, 821564, https://doi.org/10.3389/fmars.2022.821564, 2022.
Tetard, M., Licari, L., and Beaufort, L.: Oxygen history off Baja California over the last 80 kyr: A new foraminiferal-based record, Paleoceanography, 32, 246–264, https://doi.org/10.1002/2016pa003034, 2017.
Tetard, M., Licari, L., Ovsepyan, E., Tachikawa, K., and Beaufort, L.: Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera, Biogeosciences, 18, 2827–2841, https://doi.org/10.5194/bg-18-2827-2021, 2021.
Todd, R. and Low, D.: Recent foraminifera from the Gulf of Alaska and southeastern Alaska, Report 573A, https://doi.org/10.3133/pp573A, 1967.
Uchimura, H., Nishi, H., Takashima, R., Kuroyanagi, A., Yamamoto, Y., and Kutterolf, S.: Distribution of Recent Benthic Foraminifera off Western Costa Rica in the Eastern Equatorial Pacific Ocean, Paleontol. Res., 21, 380–396, https://doi.org/10.2517/2017PR003, 2017.
Uchio, T.: Ecology of living benthonic foraminifera from the San Diego, California, Area Cushman Foundation for Foraminiferal Research, Special Publication no. 5, 1–81, ISBN 9781970168044, 1960.
United Nations Educational, Scientific and Cultural Organization (UNESCO): World Heritage List, https://whc.unesco.org/en/list/, last access: May 2022.
van Morkhoven, F. P. C. M., Berggren, W. A., and Edwards, A. S.: Cenozoic cosmopolitan deep-water benthic foraminifera, Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine, Mem. 11, Pau, 421 pp., ISSN 0181-0901, 1986.
Venturelli, R.: Abundance data of benthic foraminifera in sediment core tops sampled during the NH1108 cruise to Southern California Bight in July 2011, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.893323, 2018.
Venturelli, R. A., Rathburn, A. E., Burkett, A. M., and Ziebis, W.: Epifaunal Foraminifera in an Infaunal World: Insights Into the Influence of Heterogeneity on the Benthic Ecology of Oxygen-Poor, Deep-Sea Habitats, Frontiers in Marine Science, 5, 344, https://doi.org/10.3389/fmars.2018.00344, 2018.
Violanti, D., Loi, B., and Melis, R.: Distribution of Recent Foraminifera from Strair of Magellan. First quantitative data, Bolletino Museo Regionale di Scienze Naturali Torino, 17, 511–539, 2000.
Walch, A.: Recent abyssal benthic foraminifera from the Eastern Equatorial Pacific, Southern California, 117 pp., https://bit.ly/35yR9RL (last access: August 2021), 1978.
Walczak, M. H., Mix, A. C., Cowan, E. A., Fallon, S., Fifield, L. K., Alder, J. R., Du, J., Haley, B., Hobern, T., Padman, J., Praetorius, S. K., Schmittner, A., Stoner, J. S., and Zellers, S. D.: Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans, Science, 370, 716–720, https://doi.org/10.1126/science.aba7096, 2020.
Walton, W. R.: Techniques for recognition of living foraminifera, Contributions from the Cushman Foundation for Foraminiferal Research, 3, 56–60, 1952.
Walton, W. R.: Ecology of Living Benthonic Foraminifera Todos Santos Bay, Baja California, University of California, Los Angeles, https://bit.ly/3MmCtWm (last access: February 2021), 1954.
Walton, W. R.: Ecology of Living Benthonic Foraminifera, Todos Santos Bay, Baja California, J. Paleontol., 29, 952–1018, http://www.jstor.org/stable/1300447 (last access: March 2022), 1955.
Watkins, J. G.: Foraminiferal Ecology around the Orange County, California, Ocean Sewer Outfall, Micropaleontology, 7, 199–206, https://doi.org/10.2307/1484279, 1961.
Weaver, P. P. E. and Schultheiss, P. J.: Current methods for obtaining, logging and splitting marine sediment cores, Mar. Geophys. Res., 12, 85–100, https://doi.org/10.1007/BF00310565, 1990.
Wickham, H., Averick, M., Bryan, J., Chang, W., D'Agostino McGowan, L., Francois, R., Grolemund, G., Hayes, A., Henry, L., and Hester, J.: Welcome to the Tidyverse, The Journal of Open Source Software, 4, 6, https://doi.org/10.21105/joss.01686, 2019.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Scientific Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Wollenburg, J. E. and Kuhnt, W.: The response of benthic foraminifers to carbon flux and primary production in the Arctic Ocean, Mar. Micropaleontol., 40, 189–231, https://doi.org/10.1016/S0377-8398(00)00039-6, 2000.
Yasuhara, M., Hunt, G., Breitburg, D., Tsujimoto, A., and Katsuki, K.: Human-induced marine ecological degradation: micropaleontological perspectives, Ecol. Evol., 2, 3242–3268, https://doi.org/10.1002/ece3.425, 2012.
Yasuhara, M., Rabalais, N. N., Conley, D. J., and Gutiérrez, D.: Palaeo-records of histories of deoxygenation and its ecosystem impact, in: Ocean deoxygenation: Everyone's problem – Causes,
impacts, consequences and solutions, edited by: Laffoley, D. and Baxter, J. M., IUCN, Gland, Switzerland, 213–224,
https://doi.org/10.2305/IUCN.CH.2019.13.en, 2019.
Yasuhara, M., Wei, C.-L., Kucera, M., Costello, M. J., Tittensor, D. P., Kiessling, W., Bonebrake, T. C., Tabor, C. R., Feng, R., Baselga, A., Kretschmer, K., Kusumoto, B., and Kubota, Y.: Past and future decline of tropical pelagic biodiversity, P. Natl. Acad. Sci. USA, 117, 12891, https://doi.org/10.1073/pnas.1916923117, 2020.
Young, J., Geisen, M., Cros, L., Kleijne, A., Sprengel, C., Probert, I., and Østergaard, J.: A guide to extant coccolithophore taxonomy, Journal of Nannoplankton Research, Special Issue, 1, 1–132, 2003.
Zalesny, E. R.: Foraminiferal Ecology of Santa Monica Bay, California, Micropaleontology, 5, 101–126, https://doi.org/10.2307/1484158, 1959.
Zapata, J., Zapata, C., and Gutiérrez, A.: Foraminíferos bentónicos recientes del sur de Chile, Gayana Zoologia, 59, 23–40, 1995.
Short summary
Benthic foraminifera are key components of the ocean benthos and marine sediments. Determining their geographic distribution is highly relevant for improving our understanding of the recent and past ocean benthic ecosystem and establishing adequate conservation strategies. Here, we contribute to this knowledge by generating an open-access database of previously documented quantitative data of benthic foraminifera species from surface sediments of the eastern Pacific (BENFEP).
Benthic foraminifera are key components of the ocean benthos and marine sediments. Determining...
Altmetrics
Final-revised paper
Preprint