Articles | Volume 15, issue 10
https://doi.org/10.5194/essd-15-4433-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4433-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydro-PE: gridded datasets of historical and future Penman–Monteith potential evaporation for the United Kingdom
UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
Matthew J. Brown
UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
Alison L. Kay
UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
Rosanna A. Lane
UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
Rhian Chapman
UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
Victoria A. Bell
UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
Eleanor M. Blyth
UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
Related authors
Emma L. Robinson, Chris Huntingford, Valyaveetil Shamsudheen Semeena, and James M. Bullock
Earth Syst. Sci. Data, 15, 5371–5401, https://doi.org/10.5194/essd-15-5371-2023, https://doi.org/10.5194/essd-15-5371-2023, 2023
Short summary
Short summary
CHESS-SCAPE is a suite of high-resolution climate projections for the UK to 2080, derived from United Kingdom Climate Projections 2018 (UKCP18), designed to support climate impact modelling. It contains four realisations of four scenarios of future greenhouse gas levels (RCP2.6, 4.5, 6.0 and 8.5), with and without bias correction to historical data. The variables are available at 1 km resolution and a daily time step, with monthly, seasonal and annual means and 20-year mean-monthly time slices.
Ewan Pinnington, Javier Amezcua, Elizabeth Cooper, Simon Dadson, Rich Ellis, Jian Peng, Emma Robinson, Ross Morrison, Simon Osborne, and Tristan Quaife
Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021, https://doi.org/10.5194/hess-25-1617-2021, 2021
Short summary
Short summary
Land surface models are important tools for translating meteorological forecasts and reanalyses into real-world impacts at the Earth's surface. We show that the hydrological predictions, in particular soil moisture, of these models can be improved by combining them with satellite observations from the NASA SMAP mission to update uncertain parameters. We find a 22 % reduction in error at a network of in situ soil moisture sensors after combining model predictions with satellite observations.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Emma L. Robinson and Douglas B. Clark
Hydrol. Earth Syst. Sci., 24, 1763–1779, https://doi.org/10.5194/hess-24-1763-2020, https://doi.org/10.5194/hess-24-1763-2020, 2020
Short summary
Short summary
This study used a water balance approach based on GRACE total water storage to infer the amount of cold-season precipitation in four Arctic river basins. This was used to evaluate four gridded meteorological data sets, which were used as inputs to a land surface model. We found that the cold-season precipitation in these data sets needed to be increased by up to 55 %. Using these higher precipitation inputs improved the model representation of Arctic hydrology, particularly lying snow.
Eleanor M. Blyth, Alberto Martinez-de la Torre, and Emma L. Robinson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-153, https://doi.org/10.5194/hess-2018-153, 2018
Manuscript not accepted for further review
Short summary
Short summary
In a warming climate, the water budget of the land is subject to varying forces such as increasing evaporative demand, mainly through the increased temperature, and changes to the precipitation, which might go up or down. Using a verified, physically based model over with 55 years, an analysis of the water budget demonstrates that Great Britain is getting warmer and wetter. We demonstrated that amount of water captured on the trees has an impact on the overall trend.
Emma L. Robinson, Eleanor M. Blyth, Douglas B. Clark, Jon Finch, and Alison C. Rudd
Hydrol. Earth Syst. Sci., 21, 1189–1224, https://doi.org/10.5194/hess-21-1189-2017, https://doi.org/10.5194/hess-21-1189-2017, 2017
Short summary
Short summary
We present a dataset of daily meteorological variables at 1 km resolution over Great Britain (1961–2012), calculated by spatially downscaling coarser resolution datasets, adjusting for local topography, along with derived potential evapotranspiration (PET). A positive trend in PET was identified and attributed to trends in the meteorology. The trend in PET is particularly driven by decreasing relative humidity and increasing shortwave radiation in the spring.
Mark D. Rhodes-Smith, Victoria A. Bell, Nicky Stringer, Helen Baron, Helen Davies, and Jeff Knight
EGUsphere, https://doi.org/10.5194/egusphere-2025-2506, https://doi.org/10.5194/egusphere-2025-2506, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
River flow forecasts up to three months ahead can allow early preparations for future floods and droughts. We test a new forecasting system using weather forecasts made by selecting historical weather patterns that match current conditions and running them through a simulation of Great Britain's rivers. Our tests show that this system performs particularly well in the winter and spring, in northern Scotland and in southern England. We now use this system to produce forecasts regularly.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024, https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Alison L. Kay, Nick Dunstone, Gillian Kay, Victoria A. Bell, and Jamie Hannaford
Nat. Hazards Earth Syst. Sci., 24, 2953–2970, https://doi.org/10.5194/nhess-24-2953-2024, https://doi.org/10.5194/nhess-24-2953-2024, 2024
Short summary
Short summary
Hydrological hazards affect people and ecosystems, but extremes are not fully understood due to limited observations. A large climate ensemble and simple hydrological model are used to assess unprecedented but plausible floods and droughts. The chain gives extreme flows outside the observed range: summer 2022 ~ 28 % lower and autumn 2023 ~ 42 % higher. Spatial dependence and temporal persistence are analysed. Planning for such events could help water supply resilience and flood risk management.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Emma L. Robinson, Chris Huntingford, Valyaveetil Shamsudheen Semeena, and James M. Bullock
Earth Syst. Sci. Data, 15, 5371–5401, https://doi.org/10.5194/essd-15-5371-2023, https://doi.org/10.5194/essd-15-5371-2023, 2023
Short summary
Short summary
CHESS-SCAPE is a suite of high-resolution climate projections for the UK to 2080, derived from United Kingdom Climate Projections 2018 (UKCP18), designed to support climate impact modelling. It contains four realisations of four scenarios of future greenhouse gas levels (RCP2.6, 4.5, 6.0 and 8.5), with and without bias correction to historical data. The variables are available at 1 km resolution and a daily time step, with monthly, seasonal and annual means and 20-year mean-monthly time slices.
Elizabeth Cooper, Rich Ellis, Eleanor Blyth, and Simon Dadson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1596, https://doi.org/10.5194/egusphere-2023-1596, 2023
Preprint archived
Short summary
Short summary
We have tested a different way of simulating soil moisture and river flow. Instead of dividing the land up into over 10,000 squares to run our numerical model, we cluster the land into fewer, irregular areas with similar landscape characteristics. We show that different ways of clustering the landscape produce different patterns of soil moisture. We also show that with this method we can we match observations as well as our usual gridded approach for ten times less computational resource.
Alison L. Kay, Victoria A. Bell, Helen N. Davies, Rosanna A. Lane, and Alison C. Rudd
Earth Syst. Sci. Data, 15, 2533–2546, https://doi.org/10.5194/essd-15-2533-2023, https://doi.org/10.5194/essd-15-2533-2023, 2023
Short summary
Short summary
Climate change will affect the water cycle, including river flows and soil moisture. We have used both observational data (1980–2011) and the latest UK climate projections (1980–2080) to drive a national-scale grid-based hydrological model. The data, covering Great Britain and Northern Ireland, suggest potential future decreases in summer flows, low flows, and summer/autumn soil moisture, and possible future increases in winter and high flows. Society must plan how to adapt to such impacts.
Jamie Hannaford, Jonathan D. Mackay, Matthew Ascott, Victoria A. Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison L. Kay, Rosanna A. Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison C. Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John R. Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data, 15, 2391–2415, https://doi.org/10.5194/essd-15-2391-2023, https://doi.org/10.5194/essd-15-2391-2023, 2023
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers but could also be used for a wide range of other purposes.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Elizabeth Cooper, Eleanor Blyth, Hollie Cooper, Rich Ellis, Ewan Pinnington, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 2445–2458, https://doi.org/10.5194/hess-25-2445-2021, https://doi.org/10.5194/hess-25-2445-2021, 2021
Short summary
Short summary
Soil moisture estimates from land surface models are important for forecasting floods, droughts, weather, and climate trends. We show that by combining model estimates of soil moisture with measurements from field-scale, ground-based sensors, we can improve the performance of the land surface model in predicting soil moisture values.
Hollie M. Cooper, Emma Bennett, James Blake, Eleanor Blyth, David Boorman, Elizabeth Cooper, Jonathan Evans, Matthew Fry, Alan Jenkins, Ross Morrison, Daniel Rylett, Simon Stanley, Magdalena Szczykulska, Emily Trill, Vasileios Antoniou, Anne Askquith-Ellis, Lucy Ball, Milo Brooks, Michael A. Clarke, Nicholas Cowan, Alexander Cumming, Philip Farrand, Olivia Hitt, William Lord, Peter Scarlett, Oliver Swain, Jenna Thornton, Alan Warwick, and Ben Winterbourn
Earth Syst. Sci. Data, 13, 1737–1757, https://doi.org/10.5194/essd-13-1737-2021, https://doi.org/10.5194/essd-13-1737-2021, 2021
Short summary
Short summary
COSMOS-UK is a UK network of environmental monitoring sites, with a focus on measuring field-scale soil moisture. Each site includes soil and hydrometeorological sensors providing data including air temperature, humidity, net radiation, neutron counts, snow water equivalent, and potential evaporation. These data can provide information for science, industry, and agriculture by improving existing understanding and data products in fields such as water resources, space sciences, and biodiversity.
Ewan Pinnington, Javier Amezcua, Elizabeth Cooper, Simon Dadson, Rich Ellis, Jian Peng, Emma Robinson, Ross Morrison, Simon Osborne, and Tristan Quaife
Hydrol. Earth Syst. Sci., 25, 1617–1641, https://doi.org/10.5194/hess-25-1617-2021, https://doi.org/10.5194/hess-25-1617-2021, 2021
Short summary
Short summary
Land surface models are important tools for translating meteorological forecasts and reanalyses into real-world impacts at the Earth's surface. We show that the hydrological predictions, in particular soil moisture, of these models can be improved by combining them with satellite observations from the NASA SMAP mission to update uncertain parameters. We find a 22 % reduction in error at a network of in situ soil moisture sensors after combining model predictions with satellite observations.
Simon J. Dadson, Eleanor Blyth, Douglas Clark, Helen Davies, Richard Ellis, Huw Lewis, Toby Marthews, and Ponnambalan Rameshwaran
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-60, https://doi.org/10.5194/hess-2021-60, 2021
Manuscript not accepted for further review
Short summary
Short summary
Flood prediction helps national and regional planning and real-time flood response. In this study we apply and test a new way to make wide area predictions of flooding which can be combined with weather forecasting and climate models to give faster predictions of flooded areas. By simplifying the detailed floodplain topography we can keep track of the fraction of land flooded for hazard mapping purposes. When tested this approach accurately reproduces benchmark datasets for England.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Emma L. Robinson and Douglas B. Clark
Hydrol. Earth Syst. Sci., 24, 1763–1779, https://doi.org/10.5194/hess-24-1763-2020, https://doi.org/10.5194/hess-24-1763-2020, 2020
Short summary
Short summary
This study used a water balance approach based on GRACE total water storage to infer the amount of cold-season precipitation in four Arctic river basins. This was used to evaluate four gridded meteorological data sets, which were used as inputs to a land surface model. We found that the cold-season precipitation in these data sets needed to be increased by up to 55 %. Using these higher precipitation inputs improved the model representation of Arctic hydrology, particularly lying snow.
Toby R. Marthews, Eleanor M. Blyth, Alberto Martínez-de la Torre, and Ted I. E. Veldkamp
Hydrol. Earth Syst. Sci., 24, 75–92, https://doi.org/10.5194/hess-24-75-2020, https://doi.org/10.5194/hess-24-75-2020, 2020
Short summary
Short summary
Climate change impact modellers can only act on predictions of the occurrence of an extreme event in the Earth system if they know the uncertainty in that prediction and how uncertainty is attributable to different model components. Using eartH2Observe data, we quantify the balance between different sources of uncertainty in global evapotranspiration and runoff, making a crucial contribution to understanding the spatial distribution of water resources allocation deficiencies.
Rosanna A. Lane, Gemma Coxon, Jim E. Freer, Thorsten Wagener, Penny J. Johnes, John P. Bloomfield, Sheila Greene, Christopher J. A. Macleod, and Sim M. Reaney
Hydrol. Earth Syst. Sci., 23, 4011–4032, https://doi.org/10.5194/hess-23-4011-2019, https://doi.org/10.5194/hess-23-4011-2019, 2019
Short summary
Short summary
We evaluated four hydrological model structures and their parameters on over 1100 catchments across Great Britain, considering modelling uncertainties. Models performed well for most catchments but failed in parts of Scotland and south-eastern England. Failures were often linked to inconsistencies in the water balance. This research shows what conceptual lumped models can achieve, gives insights into where and why these models may fail, and provides a benchmark of national modelling capability.
Gemma Coxon, Jim Freer, Rosanna Lane, Toby Dunne, Wouter J. M. Knoben, Nicholas J. K. Howden, Niall Quinn, Thorsten Wagener, and Ross Woods
Geosci. Model Dev., 12, 2285–2306, https://doi.org/10.5194/gmd-12-2285-2019, https://doi.org/10.5194/gmd-12-2285-2019, 2019
Short summary
Short summary
DECIPHeR (Dynamic fluxEs and ConnectIvity for Predictions of Hydrology) is a new modelling framework that can be applied from small catchment to continental scales for complex river basins. This paper describes the modelling framework and its key components and demonstrates the model’s ability to be applied across a large model domain. This work highlights the potential for catchment- to continental-scale predictions of streamflow to support robust environmental management and policy decisions.
Alberto Martínez-de la Torre, Eleanor M. Blyth, and Graham P. Weedon
Geosci. Model Dev., 12, 765–784, https://doi.org/10.5194/gmd-12-765-2019, https://doi.org/10.5194/gmd-12-765-2019, 2019
Short summary
Short summary
Land–surface interactions with the atmosphere are key for weather and climate modelling studies, both in research and in the operational systems that provide scientific tools for decision makers. Regional assessments will be influenced by the characteristics of the land. We improved the representation of river flows in Great Britain by including a dependency on the terrain slope. This development will be reflected not only in river flows, but in the whole water cycle represented by the model.
Eleanor M. Blyth, Alberto Martinez-de la Torre, and Emma L. Robinson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-153, https://doi.org/10.5194/hess-2018-153, 2018
Manuscript not accepted for further review
Short summary
Short summary
In a warming climate, the water budget of the land is subject to varying forces such as increasing evaporative demand, mainly through the increased temperature, and changes to the precipitation, which might go up or down. Using a verified, physically based model over with 55 years, an analysis of the water budget demonstrates that Great Britain is getting warmer and wetter. We demonstrated that amount of water captured on the trees has an impact on the overall trend.
Alberto Martínez-de la Torre, Eleanor M. Blyth, and Graham P. Weedon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-750, https://doi.org/10.5194/hess-2017-750, 2018
Manuscript not accepted for further review
Short summary
Short summary
Land surface interactions with the atmosphere are key for weather and climate modelling studies, both in research and in the operational systems that provide scientific tools for decision makers. Regional assessments will be influenced by the characteristics of the land. We improved the representation of Great Britain river flows by including a dependency on terrain slope. This development will be reflected not only in river flows, but in the whole water cycle represented by the model/system.
Benoit P. Guillod, Richard G. Jones, Simon J. Dadson, Gemma Coxon, Gianbattista Bussi, James Freer, Alison L. Kay, Neil R. Massey, Sarah N. Sparrow, David C. H. Wallom, Myles R. Allen, and Jim W. Hall
Hydrol. Earth Syst. Sci., 22, 611–634, https://doi.org/10.5194/hess-22-611-2018, https://doi.org/10.5194/hess-22-611-2018, 2018
Short summary
Short summary
Assessing the potential impacts of extreme events such as drought and flood requires large datasets of such events, especially when looking at the most severe and rare events. Using a state-of-the-art climate modelling infrastructure that is simulating large numbers of weather time series on volunteers' computers, we generate such a large dataset for the United Kingdom. The dataset covers the recent past (1900–2006) as well as two future time periods (2030s and 2080s).
Huw W. Lewis, Juan Manuel Castillo Sanchez, Jennifer Graham, Andrew Saulter, Jorge Bornemann, Alex Arnold, Joachim Fallmann, Chris Harris, David Pearson, Steven Ramsdale, Alberto Martínez-de la Torre, Lucy Bricheno, Eleanor Blyth, Victoria A. Bell, Helen Davies, Toby R. Marthews, Clare O'Neill, Heather Rumbold, Enda O'Dea, Ashley Brereton, Karen Guihou, Adrian Hines, Momme Butenschon, Simon J. Dadson, Tamzin Palmer, Jason Holt, Nick Reynard, Martin Best, John Edwards, and John Siddorn
Geosci. Model Dev., 11, 1–42, https://doi.org/10.5194/gmd-11-1-2018, https://doi.org/10.5194/gmd-11-1-2018, 2018
Short summary
Short summary
In the real world the atmosphere, oceans and land surface are closely interconnected, and yet prediction systems tend to treat them in isolation. Those feedbacks are often illustrated in natural hazards, such as when strong winds lead to large waves and coastal damage, or when prolonged rainfall leads to saturated ground and high flowing rivers. For the first time, we have attempted to represent some of the feedbacks between sky, sea and land within a high-resolution forecast system for the UK.
Victoria A. Bell, Helen N. Davies, Alison L. Kay, Anca Brookshaw, and Adam A. Scaife
Hydrol. Earth Syst. Sci., 21, 4681–4691, https://doi.org/10.5194/hess-21-4681-2017, https://doi.org/10.5194/hess-21-4681-2017, 2017
Short summary
Short summary
The research presented here provides the first evaluation of the skill of a seasonal hydrological forecast for the UK. The forecast scheme combines rainfall forecasts from the Met Office GloSea5 forecast system with a national-scale hydrological model to provide estimates of river flows 1 to 3 months ahead. The skill in the combined model is assessed for different seasons and regions of Britain, and the analysis indicates that Autumn/Winter flows can be forecast with reasonable confidence.
Joost Iwema, Rafael Rosolem, Mostaquimur Rahman, Eleanor Blyth, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 21, 2843–2861, https://doi.org/10.5194/hess-21-2843-2017, https://doi.org/10.5194/hess-21-2843-2017, 2017
Short summary
Short summary
We investigated whether the simulation of water flux from the land surface to the atmosphere (using the Joint UK Land Environment Simulator model) could be improved by replacing traditional soil moisture sensor data with data from the more novel Cosmic-Ray Neutron soil moisture sensor. Despite observed differences between the two types of soil moisture measurement data, we found no substantial differences in improvement in water flux estimation, based on multiple calibration experiments.
Emma L. Robinson, Eleanor M. Blyth, Douglas B. Clark, Jon Finch, and Alison C. Rudd
Hydrol. Earth Syst. Sci., 21, 1189–1224, https://doi.org/10.5194/hess-21-1189-2017, https://doi.org/10.5194/hess-21-1189-2017, 2017
Short summary
Short summary
We present a dataset of daily meteorological variables at 1 km resolution over Great Britain (1961–2012), calculated by spatially downscaling coarser resolution datasets, adjusting for local topography, along with derived potential evapotranspiration (PET). A positive trend in PET was identified and attributed to trends in the meteorology. The trend in PET is particularly driven by decreasing relative humidity and increasing shortwave radiation in the spring.
E. M. Blyth, R. Oliver, and N. Gedney
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-17967-2014, https://doi.org/10.5194/bgd-11-17967-2014, 2014
Revised manuscript has not been submitted
Short summary
Short summary
By studying patterns of soil carbon in the Northern Latitudes alongside vegetation, soil temperatures and wetlands, it is apparent that the main cause of high values of soil carbon is the presence of saturated soils (wetlands). This link can only be modelled if the wetlands are assumed to completely suppress soil respiration. It is important to be able to model wetlands and their effect on soil carbon if we are to understand the long term future of the soil-carbon store in Northern Latitudes.
S. J. Sutanto, B. van den Hurk, P. A. Dirmeyer, S. I. Seneviratne, T. Röckmann, K. E. Trenberth, E. M. Blyth, J. Wenninger, and G. Hoffmann
Hydrol. Earth Syst. Sci., 18, 2815–2827, https://doi.org/10.5194/hess-18-2815-2014, https://doi.org/10.5194/hess-18-2815-2014, 2014
Related subject area
Domain: ESSD – Land | Subject: Hydrology
OLIGOTREND, a global database of multi-decadal chlorophyll a and water quality time series for rivers, lakes, and estuaries
A 3 h, 1 km surface soil moisture dataset for the contiguous United States from 2015 to 2023
Comprehensive inventory of large hydropower systems in the Italian Alpine Region
An integrated high-resolution bathymetric model for the Danube Delta system
LakeBeD-US: a benchmark dataset for lake water quality time series and vertical profiles
Benchmark dataset for hydraulic simulations of flash floods in the French Mediterranean region
Transformation rate maps of dissolved organic carbon in the contiguous US
A 1985–2023 time series dataset of absolute reservoir storage in Mainland Southeast Asia (MSEA-Res)
Machine-learning-based reconstruction of long-term global terrestrial water storage anomalies from observed, satellite and land-surface model data
Mapping the world's inland surface waters: an upgrade to the Global Lakes and Wetlands Database (GLWD v2)
One year of high-frequency monitoring of groundwater physico-chemical parameters in the Weierbach experimental catchment, Luxembourg
Discrete global grid system-based flow routing datasets in the Amazon and Yukon basins
GRILSS: opening the gateway to global reservoir sedimentation data curation
A worldwide event-based debris flow barrier dam dataset from 1800 to 2023
CAMELS-DK: hydrometeorological time series and landscape attributes for 3330 Danish catchments with streamflow observations from 304 gauged stations
An in situ daily dataset for benchmarking temporal variability of groundwater recharge
CAMELS-FR dataset: a large-sample hydroclimatic dataset for France to explore hydrological diversity and support model benchmarking
Development of HYPER-P: HYdroclimatic PERformance-enhanced Precipitation at 1 km/daily over the Europe-Mediterranean region from 2007 to 2022
Features of Italian large dams and their upstream catchments
Gridded rainfall erosivity (2014–2022) in mainland China using 1 min precipitation data from densely distributed weather stations
High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
CAMELS-IND: hydrometeorological time series and catchment attributes for 228 catchments in Peninsular India
HERA: a high-resolution pan-European hydrological reanalysis (1951–2020)
BCUB – a large-sample ungauged basin attribute dataset for British Columbia, Canada
A 1 km soil moisture data over eastern CONUS generated through assimilating SMAP data into the Noah-MP land surface model
Northern Hemisphere in situ snow water equivalent dataset (NorSWE, 1979–2021)
A seamless global daily 5 km soil moisture product from 1982 to 2021 using AVHRR satellite data and an attention-based deep learning model
ESA CCI Soil Moisture GAPFILLED: An independent global gap-free satellite climate data record with uncertainty estimates
Lena River biogeochemistry captured by a 4.5-year high-frequency sampling program
CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany
Observational partitioning of water and CO2 fluxes at National Ecological Observatory Network (NEON) sites: a 5-year dataset of soil and plant components for spatial and temporal analysis
A benchmark dataset for global evapotranspiration estimation based on FLUXNET2015 from 2000 to 2022
GRDC-Caravan: extending Caravan with data from the Global Runoff Data Centre
CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
HANZE v2.1: an improved database of flood impacts in Europe from 1870 to 2020
A Copernicus-based evapotranspiration dataset at 100 m spatial resolution over four Mediterranean basins
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps
Satellite-based near-real-time global daily terrestrial evapotranspiration estimates
Multivariate characterisation of a blackberry–alder agroforestry system in South Africa: hydrological, pedological, dendrological and meteorological measurements
CAMELS-AUS v2: updated hydrometeorological timeseries and landscape attributes for an enlarged set of catchments in Australia
SHIFT: a spatial-heterogeneity improvement in DEM-based mapping of global geomorphic floodplains
First comprehensive stable isotope dataset of diverse water units in a permafrost-dominated catchment on the Qinghai–Tibet Plateau
LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland
High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020
Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
A hydrogeomorphic dataset for characterizing catchment hydrological behavior across the Tibetan Plateau
A synthesis of Global Streamflow Characteristics, Hydrometeorology, and Catchment Attributes (GSHA) for large sample river-centric studies
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data, 17, 3411–3430, https://doi.org/10.5194/essd-17-3411-2025, https://doi.org/10.5194/essd-17-3411-2025, 2025
Short summary
Short summary
Many waterbodies undergo nutrient decline, called oligotrophication, globally, but a comprehensive dataset to understand ecosystem responses is lacking. The OLIGOTREND database comprises multi-decadal chlorophyll a and nutrient time series from rivers, lakes, and estuaries with 4.3 million observations from 1894 unique measurement locations. The database provides empirical evidence for oligotrophication responses with a spatial and temporal coverage that exceeds previous efforts.
Haoxuan Yang, Jia Yang, Tyson E. Ochsner, Erik S. Krueger, Mengyuan Xu, and Chris B. Zou
Earth Syst. Sci. Data, 17, 3391–3409, https://doi.org/10.5194/essd-17-3391-2025, https://doi.org/10.5194/essd-17-3391-2025, 2025
Short summary
Short summary
We developed a 3 h, 1 km surface soil moisture dataset for the contiguous United States from 2015 to 2023 using the spatio-temporal fusion method. This dataset effectively combines the distinct advantages of two long-term surface soil moisture datasets, which is also the first hourly-level 1 km soil moisture dataset at the continental US scale. The new dataset could provide new insight into the fast changes in soil moisture along with drought and wet spell occurrences.
Andrea Galletti, Soroush Zarghami Dastjerdi, and Bruno Majone
Earth Syst. Sci. Data, 17, 3353–3373, https://doi.org/10.5194/essd-17-3353-2025, https://doi.org/10.5194/essd-17-3353-2025, 2025
Short summary
Short summary
IAR-HP (Italian Alpine Region HydroPower) is a detailed inventory of large hydropower systems in Italy's Alpine Region, aimed at improving their inclusion in hydrological modeling by providing relevant information with a consistent level of detail. It includes structural, geographic, and operational data for over 300 hydropower plants and their related reservoirs and water intakes. Validated through modeling, IAR-HP accurately reproduces observed hydropower, capturing 96.2 % of actual production.
Lauranne Alaerts, Jonathan Lambrechts, Ny Riana Randresihaja, Luc Vandenbulcke, Olivier Gourgue, Emmanuel Hanert, and Marilaure Grégoire
Earth Syst. Sci. Data, 17, 3125–3140, https://doi.org/10.5194/essd-17-3125-2025, https://doi.org/10.5194/essd-17-3125-2025, 2025
Short summary
Short summary
We created the first comprehensive, high-resolution, and easily accessible bathymetry dataset for the three main branches of the Danube Delta. By combining four data sources, we obtained a detailed representation of the riverbed, with resolutions ranging from 2 to 100 m. This dataset will support future studies on water and nutrient exchanges between the Danube and the Black Sea and provide insights into the delta's buffer role within the understudied Danube–Black Sea continuum.
Bennett J. McAfee, Aanish Pradhan, Abhilash Neog, Sepideh Fatemi, Robert T. Hensley, Mary E. Lofton, Anuj Karpatne, Cayelan C. Carey, and Paul C. Hanson
Earth Syst. Sci. Data, 17, 3141–3165, https://doi.org/10.5194/essd-17-3141-2025, https://doi.org/10.5194/essd-17-3141-2025, 2025
Short summary
Short summary
LakeBeD-US is a dataset of lake water quality data collected by multiple long-term monitoring programs around the United States. This dataset is designed to foster collaboration between lake scientists and computer scientists to improve predictions of water quality. By offering a way for computer models to be tested against real-world lake data, LakeBeD-US offers opportunities for both sciences to grow and to give new insights into the causes of water quality changes.
Juliette Godet, Pierre Nicolle, Nabil Hocini, Eric Gaume, Philippe Davy, Frederic Pons, Pierre Javelle, Pierre-André Garambois, Dimitri Lague, and Olivier Payrastre
Earth Syst. Sci. Data, 17, 2963–2983, https://doi.org/10.5194/essd-17-2963-2025, https://doi.org/10.5194/essd-17-2963-2025, 2025
Short summary
Short summary
This paper describes a dataset that includes input, output, and validation data for the simulation of flash flood hazards and three specific flash flood events in the French Mediterranean region. This dataset is particularly valuable as flood mapping methods often lack sufficient benchmark data. Additionally, we demonstrate how the hydraulic method we used, named Floodos, produces highly satisfactory results.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data, 17, 2713–2733, https://doi.org/10.5194/essd-17-2713-2025, https://doi.org/10.5194/essd-17-2713-2025, 2025
Short summary
Short summary
We have developed new maps that reveal how organic carbon from soil leaches into headwater streams over the contiguous United States. We use advanced artificial intelligence techniques and a massive amount of data, including observations at over 2500 gauges and a wealth of climate and environmental information. The maps are a critical step in understanding and predicting how carbon moves through our environment, hence making them a useful tool for tackling climate challenges.
Shanti Shwarup Mahto, Simone Fatichi, and Stefano Galelli
Earth Syst. Sci. Data, 17, 2693–2712, https://doi.org/10.5194/essd-17-2693-2025, https://doi.org/10.5194/essd-17-2693-2025, 2025
Short summary
Short summary
The MSEA-Res database offers an open-access dataset tracking absolute water storage for 186 large reservoirs across Mainland Southeast Asia from 1985 to 2023. It provides valuable insights into how reservoir storage grew by 130 % between 2008 and 2017, driven by dams in key river basins. Our data also reveal how droughts, like the 2019–2020 event, significantly impacted water reservoirs. This resource can aid water management, drought planning, and research globally.
Nehar Mandal, Prabal Das, and Kironmala Chanda
Earth Syst. Sci. Data, 17, 2575–2604, https://doi.org/10.5194/essd-17-2575-2025, https://doi.org/10.5194/essd-17-2575-2025, 2025
Short summary
Short summary
Optimal features among hydroclimatic variables and land surface model (LSM) outputs are selected using a novel Bayesian network (BN) approach for simulating terrestrial water storage anomalies (TWSAs). TWSAs are reconstructed (BNML_TWSA) with grid-specific leader models (among four machine learning models) from January 1960 to December 2022 to generate a continuous global gridded dataset. The uncertainty in the reconstructed BNML_TWSA product is also assessed in terms of standard error.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data, 17, 2217–2229, https://doi.org/10.5194/essd-17-2217-2025, https://doi.org/10.5194/essd-17-2217-2025, 2025
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. These data help predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behaviour and serves as a resource for future environmental studies.
Chang Liao, Darren Engwirda, Matthew G. Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data, 17, 2035–2062, https://doi.org/10.5194/essd-17-2035-2025, https://doi.org/10.5194/essd-17-2035-2025, 2025
Short summary
Short summary
Discrete global grid systems, or DGGS, are digital frameworks that help us organize information about our planet. Although scientists have used DGGS in areas like weather and nature, using them in the water cycle has been challenging because some core datasets are missing. We created a way to generate these datasets. We then developed the datasets in the Amazon and Yukon basins, which play important roles in our planet's climate. These datasets may help us improve our water cycle models.
Sanchit Minocha and Faisal Hossain
Earth Syst. Sci. Data, 17, 1743–1759, https://doi.org/10.5194/essd-17-1743-2025, https://doi.org/10.5194/essd-17-1743-2025, 2025
Short summary
Short summary
Trustworthy and independently verifiable information on declining storage capacity or sedimentation rates worldwide is sparse and suffers from inconsistent metadata and curation to allow global-scale archiving and analyses. The Global Reservoir Inventory of Lost Storage by Sedimentation (GRILSS) dataset addresses this challenge by providing organized, well-curated, and open-source data on sedimentation rates and capacity loss for 1013 reservoirs in 75 major river basins across 54 countries.
Haiguang Cheng, Kaiheng Hu, Shuang Liu, Xiaopeng Zhang, Hao Li, Qiyuan Zhang, Lan Ning, Manish Raj Gouli, Pu Li, Anna Yang, Peng Zhao, Junyu Liu, and Li Wei
Earth Syst. Sci. Data, 17, 1573–1593, https://doi.org/10.5194/essd-17-1573-2025, https://doi.org/10.5194/essd-17-1573-2025, 2025
Short summary
Short summary
After reviewing 2519 literature and media reports, we compiled the first comprehensive global dataset of 555 debris flow barrier dams (DFBDs) from 1800 to 2023. Our dataset meticulously documents 38 attributes of DFBDs, and we have utilized Google Earth for validation. Additionally, we discussed the applicability of landslide dam stability and peak-discharge models to DFBDs. This dataset offers a rich foundation of data for future studies on DFBDs.
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, Anker Lajer Højberg, Hans Thodsen, Mark F. T. Hansen, and Raphael J. M. Schneider
Earth Syst. Sci. Data, 17, 1551–1572, https://doi.org/10.5194/essd-17-1551-2025, https://doi.org/10.5194/essd-17-1551-2025, 2025
Short summary
Short summary
We developed a CAMELS-style dataset in Denmark, which contains hydrometeorological time series and landscape attributes for 3330 catchments (304 gauged). Many catchments in CAMELS-DK are small and at low elevations. The dataset provides information on groundwater characteristics and dynamics, as well as quantities related to the human impact on the hydrological system in Denmark. The dataset is especially relevant for developing data-driven and hybrid physically informed modeling frameworks.
Pragnaditya Malakar, Aatish Anshuman, Mukesh Kumar, Georgios Boumis, T. Prabhakar Clement, Arik Tashie, Hitesh Thakur, Nagaraj Bhat, and Lokendra Rathore
Earth Syst. Sci. Data, 17, 1515–1528, https://doi.org/10.5194/essd-17-1515-2025, https://doi.org/10.5194/essd-17-1515-2025, 2025
Short summary
Short summary
Groundwater dynamics depend on groundwater recharge, but daily benchmark data of recharge are scarce. Here we present a daily groundwater recharge per unit specified yield (RpSy) data at 485 US groundwater monitoring wells. RpSy can be used to validate the temporal consistency of recharge products from land surface and hydrologic models and facilitate assessment of recharge-driver functional relationships in them.
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025, https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyze hydrological behavior and perform model assessments.
Paolo Filippucci, Luca Brocca, Luca Ciabatta, Hamidreza Mosaffa, Francesco Avanzi, and Christian Massari
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-156, https://doi.org/10.5194/essd-2025-156, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Accurate rainfall data is essential, yet measuring daily precipitation worldwide is challenging. This research presents HYdroclimatic PERformance-enhanced Precipitation (HYPER-P), a dataset combining satellite, ground, and reanalysis data to estimate precipitation at a 1 km scale from 2000 to 2023. HYPER-P improves accuracy, especially in areas with few rain gauges. This dataset supports scientists and decision-makers in understanding and managing water resources more effectively.
Giulia Evangelista, Paola Mazzoglio, Daniele Ganora, Francesca Pianigiani, and Pierluigi Claps
Earth Syst. Sci. Data, 17, 1407–1426, https://doi.org/10.5194/essd-17-1407-2025, https://doi.org/10.5194/essd-17-1407-2025, 2025
Short summary
Short summary
This paper presents the first comprehensive dataset of 528 large dams in Italy. It contains structural characteristics of the dams, such as coordinates, reservoir surface areas and volumes, together with a range of geomorphological, climatological, extreme rainfall, land cover and soil-related attributes of their upstream catchments.
Yueli Chen, Yun Xie, Xingwu Duan, and Minghu Ding
Earth Syst. Sci. Data, 17, 1265–1274, https://doi.org/10.5194/essd-17-1265-2025, https://doi.org/10.5194/essd-17-1265-2025, 2025
Short summary
Short summary
Rainfall erosivity maps are crucial for identifying key areas of water erosion. Due to the limited historical precipitation data, there are certain biases in rainfall erosivity estimates in China. This study develops a new rainfall erosivity map for mainland China using 1 min precipitation data from 60 129 weather stations, revealing that areas exceeding 4000 MJ mm ha−1 h−1yr−1 of annual rainfall erosivity are mainly concentrated in southern China and on the southern Tibetan Plateau.
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data, 17, 703–717, https://doi.org/10.5194/essd-17-703-2025, https://doi.org/10.5194/essd-17-703-2025, 2025
Short summary
Short summary
In this study, we present a dataset for the Dischma catchment in eastern Switzerland, which represents a typical high-alpine watershed in the European Alps. Accurate monitoring and reliable forecasting of snow and water resources in such basins are crucial for a wide range of applications. Our dataset is valuable for improving physics-based snow, land surface, and hydrological models, with potential applications in similar high-alpine catchments.
Nikunj K. Mangukiya, Kanneganti Bhargav Kumar, Pankaj Dey, Shailza Sharma, Vijaykumar Bejagam, Pradeep P. Mujumdar, and Ashutosh Sharma
Earth Syst. Sci. Data, 17, 461–491, https://doi.org/10.5194/essd-17-461-2025, https://doi.org/10.5194/essd-17-461-2025, 2025
Short summary
Short summary
We introduce CAMELS-IND (Catchment Attributes and MEteorology for Large-sample Studies – India), which provides daily hydrometeorological time series and static catchment attributes representing the location, topography, climate, hydrological signatures, land use, land cover, soil, geology, and anthropogenic influences for 472 catchments in Peninsular India to foster large-sample hydrological studies in India and promote the inclusion of Indian catchments in global hydrological research.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, Cinzia Mazzetti, and Luc Feyen
Earth Syst. Sci. Data, 17, 293–316, https://doi.org/10.5194/essd-17-293-2025, https://doi.org/10.5194/essd-17-293-2025, 2025
Short summary
Short summary
This article presents a reanalysis of Europe's river streamflow for the period 1951–2020. Streamflow is estimated through a state-of-the-art hydrological simulation framework benefitting from detailed information about the landscape, climate, and human activities. The resulting Hydrological European ReAnalysis (HERA) can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources and flood and drought risks.
Daniel Kovacek and Steven Weijs
Earth Syst. Sci. Data, 17, 259–275, https://doi.org/10.5194/essd-17-259-2025, https://doi.org/10.5194/essd-17-259-2025, 2025
Short summary
Short summary
We made a dataset for British Columbia describing the terrain, soil, land cover, and climate of over 1 million watersheds. The attributes are often used in hydrology because they are related to the water cycle. The data are meant to be used for water resources problems that can benefit from lots of watersheds and their attributes. The data and instructions needed to build the dataset from scratch are freely available. The permanent home for the data is https://doi.org/10.5683/SP3/JNKZVT.
Sheng-Lun Tai, Zhao Yang, Brian Gaudet, Koichi Sakaguchi, Larry Berg, Colleen Kaul, Yun Qian, Ye Liu, and Jerome Fast
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-599, https://doi.org/10.5194/essd-2024-599, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Our study created a high-resolution soil moisture dataset for the eastern U.S. by integrating satellite data with a land surface model and advanced algorithms, achieving 1-km scale analyses. Validated against multiple networks and datasets, it demonstrated superior accuracy. This dataset is vital for understanding soil moisture dynamics, especially during droughts, and highlights the need for improved modeling of clay soils to refine future predictions.
Colleen Mortimer and Vincent Vionnet
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-602, https://doi.org/10.5194/essd-2024-602, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
In situ observations of snow water equivalent (SWE) are critical for climate applications and resource management. NorSWE is a dataset of in situ SWE observations covering North America, Finland and Russia over the period 1979–2021. It includes >11 million observations from >10 thousand different locations compiled from nine different sources. Snow depth and derived bulk snow density are included when available.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Feng Tian, Guodong Zhang, and Jianglei Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-553, https://doi.org/10.5194/essd-2024-553, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Soil moisture (SM) plays a vital role in climate, agriculture, and hydrology, yet reliable long-term seamless global datasets remain scarce. To fill this gap, we developed a four-decade seamless global daily 5 km SM product using multi-source datasets and deep learning techniques. This product has long-term coverage, spatial and temporal integrity, and high accuracy, making it a valuable tool for applications like SM trend analysis, drought monitoring, and assessing vegetation responses.
Wolfgang Preimesberger, Pietro Stradiotti, and Wouter Dorigo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-610, https://doi.org/10.5194/essd-2024-610, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We introduce the official ESA CCI Soil Moisture GAPFILLED climate data record. A univariate interpolation algorithm is applied to predict missing data points without relying on ancillary variables. The dataset includes gap-free uncertainty estimates for all predictions and was validated with independent in situ reference measurements. The data are recommended for applications, which require global long-term gap-free satellite soil moisture data.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Einara Zahn and Elie Bou-Zeid
Earth Syst. Sci. Data, 16, 5603–5624, https://doi.org/10.5194/essd-16-5603-2024, https://doi.org/10.5194/essd-16-5603-2024, 2024
Short summary
Short summary
Quantifying water and CO2 exchanges through transpiration, evaporation, net photosynthesis, and soil respiration is essential for understanding how ecosystems function. We implemented five methods to estimate these fluxes over a 5-year period across 47 sites. This is the first dataset representing such large spatial and temporal coverage of soil and plant exchanges, and it has many potential applications, such as examining the response of ecosystems to weather extremes and climate change.
Wangyipu Li, Zhaoyuan Yao, Yifan Qu, Hanbo Yang, Yang Song, Lisheng Song, Lifeng Wu, and Yaokui Cui
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-460, https://doi.org/10.5194/essd-2024-460, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Due to shortcomings such as extensive data gaps and limited observation durations in current ground-based latent heat flux (LE) datasets, we developed a novel gap-filling and prolongation framework for ground-based LE observations, establishing a benchmark dataset for global evapotranspiration (ET) estimation from 2000 to 2022 across 64 sites at various time scales. This comprehensive dataset can strongly support ET modelling, water-carbon cycle monitoring, and long-term climate change analysis.
Claudia Färber, Henning Plessow, Simon Mischel, Frederik Kratzert, Nans Addor, Guy Shalev, and Ulrich Looser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-427, https://doi.org/10.5194/essd-2024-427, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Large-sample datasets are essential in hydrological science to support modelling studies and advance process understanding. Caravan is a community initiative to create a large-sample hydrology dataset of meteorological forcing data, catchment attributes, and discharge data for catchments around the world. This dataset is a subset of hydrological discharge data and station-based watersheds from the Global Runoff Data Centre (GRDC), which are covered by an open data policy.
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024, https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
Short summary
This study presented new annual maps of irrigated cropland in China from 2000 to 2020 (CIrrMap250). These maps were developed by integrating remote sensing data, irrigation statistics and surveys, and an irrigation suitability map. CIrrMap250 achieved high accuracy and outperformed currently available products. The new irrigation maps revealed a clear expansion of China’s irrigation area, with the majority (61%) occurring in the water-unsustainable regions facing severe to extreme water stress.
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data, 16, 5145–5170, https://doi.org/10.5194/essd-16-5145-2024, https://doi.org/10.5194/essd-16-5145-2024, 2024
Short summary
Short summary
Knowledge about past natural disasters can help adaptation to their future occurrences. Here, we present a dataset of 2521 riverine, pluvial, coastal, and compound floods that have occurred in 42 European countries between 1870 and 2020. The dataset contains available information on the inundated area, fatalities, persons affected, or economic loss and was obtained by extensive data collection from more than 800 sources ranging from news reports through government databases to scientific papers.
Paulina Bartkowiak, Bartolomeo Ventura, Alexander Jacob, and Mariapina Castelli
Earth Syst. Sci. Data, 16, 4709–4734, https://doi.org/10.5194/essd-16-4709-2024, https://doi.org/10.5194/essd-16-4709-2024, 2024
Short summary
Short summary
This paper presents the Two-Source Energy Balance evapotranspiration (ET) product driven by Copernicus Sentinel-2 and Sentinel-3 imagery together with ERA5 climate reanalysis data. Daily ET maps are available at 100 m spatial resolution for the period 2017–2021 across four Mediterranean basins: Ebro (Spain), Hérault (France), Medjerda (Tunisia), and Po (Italy). The product is highly beneficial for supporting vegetation monitoring and sustainable water management at the river basin scale.
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024, https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
Short summary
Nitrogen (N) and phosphorus (P) contamination of water bodies is a long-term issue due to the long history of N and P inputs to the environment and their persistence. Here, we introduce a long-term and high-resolution dataset of N and P inputs from wastewater (point sources) for Germany, combining data from different sources and conceptual understanding. We also account for uncertainties in modelling choices, thus facilitating robust long-term and large-scale water quality studies.
Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner
Earth Syst. Sci. Data, 16, 4311–4323, https://doi.org/10.5194/essd-16-4311-2024, https://doi.org/10.5194/essd-16-4311-2024, 2024
Short summary
Short summary
Global water resource monitoring is crucial due to climate change and population growth. This study presents a hand-labeled dataset of 100 PlanetScope images for surface water detection, spanning diverse biomes. We use this dataset to evaluate two state-of-the-art mapping methods. Results highlight performance variations across biomes, emphasizing the need for diverse, independent validation datasets to enhance the accuracy and reliability of satellite-based surface water monitoring techniques.
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024, https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Short summary
Timely global terrestrial evapotranspiration (ET) data are crucial for water resource management and drought forecasting. This study introduces the VISEA algorithm, which integrates satellite data and shortwave radiation to provide daily 0.05° gridded near-real-time ET estimates. By employing a vegetation index–temperature method, this algorithm can estimate ET without requiring additional data. Evaluation results demonstrate VISEA's comparable accuracy with accelerated data availability.
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024, https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
Short summary
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a sustainable land use option which protects natural resources and biodiversity. Introducing trees into agricultural systems can positively affect water resources, soil characteristics, biomass and microclimate. We studied an AFS in South Africa in a multidisciplinary approach to assess the different influences and present the resulting dataset consisting of water, soil, tree and meteorological variables.
Keirnan J. A. Fowler, Ziqi Zhang, and Xue Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-263, https://doi.org/10.5194/essd-2024-263, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper presents Version 2 of the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS v2 comprises data for an increased number (561) of catchments, each with with long-term monitoring, combining hydrometeorological time series with attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://zenodo.org/doi/10.5281/zenodo.12575680.
Kaihao Zheng, Peirong Lin, and Ziyun Yin
Earth Syst. Sci. Data, 16, 3873–3891, https://doi.org/10.5194/essd-16-3873-2024, https://doi.org/10.5194/essd-16-3873-2024, 2024
Short summary
Short summary
We develop a globally applicable thresholding scheme for DEM-based floodplain delineation to improve the representation of spatial heterogeneity. It involves a stepwise approach to estimate the basin-level floodplain hydraulic geometry parameters that best respect the scaling law while approximating the global hydrodynamic flood maps. A ~90 m resolution global floodplain map, the Spatial Heterogeneity Improved Floodplain by Terrain analysis (SHIFT), is delineated with demonstrated superiority.
Yuzhong Yang, Qingbai Wu, Xiaoyan Guo, Lu Zhou, Helin Yao, Dandan Zhang, Zhongqiong Zhang, Ji Chen, and Guojun Liu
Earth Syst. Sci. Data, 16, 3755–3770, https://doi.org/10.5194/essd-16-3755-2024, https://doi.org/10.5194/essd-16-3755-2024, 2024
Short summary
Short summary
We present the temporal data of stable isotopes in different waterbodies in the Beiluhe Basin in the hinterland of the Qinghai–Tibet Plateau (QTP) produced between 2017 and 2022. In this article, the first detailed stable isotope data of 359 ground ice samples are presented. This first data set provides a new basis for understanding the hydrological effects of permafrost degradation on the QTP.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological time series, including observed streamflow and basin characteristics, for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets and additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Chengcheng Hou, Yan Li, Shan Sang, Xu Zhao, Yanxu Liu, Yinglu Liu, and Fang Zhao
Earth Syst. Sci. Data, 16, 2449–2464, https://doi.org/10.5194/essd-16-2449-2024, https://doi.org/10.5194/essd-16-2449-2024, 2024
Short summary
Short summary
To fill the gap in the gridded industrial water withdrawal (IWW) data in China, we developed the China Industrial Water Withdrawal (CIWW) dataset, which provides monthly IWWs from 1965 to 2020 at a spatial resolution of 0.1°/0.25° and auxiliary data including subsectoral IWW and industrial output value in 2008. This dataset can help understand the human water use dynamics and support studies in hydrology, geography, sustainability sciences, and water resource management and allocation in China.
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024, https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Short summary
Nature-based solutions (NBSs), such as green roofs, have appeared as relevant solutions to mitigate urban heat islands. The evapotranspiration (ET) process allows NBSs to cool the air. To improve our knowledge about ET assessment, this paper presents some experimental measurement campaigns carried out during three consecutive summers. Data are available for three different (large, small, and point-based) spatial scales.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Ziyun Yin, Peirong Lin, Ryan Riggs, George H. Allen, Xiangyong Lei, Ziyan Zheng, and Siyu Cai
Earth Syst. Sci. Data, 16, 1559–1587, https://doi.org/10.5194/essd-16-1559-2024, https://doi.org/10.5194/essd-16-1559-2024, 2024
Short summary
Short summary
Large-sample hydrology (LSH) datasets have been the backbone of hydrological model parameter estimation and data-driven machine learning models for hydrological processes. This study complements existing LSH studies by creating a dataset with improved sample coverage, uncertainty estimates, and dynamic descriptions of human activities, which are all crucial to hydrological understanding and modeling.
Cited articles
Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin, F., Krause,
S., Hannah, D. M., Conner, L., Ellison, D., Godsey, S. E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Frei, R. J., Hampton, T., Gu, S., Buhman, M., Sara Sayedi, S., Ursache, O., Chapin, M., Henderson, K. D., and Pinay, G.: Human
domination of the global water cycle absent from depictions and perceptions,
Nat. Geosci., 12, 533–540, 2019. a
Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of
photosynthesis, canopy properties and plant production to rising CO2, New
Phytol., 165, 351–372,
https://doi.org/10.1111/j.1469-8137.2004.01224.x, 2005. a
Alo, C. A. and Wang, G.: Potential future changes of the terrestrial ecosystem
based on climate projections by eight general circulation models, J.
Geophys. Res.-Biogeo., 113, G01004, https://doi.org/10.1029/2007JG000528, 2008. a
Andrews, T., Andrews, M. B., Bodas-Salcedo, A., Jones, G. S., Kuhlbrodt, T.,
Manners, J., Menary, M. B., Ridley, J., Ringer, M. A., Sellar, A. A., Senior,
C. A., and Tang, Y.: Forcings, Feedbacks, and Climate Sensitivity in
HadGEM3-GC3.1 and UKESM1, J. Adv. Model. Earth Sy., 11,
4377–4394, https://doi.org/10.1029/2019MS001866, 2019. a, b
Barnes, C.: EuroCORDEX-UK: Regional climate projections for the UK domain at 12 km Resolution for 1980–2080, NERC EDS Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/B109BD69E1AF425AA0F661B01C40DC51,
2023. a
Bell, V., Kay, A., Jones, R., Moore, R., and Reynard, N.: Use of soil data in a
grid-based hydrological model to estimate spatial variation in changing flood
risk across the UK, J. Hydrol., 377, 335–350,
https://doi.org/10.1016/j.jhydrol.2009.08.031, 2009. a, b, c
Blaney, H. F. and Criddle, W. D.: Determining water requirements in irrigated
areas from climatological and irrigation data, Technical Paper 96, US
Department of Agriculture (Soil Conservation Service), 1950. a
Brown, M., Robinson, E., Kay, A., Chapman, R., Bell, V., and Blyth, E.:
Potential evapotranspiration derived from HadUK-Grid gridded climate
observations 1969–2021 (Hydro-PE HadUK-Grid), NERC EDS Environmental Information Data Centre [data set],
https://doi.org/10.5285/9275ab7e-6e93-42bc-8e72-59c98d409deb, 2022. a, b
Bunce, J.: Carbon dioxide effects on stomatal responses to the environment and
water use by crops under field conditions, Oecologia, 140, 1–10,
https://doi.org/10.1007/s00442-003-1401-6, 2004. a
Cao, L., Bala, G., Caldeira, K., Nemani, R., and Ban-Weiss, G.: Importance of
carbon dioxide physiological forcing to future climate change, P. Natl. Acad. Sci. USA, 107, 9513–9518, 2010. a
Cowley, J. P.: Distribution over Great-Britain of global solar irradiation
on a horizontal surface, Meteorol. Mag., 107, 357–373, 1978. a
Cox, P., Huntingford, C., and Harding, R.: A canopy conductance and
photosynthesis model for use in a GCM land surface scheme, J.
Hydrol., 212–213, 79–94,
https://doi.org/10.1016/S0022-1694(98)00203-0, 1998. a
Coxon, G., Addor, N., Bloomfield, J., Freer, J., Fry, M., Hannaford, J.,
Howden, N., Lane, R., Lewis, M., Robinson, E., Wagener, T., and Woods, R.:
Catchment attributes and hydro-meteorological timeseries for 671 catchments
across Great Britain (CAMELS-GB), NERC EDS Environmental Information Data Centre [data set],
https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9, 2020a. a
Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J. K., Lane, R., Lewis, M., Robinson, E. L., Wagener, T., and Woods, R.: CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain, Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, 2020b. a
Crooks, S. M. and Naden, P. S.: CLASSIC: a semi-distributed rainfall-runoff modelling system, Hydrol. Earth Syst. Sci., 11, 516–531, https://doi.org/10.5194/hess-11-516-2007, 2007. a, b, c
Donohue, R. J., McVicar, T. R., and Roderick, M. L.: Assessing the ability of
potential evaporation formulations to capture the dynamics in evaporative
demand within a changing climate, J. Hydrol., 386, 186–197,
https://doi.org/10.1016/j.jhydrol.2010.03.020, 2010. a
Evans, C., Morrison, R., Burden, A., Williamson, J., Baird, A., Brown, E.,
Callaghan, N., Chapman, P., Cumming, A., Dean, H., Dixon, S., Dooling, G.,
Evans, J., Gauci, V., Grayson, R., Haddaway, N., He, Y., Heppell, K., Holden,
J., Hughes, S., Kaduk, J., Jones, D., Matthews, R., Menichino, N.,
Misselbrook, T., Page, S., Pan, G., Peacock, M., Rayment, M., Ridley, L.,
Robinson, I., Rylett, D., Scowen, M., Stanley, K., and Worrall, F.: Final
report on project SP1210: Lowland peatland systems in England and Wales –
evaluating greenhouse gas fluxes and carbon balances,
http://oro.open.ac.uk/50635/1/14106_Report_FINAL Defra Lowland Peat Published.pdf (last access: 22 September 2023), 2016a. a
Evans, J. G., Ward, H. C., Blake, J. R., Hewitt, E. J., Morrison, R., Fry, M.,
Ball, L. A., Doughty, L. C., Libre, J. W., Hitt, O. E., Rylett, D., Ellis,
R. J., Warwick, A. C., Brooks, M., Parkes, M. A., Wright, G. M. H., Singer,
A. C., Boorman, D. B., and Jenkins, A.: Soil water content in southern
England derived from a cosmic-ray soil moisture observing system –
COSMOS-UK, Hydrol. Process., 30, 4987–4999,
https://doi.org/10.1002/hyp.10929, 2016b. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Federer, C. A., Vörösmarty, C., and Fekete, B.: Intercomparison of
Methods for Calculating Potential Evaporation in Regional and Global Water
Balance Models, Water Resour. Res., 32, 2315–2321,
https://doi.org/10.1029/96WR00801, 1996. a
Gill, A. E.: Atmosphere-ocean Dynamics, Academic Press, San Diego, CA, USA,
ISBN 978-0-12-283522-3, 1982. a
Hannaford, J.: Climate-driven changes in UK river flows: A review of the
evidence, Prog. Phys. Geog., 39, 29–48, 2015. a
Hough, M. N. and Jones, R. J. A.: The United Kingdom Meteorological Office rainfall and evaporation calculation system: MORECS version 2.0-an overview, Hydrol. Earth Syst. Sci., 1, 227–239, https://doi.org/10.5194/hess-1-227-1997, 1997. a, b
Hough, M., Palmer, S., Weir, A., Lee, M., and Barrie, I.: The Meteorological
Office Rainfall and Evaporation Calculation System: MORECS version 2.0, An
update to Hydrological Memorandum 45, Met Office,
https://digital.nmla.metoffice.gov.uk/IO_9d68dec6-8ad2-420b-a971-806f7a6987d8/ (last access: 22 September 2023),
1997. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
IPCC: Climate Change 2007: Synthesis Report. Contribution of Working Groups
I, II and III to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, IPCC, Geneva, Switzerland, ISBN 92-9169-122-4, 2007. a
Kay, A. L., Bell, V. A., Blyth, E. M., Crooks, S. M., Davies, H. N., and
Reynard, N. S.: A hydrological perspective on evaporation: historical trends
and future projections in Britain, J. Water Clim. Change, 4,
193–208, https://doi.org/10.2166/wcc.2013.014, 2013. a, b
Kendon, E., Short, C., Pope, J., Chan, S., Wilkinson, J., Tucker, S., Bett, P.,
and Harris, G.: Update to UKCP Local (2.2 km) projections,
https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/ukcp18_local_update_report_2021.pdf (last access: 22 September 2023),
2021. a
Kruijt, B., Witte, J.-P. M., Jacobs, C. M., and Kroon, T.: Effects of rising
atmospheric CO2 on evapotranspiration and soil moisture: A practical approach
for the Netherlands, J. Hydrol., 349, 257–267,
https://doi.org/10.1016/j.jhydrol.2007.10.052, 2008. a, b
Lemaitre-Basset, T., Oudin, L., Thirel, G., and Collet, L.: Unraveling the contribution of potential evaporation formulation to uncertainty under climate change, Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022, 2022. a, b
Lewis, E., Quinn, N., Blenkinsop, S., Fowler, H., Freer, J., Tanguy, M., Hitt,
O., Coxon, G., Bates, P., Woods, R., Fry, M., Chevuturi, A., Swain, O., and
White, S.: Gridded estimates of hourly areal rainfall for Great Britain
1990–2016 [CEH-GEAR1hr] v2, NERC EDS Environmental Information Data Centre [data set],
https://doi.org/10.5285/fc9423d6-3d54-467f-bb2b-fc7357a3941f, 2022. a
Lowe, J. A., Bernie, D., Bett, P., Bricheno, L., Brown, S., Calvert, D., Clark,
R., Eagle, K., Edwards, T., Fosser, G., Fung, F., Gohar, L., Good, P.,
Gregory, J., Harris, G., Howard, T., Kaye, N., Kendon, E., Krijnen, J.,
Maisey, P., McDonald, R., McInnes, R., McSweeney, C., Mitchell, J. F. B.,
Murphy, J., Palmer, M., Roberts, C., Rostron, J., Sexton, D., Thornton, H.,
Tinker, J., Tucker, S., Yamazaki, K., and Belcher, S.: UKCP18 Science
Overview Report, https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Overview-report.pdf
(last access: 22 September 2023), 2018. a
Met Office, Hollis, D., McCarthy, M., Kendon, M., Legg, T., and Simpson, I.:
HadUK-Grid gridded and regional average climate observations for the UK, NERC EDS Centre for Environmental Data Analysis [data set],
http://catalogue.ceda.ac.uk/uuid/4dc8450d889a491ebb20e724debe2dfb (last access: 22 September 2023),
2021. a, b
Met Office Hadley Centre: UKCP18 Regional Projections on a 12 km grid
over the UK for 1980–2080, NERC EDS Centre for Environmental Data Analysis [data set],
https://catalogue.ceda.ac.uk/uuid/589211abeb844070a95d061c8cc7f604,
(last access: 22 September 2023), 2018. a
Met Office Hadley Centre: UKCP18 land projections – 12 km regional climate
model, surface altitude (m) over Europe, NERC EDS Centre for Environmental Data Analysis [data set],
https://data.ceda.ac.uk/badc/ukcp18/data/land-rcm/ancil/orog,
(last access: 22 September 2023), 2019. a
Met Office Hadley Centre: UKCP18 land projections – land-sea mask,
2020b. a
Morrison, R., Cooper, H., Cumming, A., Scarlett, P., Thornton, J., and
Winterbourn, J.: Eddy covariance measurements of carbon dioxide, energy and
water fluxes at an organically managed grassland, Berkshire, UK, 2017 to
2019, NERC EDS Environmental Information Data Centre [data set], https://doi.org/10.5285/5a93161f-0124-4650-a2c9-7e8aaea7e6bb, 2019. a
Morrison, R., Cooper, H., Cumming, A., Evans, C., Thornton, J., Winterbourn,
J., Rylett, D., and Jones, D.: Eddy covariance measurements of carbon
dioxide, energy and water fluxes at a cropland and a grassland on lowland
peat soils, East Anglia, UK, 2016–2019, NERC EDS Environmental Information Data Centre [data set],
https://doi.org/10.5285/2fe84b80-117a-4b19-a1f5-71bbd1dba9c9, 2020. a
Morton, R., Marston, C., O'Neil, A., and Rowland, C.: Land Cover Map 2020 (land
parcels, GB), NERC EDS Environmental Information Data Centre [data set], https://doi.org/10.5285/0e99d57e-1757-451f-ac9d-92fd1256f02a, 2021. a
Murphy, J. M., Harris, G. R., Sexton, D. M. H., Kendon, E. J., Bett, P. E.,
Brown, S. J., Clark, R. T., Eagle, K., Fosser, G., Fung, F., Lowe, J. A.,
McDonald, R. E., McInnes, R. N., McSweeney, C. F., Mitchell, J. F. B.,
Rostron, J., Thornton, H. E., Tucker, S., and Yamazaki, K.: UKCP18 Land
Projections: Science Report,
https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Land-report.pdf (last access: 22 September 2023),
2018. a, b, c, d, e, f, g, h, i, j, k, l
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. a
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil,
F., and Loumagne, C.: Which potential evapotranspiration input for a lumped
rainfall–runoff model?: Part 2 – Towards a simple and efficient potential
evapotranspiration model for rainfall–runoff modelling, J.
Hydrol., 303, 290–306,
https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005. a
Oudin, L., titia Moulin, L., Bendjoudi, H., and Ribstein, P.: Estimating
potential evapotranspiration without continuous daily data: possible errors
and impact on water balance simulations, Hydrolog. Sci. J., 55,
209–222, https://doi.org/10.1080/02626660903546118, 2010. a, b
Pereira, L. S., Perrier, A., Allen, R. G., and Alves, I.: Evapotranspiration:
Concepts and Future Trends, J. Irrig. Drain. E.,
125, 45–51, https://doi.org/10.1061/(ASCE)0733-9437(1999)125:2(45), 1999. a, b
Perry, M. and Hollis, D.: The generation of monthly gridded datasets for a
range of climatic variables over the UK, Int. J.
Climatol., 25, 1041–1054, https://doi.org/10.1002/joc.1161, 2005. a
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux
and evaporation using large-scale parameters, Mon. Weather Rev., 100,
81–92, 1972. a
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann,
G., Nakicenovic, N., and Rafaj, P.: RCP 8.5 – A scenario of
comparatively high greenhouse gas emissions, Climatic Change, 109, 33–57,
https://doi.org/10.1007/s10584-011-0149-y, 2011. a, b
Richards, J. M.: A simple expression for the saturation vapour pressure of
water in the range −50 to 140 ∘C, J. Phys. D Appl.
Phys., 4, L15–L18, https://doi.org/10.1088/0022-3727/4/4/101, 1971. a
Robinson, E. L.: NERC-CEH/hydro-pe, Zenodo [code], https://doi.org/10.5281/zenodo.8363127, 2023. a
Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J., and Rudd, A. C.: Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data, Hydrol. Earth Syst. Sci., 21, 1189–1224, https://doi.org/10.5194/hess-21-1189-2017, 2017. a, b, c, d
Robinson, E. L., Kay, A. L., Brown, M., Chapman, R., Bell, V. A., and Blyth,
E.: Potential evapotranspiration derived from the UK Climate Projections 2018
Regional Climate Model ensemble 1980–2080 (Hydro-PE UKCP18 RCM), NERC EDS Environmental Information Data Centre [data set],
https://doi.org/10.5285/eb5d9dc4-13bb-44c7-9bf8-c5980fcf52a4, 2021. a, b
Rudd, A. C. and Kay, A. L.: Use of very high resolution climate model data for
hydrological modelling: estimation of potential evaporation, Hydrol.
Res., 47, 660–670, https://doi.org/10.2166/nh.2015.028, 2016. a, b, c, d
Sexton, D. M. H., McSweeney, C. F., Rostron, J. W., Yamazaki, K., Booth, B.
B. B., Murphy, J. M., Regayre, L., Johnson, J. S., and Karmalkar, A. V.: A
perturbed parameter ensemble of HadGEM3-GC3.05 coupled model projections:
part 1: selecting the parameter combinations, Clim. Dynam., 56,
3395–3436, https://doi.org/10.1007/s00382-021-05709-9, 2021. a, b
Shuttleworth, W. J.: Terrestrial Hydrometeorology, John Wiley & Sons Ltd,
ISBN 9781119951933, https://doi.org/10.1002/9781119951933.ch3, 2012. a
Smith, R. N. B., Blyth, E. M., Finch, J. W., Goodchild, S., Hall, R. L., and
Madry, S.: Soil state and surface hydrology diagnosis based on MOSES in the
Met Office Nimrod nowcasting system, Meteorol. Appl., 13,
89–109, https://doi.org/10.1017/S1350482705002069, 2006. a, b
Tanguy, M., Dixon, H., Prosdocimi, I., Morris, D., and Keller, V.: Gridded
estimates of daily and monthly areal rainfall for the United Kingdom
(1890–2019) [CEH-GEAR], NERC EDS Environmental Information Data Centre [data set], https://doi.org/10.5285/dbf13dd5-90cd-457a-a986-f2f9dd97e93c,
2021. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the
Experiment Design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Thornthwaite, C. W.: An approach toward a rational classification of climate,
Geogr. Rev., 38, 55–94, 1948. a
Trenberth, K. E.: Conceptual framework for changes of extremes of the
hydrological cycle with climate change, in: Weather and climate extremes,
edited by: Karl, T. R., Nicholls, N., and Ghazi, A., Springer, 327–339, 1999. a
Ukkola, A.: PLUMBER2: forcing and evaluation datasets for a model
intercomparison project for land surface models v1.0, NCI [code],
https://doi.org/10.25914/5FDB0902607E1, 2020. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
a
Wales-Smith, B. and Arnott, J.: The evaporation calculation system used in the
United Kingdom, Met Office, 1980. a
Williams, K. D., Copsey, D., Blockley, E. W., Bodas-Salcedo, A., Calvert, D.,
Comer, R., Davis, P., Graham, T., Hewitt, H. T., Hill, R., Hyder, P., Ineson,
S., Johns, T. C., Keen, A. B., Lee, R. W., Megann, A., Milton, S. F., Rae, J.
G. L., Roberts, M. J., Scaife, A. A., Schiemann, R., Storkey, D., Thorpe, L.,
Watterson, I. G., Walters, D. N., West, A., Wood, R. A., Woollings, T., and
Xavier, P. K.: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and
GC3.1) Configurations, J. Adv. Model. Earth Sy., 10,
357–380, https://doi.org/10.1002/2017MS001115, 2018. a
Yamazaki, K., Sexton, D. M. H., Rostron, J. W., McSweeney, C. F., Murphy,
J. M., and Harris, G. R.: A perturbed parameter ensemble of
HadGEM3-GC3.05 coupled model projections: part 2: global performance and
future changes, Clim. Dynam., 56, 3437–3471,
https://doi.org/10.1007/s00382-020-05608-5, 2021. a, b
Short summary
This work presents two new Penman–Monteith potential evaporation datasets for the UK, calculated with the same methodology applied to historical climate data (Hydro-PE HadUK-Grid) and an ensemble of future climate projections (Hydro-PE UKCP18 RCM). Both include an optional correction for evaporation of rain that lands on the surface of vegetation. The historical data are consistent with existing PE datasets, and the future projections include effects of rising atmospheric CO2 on vegetation.
This work presents two new Penman–Monteith potential evaporation datasets for the UK, calculated...
Altmetrics
Final-revised paper
Preprint