Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4181-2023
https://doi.org/10.5194/essd-15-4181-2023
Data description paper
 | 
25 Sep 2023
Data description paper |  | 25 Sep 2023

Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022

Muyi Li, Sen Cao, Zaichun Zhu, Zhe Wang, Ranga B. Myneni, and Shilong Piao

Related authors

Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020
Sen Cao, Muyi Li, Zaichun Zhu, Zhe Wang, Junjun Zha, Weiqing Zhao, Zeyu Duanmu, Jiana Chen, Yaoyao Zheng, Yue Chen, Ranga B. Myneni, and Shilong Piao
Earth Syst. Sci. Data, 15, 4877–4899, https://doi.org/10.5194/essd-15-4877-2023,https://doi.org/10.5194/essd-15-4877-2023, 2023
Short summary

Related subject area

Domain: ESSD – Land | Subject: Biogeosciences and biodiversity
A synthesized field survey database of vegetation and active-layer properties for the Alaskan tundra (1972–2020)
Xiaoran Zhu, Dong Chen, Maruko Kogure, Elizabeth Hoy, Logan T. Berner, Amy L. Breen, Abhishek Chatterjee, Scott J. Davidson, Gerald V. Frost, Teresa N. Hollingsworth, Go Iwahana, Randi R. Jandt, Anja N. Kade, Tatiana V. Loboda, Matt J. Macander, Michelle Mack, Charles E. Miller, Eric A. Miller, Susan M. Natali, Martha K. Raynolds, Adrian V. Rocha, Shiro Tsuyuzaki, Craig E. Tweedie, Donald A. Walker, Mathew Williams, Xin Xu, Yingtong Zhang, Nancy French, and Scott Goetz
Earth Syst. Sci. Data, 16, 3687–3703, https://doi.org/10.5194/essd-16-3687-2024,https://doi.org/10.5194/essd-16-3687-2024, 2024
Short summary
TCSIF: a temporally consistent global Global Ozone Monitoring Experiment-2A (GOME-2A) solar-induced chlorophyll fluorescence dataset with the correction of sensor degradation
Chu Zou, Shanshan Du, Xinjie Liu, and Liangyun Liu
Earth Syst. Sci. Data, 16, 2789–2809, https://doi.org/10.5194/essd-16-2789-2024,https://doi.org/10.5194/essd-16-2789-2024, 2024
Short summary
National forest carbon harvesting and allocation dataset for the period 2003 to 2018
Daju Wang, Peiyang Ren, Xiaosheng Xia, Lei Fan, Zhangcai Qin, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 16, 2465–2481, https://doi.org/10.5194/essd-16-2465-2024,https://doi.org/10.5194/essd-16-2465-2024, 2024
Short summary
Crop-specific Management History of Phosphorus Fertilizer Input (CMH-P) in the Croplands of United States: Reconciliation of Top-down and Bottom-up data Sources
Peiyu Cao, Bo Yi, Franco Bilotto, Carlos Gonzalez Fischer, Mario Herrero, and Chaoqun Lu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-67,https://doi.org/10.5194/essd-2024-67, 2024
Revised manuscript accepted for ESSD
Short summary
Spatial mapping of key plant functional traits in terrestrial ecosystems across China
Nannan An, Nan Lu, Weiliang Chen, Yongzhe Chen, Hao Shi, Fuzhong Wu, and Bojie Fu
Earth Syst. Sci. Data, 16, 1771–1810, https://doi.org/10.5194/essd-16-1771-2024,https://doi.org/10.5194/essd-16-1771-2024, 2024
Short summary

Cited articles

AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., and Hain, C. R.: Remote sensing of drought: Progress, challenges and opportunities, Rev. Geophys., 53, 452–480, https://doi.org/10.1002/2014rg000456, 2015. 
Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared reflectance and terrestrial photosynthesis, Sci. Adv., 3, e1602244, https://doi.org/10.1126/sciadv.1602244, 2017. 
Berner, L. T., Massey, R., Jantz, P., Forbes, B. C., Macias-Fauria, M., Myers-Smith, I., Kumpula, T., Gauthier, G., Andreu-Hayles, L., Gaglioti, B. V., Burns, P., Zetterberg, P., D'Arrigo, R., and Goetz, S. J.: Summer warming explains widespread but not uniform greening in the Arctic tundra biome, Nat. Commun., 11, 1–12, https://doi.org/10.1038/s41467-020-18479-5, 2020. 
Beurs, K. M. D. and Henebry, G. M.: Trend analysis of the Pathfinder AVHRR Land (PAL) NDVI data for the deserts of central Asia, IEEE Geosci. Remote, 1, 282–286, https://doi.org/10.1109/LGRS.2004.834805, 2004. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
Long-term global Normalized Difference Vegetation Index (NDVI) products support the understanding of changes in vegetation under environmental changes. This study generates a consistent global NDVI product (PKU GIMMS NDVI) from 1982–2022 that eliminates the issue of orbital drift and sensor degradation in Advanced Very High Resolution Radiometer (AVHRR) data. More accurate than its predecessor (GIMMS NDVI3g), it shows high temporal consistency with MODIS NDVI in describing vegetation trends.
Altmetrics
Final-revised paper
Preprint